
Thales: Formulating and Estimating Architectural
Vulnerability Factors for DNN Accelerators
Abhishek Tyagi

University of Rochester
atyagi2@ur.rochester.edu

Yiming Gan
University of Rochester
ygan10@ur.rochester.edu

Shaoshan Liu
PerceptIn

shaoshan.liu@perceptin.io

Bo Yu
PerceptIn

bo.yu@perceptin.io

Paul Whatmough
Arm Research

paul.whatmough@arm.com

Yuhao Zhu
University of Rochester

yzhu@rochester.edu

Abstract—As Deep Neural Networks (DNNs) are increasingly
deployed in safety-critical and privacy-sensitive applications such
as autonomous driving and biometric authentication, it is critical
to understand the fault-tolerance nature of DNNs. Prior work
primarily focuses on metrics such as Failures In Time (FIT) rate
and the Silent Data Corruption (SDC) rate, which quantify how
often a device fails. Instead, this paper focuses on quantifying
the DNN accuracy given that a transient error has occurred,
which tells us how well a network behaves when a transient
error occurs. We call this metric Resiliency Accuracy (RA).

We show that existing RA formulation is fundamentally
inaccurate, because it incorrectly assumes that software variables
(model weights/activations) have equal faulty probability under
hardware transient faults. We present an algorithm that cap-
tures the faulty probabilities of DNN variables under transient
faults and, thus, provides correct RA estimations validated by
hardware. To accelerate RA estimation, we reformulate RA
calculation as a Monte Carlo integration problem, and solve it
using importance sampling driven by DNN-specific heuristics.

Using our lightweight RA estimation method, we show that
transient faults lead to far greater accuracy degradation than
what today’s DNN resiliency tools estimate. We show how our
RA estimation tool can help design more resilient DNNs by
integrating it with a Network Architecture Search framework.

I. INTRODUCTION

Deep neural networks (DNNs) have become integral com-
ponents in many safety-critical and/or privacy-sensitive appli-
cation domains. Thus, the fault tolerance of a deep learn-
ing system has become crucial. Among many sources of
vulnerability, a major concern is transient errors, which are
radiation-induced accidental bit flips [56], [71], [72], [77].
While transient bit flips can occur anywhere on a chip [16],
[17], [34], [42], [54], they are particularly detrimental to flip-
flops (FFs); other memory structures (SRAMs and DRAMs)
are usually protected by error correction codes [9], [75].

Prior work primarily focuses on metrics such as Failures In
Time (FIT) rate and the Silent Data Corruption (SDC) rate,
which quantify how often a device fails. Instead, this paper
focuses on quantifying the DNN accuracy given that a transient
error has occurred, which tells us how well a network behaves
when a transient error occurs. We call this metric Resiliency
Accuracy (RA), the counterpart of the network’s fault-free,
Standard Accuracy (SA).

The RA metric can be seen as the Architectural Vulner-
ability Factor (AVF) [43], [53] of a DNN accelerator. As
traditionally defined (for CPU and GPU architectures), the
AVF of a fault site (i.e., a single bit in a single cycle) is
either 0 (the value of that bit in that cycle does not affect
the correctness of the program) or 1 (the value of that bit in
that cycle does affect the correctness of the program); this
is averaged across all bits and cycles to get an average AVF
for an application. In contrast, the AVF of a fault site for a
DNN accelerator is not binary, because DNN’s accuracy (over
a test set) is a percentage. Thus, a DNN accelerator’s AVF is
a spectrum between 0 and 1.

Prior work conducted real beam experiments on GPUs [21]
and TPUs [67] to demonstrate the DNN accuracy loss un-
der transient faults. The focus of our work is to show an
approach that estimates RA using fault injections. Existing
DNN fault injection tools such as PyTorchFI [50], Ares [66],
TensorFI [13] inject faults into DNN variables (i.e., weights
and activations) and average the resulting inference accuracies.
This approach resembles the classic Software Vulnerability
Factor (SVF) analysis [49], [76], [81], and does not ac-
curately reflect the AVF because it fundamentally assumes
that DNN variables are equally faulty. We show that the
faulty probability varies by orders of magnitude across DNN
variables (Sec. II), leading to the mismatch between AVF and
SVF in DNNs; our results corroborate and complement the
CPU-centric results in Papadimitriou and Gizopoulos [56].

Following how AVF is defined for classic architectures, we
define RA as an expected value of the DNN’s inference accu-
racy, which weighs the inference accuracy by how probable
a software variable receives a transient fault at each cycle.
Crucially, each software variable has a potentially different
faulty probability. In resiliency parlance, our RA metric is AVF
modulated by the impact of the bit flip on DNN accuracy.

We then describe how the new RA metric can be analytically
derived from simple statistics of a DNN and the accelerator.
This is achieved by leveraging the regular data reuse pattern
in DNNs to map a software variable to hardware FFs over
time (Sec. III). We show that our analytical modeling method
correlates well with results obtained from large-scale (over 2.6

1

billion) RTL fault simulations (Sec. V).
Accurately calculating RA using the new formulation is

time-consuming: it requires exhaustively enumerating all the
bits in all the model weights/activations, each of which
requires inferencing over an entire test set. We resort to
sampling. Critically, the faulty probabilities in software vary
significantly; uniform sampling, a common strategy used in
prior work, would lead to significant estimation variance or
require an excessive amount of samples to converge.

We propose a sampling strategy that estimates the true
RA with several orders of fewer samples (Sec. IV). The key
is to formulate RA estimation as a Monte Carlo integration
problem [61]. Taking this perspective, we propose to use
importance sampling [37] to reduce estimation variance and
accelerate convergence. We show that a perfect estimator based
on important sampling is impossible, and propose heuristics
that leverage DNN-specific characteristics to approximate im-
portance sampling while retaining the main benefit. We show
that our importance sampling method significantly accelerates
the convergence rate of RA estimation (Sec. VI).

We apply our RA formulation and estimation method for a
set of case studies. For instance, we show that transient errors
lead to much a higher DNN accuracy degradation compared to
what today’s RA formulation estimates; selectively hardening
control FFs improves RA the most (Sec. VII). We also show
how our RA formulation helps design DNNs that are more re-
silient to transient faults by integrating our RA estimation into
a Network Architecture Search (NAS) framework (Sec. VIII).

In summary, our paper makes the following contributions:
• We propose a new formulation of Resiliency Accuracy

(RA) to quantify a DNN’s accuracy under transient faults.
• We propose a method to estimate RA in software. The

method formulates RA estimation as a Monte Carlo
integration problem and uses DNN-specific importance
sampling to solve the integration problem.

• We apply our RA formulation to common DNNs and
show that their accuracy loss is far greater than what is
estimated by today’s RA metric.

• We demonstrate how our RA formulation can help design
more resilient DNNs when coupled with NAS.

II. BACKGROUND AND MOTIVATION

We first define the scope of transient faults this paper
focuses on (Sec. II-A). We then discuss the intuition behind
needing a resiliency accuracy metric (Sec. II-B), followed by
describing the common formulation of the metric in existing
tools (Sec. II-C). We quantitatively analyze why the existing
formulation is fundamentally flawed (Sec. II-D).

II-A. Scope and Assumptions
Consistent with recent prior work such as FIdelity [29] and

Mahmoud et al. [51], we consider only single-bit errors in
FFs, which are “the most prominent abstraction for transient
errors including soft errors and voltage variations.” [29]. We
assume that other major memory structures (e.g., DRAM,
SRAM) are protected by ECC and/or parity bits [51]. Note

that FF faults capture not only transients faults in FFs but
also faults taken place in logic computation.

As with Mahmoud et al. [51], we also assume that different
bit positions in an FF have the same raw FIT rate1. In
real designs, some FF bits (e.g., exponent in float) could be
hardened to resist transient errors [38]. Note, however, that we
do not assume that all the FFs have the same fault probability.
In fact, each FF (or each category of FFs) is characterized by
its raw FIT rate, which will participate in our new metric, as
we will discuss in Sec. III-A.

II-B. Why a New Metric?
Failures In Time (FIT) rate and the Silent Data Corruption

(SDC) rate of a device (accelerator) are common metrics used
in the fault tolerance literature for quantifying the impact
of transient errors [12], [22], [27]. These metrics quantify
how often a device fails. In the context of DNN accelerators,
an SDC is an inference mis-prediction [13], and the FIT rate
calculation considers not only mis-predictions but also system
anomalies such as a crash [29].

This paper focuses on an orthogonal metric, which quan-
tifies the accuracy of a DNN given that a transient error
has occurred. We call this metric Resiliency Accuracy (RA),
the counterpart of the network’s fault-free inference accuracy,
which we call Standard Accuracy (SA). Intuitively, RA tells
us how well/badly a network behaves when a transient error
occurs. Knowing RA lets us develop DNN algorithms and
accelerators that can still perform reasonably well even when
the execution is “corrupted” by soft errors.

II-C. Existing RA Formulation
In theory, the RA is defined at the hardware level:

RA =
1

N

N∑
i=1

A(i) (1)

where N is the total number of FFs in the hardware, and A(i)
is the resulting inference accuracy under a fault at the hardware
fault site i. This equation is infeasible to use in practice due
to the need to perform time-consuming RTL fault injections
and simulations, which are four to five orders of magnitude
slower than an inference in software. Nevertheless, Equ. 1
expresses the ground truth RA of a DNN on a given hardware
and serves as a reference that other more lightweight methods
should strive to match.

Due to the infeasibility of performing RTL simulations, a
common formulation of RA as used in today’s DNN resiliency
analysis tools such as PyTorchFI [50] and TensorFI [13] is to
model soft errors directly in a DNN model. In this method, a
fault site is a bit position (BP) of a weight or an activation.
Thus, the total number of fault sites is:

N̂fs = (#of weights+#of activations)×#of BPs

Given the software faults sites, RA is estimated by 1) first
uniformly-at-random sampling of the software fault sites and,

1Section V-A: “each error injection is performed on a single random bit
of a random neuron for a random image.”

2

0.25
0.20
0.15
0.10
0.05
0.00

P
ro

ba
bi

lit
y

Input Weight Output CTRL

Layer1 Layer2 Layer3 Layer4 Layer5

(a) LeNet.

0.30
0.25
0.20
0.15
0.10
0.05
0.00

P
ro

ba
bi

lit
y

Input Weight Output CTRL

Layer1 Layer2 Layer3 Layer4

(b) MNIST-Hogwild.

Fig. 1: The probability a transient fault is received by an input activation, a weight, an output activation, or a control variable
across layers in LeNet-5 and MNIST-Hogwild. Software variables do not have uniform faulty probabilities. Control variables
do not correspond to variables in a DNN model — they are proxies for modeling control FFs; see Sec. III-A for details.

for each sampled fault site, perform an fault injection to obtain
the corresponding inference accuracy under that fault injection,
and then 2) averaging the resulting inference accuracies across
fault injections2. This is equivalent to calculating RA by:

RASW =
1

N̂fs

N̂fs∑
j=1

A(j) (2)

where A(j) is the inference accuracy under a fault at a
software fault site j. A(j) is estimated through software fault
injection: flipping the bit corresponding to the software fault
site j and performing an inference.

II-D. Error Sources in Existing RA Formulation
Existing RA formulation is flawed, because of incorrect

assumptions made in both terms in Equ. 2. The issue with
the existing RA formulation is a DNN-specific instance of
the general AVF-vs-SVF mismatch as analyzed in detail by
Papadimitriou and Gizopoulos [56]. Let us elaborate this
mismatch in the DNN context.

Inaccurate Inference Accuracy. Estimating A(j) using
software fault injection does not reflect accuracy impact of
actual soft errors in hardware — for two reasons.

First, software fault injection assumes that, based on the
data dependencies, one bit flip in a kernel weight corrupts
all the output activations. However, the actual number of
corrupted activations depends on the reuse factor of the FF
that holds the weight: if the weight FF is reused, say, 4 times
before a new weight is written to the FF (e.g., due to the
scheduling algorithm), the original weight affects only 4 output
activations. The same argument applies to activations.

Second, software faults considered in existing tools do not
reflect hardware fault sites. For instance, these tools make no
distinction between an output activation and its corresponding
input activation in the next layer (because numerically they are
the same value), but input activations and output activations

2Section IV-A in PyTorchFI [50]: “In each inference run, we inject a
single-bit flip in a randomly selected neuron in the DNN to emulate a
computational hardware error that may occur during inference.”. Section
IV-A in TensorFI [13]: “we perform 1000 random FI experiments per fault
configuration and input.”

are stored in two different sets of hardware FFs that might
have different faulty probabilities. Software fault injection also
does not consider the effects of global control FFs, whose bits
when corrupted drastically reduce accuracy. When transient
faults take place in control FFs, the accelerator usually crashes,
severely degrading the inference accuracy [29].

FIdelity [29] establishes a RTL-validated method that ad-
dresses the two issues above and, thus, correctly obtains
the accurate A(j) from software fault injection. Our work
builds on FIdelity to obtain an accurate A(j) estimation when
needed, and does not claim it as our contribution.

Inaccurate Fault Site Probability. By simply averaging
the inference accuracy across all the software fault injections,
the RA formulation in Equ. 2 implicitly assumes that all soft-
ware fault sites are equally probable to transient errors. This
assumption, however, is incorrect, because of how software
variables are stored and reused in hardware FFs.

To demonstrate this Fig. 1 shows the faulty probability of
software fault sites in two DNNs, LeNet-5 [19] and MNIST-
Hogwild [57], running on NVDLA. Effectively, we uniformly
inject transient faults to hardware and analyze which weight-
s/activations are effected. In the end, we aggregate statistics of
the faulty probability of software fault sites. We assume a raw
FIT rate of 600/MB following the study from Jagannathan et
al. [33] and consistent with FIdelity [29].

The probabilities of software fault sites vary significantly,
both across variable type (e.g., input activations vs. weights)
and across layers. For instance, the faulty probabilities of
variables in the last layer are two orders of magnitude lower
than those in earlier layers. This is because weights/activations
in layers that take longer time to execute stay in the hardware
longer and, thus, are more vulnerable to transient errors.

In addition, Fig. 1 also shows the faulty probability of
control variables, which do not correspond to any real variables
in a DNN model; rather, they are proxies used to capture
control FFs in hardware (see Sec. III-A for details). Those
control variables generally have lower faulty probabilities than
weights/activations, because there are fewer control FFs than
FFs for weights/activations. As a result, they are less likely to
receive transient faults than FFs of other categories.

3

III. DEFINING AND MODELING RA
We first introduce our RA formulation (Sec. III-A), followed

by an algorithm that calculates the faulty probability of any
software fault site (Sec. III-B)

III-A. Defining RA as an Expected Value
Recall the intuition behind RA: it should capture the

network inference accuracy given that a fault has occurred.
Borrowing ideas from probability theory, we define RA as the
expected value [2] of a network’s inference accuracy under
faults. Following the definition of the expected value, the
equation to calculate RA takes the average of the network
inference accuracy under each software fault weighted by the
faulty probability of each software fault site:

RA =

Nfs∑
j=1

p(j)A(j) (3)

where Nfs denotes the total number of software fault sites,
p(j) denotes the probability that a software fault site j
experiences a transient error, and A(j) denotes the inference
accuracy given the transient error at fault site j and can be
calculated using the FIdelity framework [29].

The intuition behind our formulation is that a network’s
RA is a random variable, whose outcome depends on a
large number of independent events, i.e., transient faults. Each
transient fault affects one software fault site j (e.g., one bit flip
in a weight FF affects a weight in the model) with a different
probability p(j) and results in an inference accuracy A(j).
Note that the expected value equation inherently iterates over
all software fault sites, but this is different from saying that
each inference will actually have a transient fault in reality.

Our RA metric is nothing more than the DNN-specific AVF.
For CPUs and GPUs, AVF is defined as the probability (0 or
1) that a transient fault in the hardware leads to an error in
the application; the so-derived AVFs of all bits and cycles are
averaged to get the overal AVF. The difference in DNNs is that
the AVF of a single bit in a single cycle is the DNN inference
accuracy under that fault and, thus, can be any value between
0 and 1, which is captured by our A(j). In addition, since we
aim to estimate DNN RA/AVF in software, the fault sites are
defined at the software level, which we elaborate next.

Software Fault Sites. A software fault site is a 2-tuple
< Var,BP >, where V ar is a software variable that can
potentially become faulty due to a transient error and BP is
a bit position in a V ar. In particular, there are four types of
software variables we model: 1) input activations, 2) output
activations, 3) weights, and 4) control variables. Note that
while a layer’s output activations are the next layer’s input
activations, they must be separately modeled because they are
held in different FFs in common DNN accelerators and, thus,
are independently vulnerable to transient errors. This is one
key difference compared to software fault sites considered in
the existing RA formulation in Equ. 2.

Another key difference is control variables, which do not
correspond to any real variable in a DNN model; rather, they

1
2
3
4
5
6
7
8
9

10
11
12
13
14

In
pu

t
Ac

tiv
at

io
n

FF
s

W
ei

gh
t F

Fs
O

ut
pu

t
Ac

tiv
at

io
n

FF
s

15
16

C
on

tro
l

FF
s

Cycle
1 8

Layer 1 Layer 2

12

… …………

…

…………

…………………………………………

…………………………………………

…………………………………………

Fig. 2: An (not-to-scale) illustration of the idea of calcu-
lating the faulty probability of a software fault site. Each
cell represents a hardware fault site (i.e., a particular FF at
a particular cycle). Each stripe pattern (color) represents a
software variable, which can occupy multiple cells because
of data reuse. The goal is to calculate the number of cells
each software variable is mapped to.

are a proxy to capture FFs that store neither weights nor
activations. Control FFs fall into two categories: global control
FFs that are used for data sequencing and address generation
and local control FFs that are tightly coupled with the datapath
(e.g., valid bit, MUX select bits). Faults in global control
FFs generally crash the accelerator, providing no inference
result for a particular input. Local control flops affect neurons
depending on where they are located. In our model, we assign
a software variable to each control FF in hardware.

For simplicity purposes, we omit BP in later discussions
and equate a software fault site with a software variable. The
faulty probabilities so derived must be multiplied by 1

BP to
obtained the actual probabilities of software fault sites, given
the assumption that the probability of the bit flip occurring at
a specific bit is the same across all bit positions in a FF.

III-B. Calculating RA Through Probability Transfer

We present an algorithm to estimate the transient error
probability of software fault sites; it works by transferring the
faulty probability from the hardware to the software.

4

Intuition. Our idea is illustrated in Fig. 2, where each row
corresponds to a hardware FF and each column, from left to
right, represents a cycle over time. Thus, each cell represents a
unique hardware fault site (i.e., a particular FF at a particular
cycle). A transient error can be thought of as dropping a pin
on the 2D grid. The probability of a pin landing at a cell
is dictated by the raw FIT rate of the corresponding FF. For
instance, if the raw FIT rates for hardware FFs are uniform,
the pin has an equal probability of landing at any cell.

The central question is, what are the probabilities of a
randomly dropped pin landing on each of the software fault
sites? The crux is to model how software fault sites are mapped
to the cells. A useful thought experiment is that if a software
fault site j is mapped to T (j) cells out of a total amount of
M cells, and each cell has the same probability of receiving
the pin (e.g., if hardware FFs have the same raw FIT rate),
the probability that j receives a transient error is T (j)

M . This
can be easily generalized to cases where hardware FFs do not
have the same raw FIT rate as we will show later.

Note that each software variable occupies multiple cells
because of data reuse. For instance, in a weight stationary
accelerator a weight will stay in a FF for C cycles and reused
by C input activations (the exact number of C depends on the
scheduling/tiling policy). As a result, that weight will occupy
C consecutive cells belonging to the holding FF. The same
argument applies to activations, too. A control variable stays
in a control FF throughout the execution, because each control
variable is uniquely associated with a control FF.

Assumptions. To model the mapping, we make the fol-
lowing assumptions about DNN execution generally true to
common DNN accelerators:
ASSUMPTION 1 A DNN is executed layer by layer.
ASSUMPTION 2 Each software variable resides in only one
type of FFs. For instance, a weight is always found in a weight
FF (although it could be found in different weight FFs at
different cycles) and is not in an activation FF. In other words,
a FF will not hold software variables of different types. While
perhaps obvious, we perform a large-scale RTL fault injection
(over 2.6 billion in total) on a systolic array accelerator, and
inspect the resulting Fast Signal DataBase (FSDB) waveforms,
to confirm this. See Sec. V for the setup.

The implication is that, given that a transient fault occurs,
the probability that the fault occurs to a particular FF type is
equivalent to the percentage of the FFs of that type.
ASSUMPTION 3 Different software variables of the same type
spend the same amount of time in a FF. For instance, a weight
FF throughout the execution will hold different weights,
which spend the same number of cycles in that FF. This is
fundamentally true since variables of the same type have the
same number of reuses in a DNN. Again, from the over 2.6
billion RTL fault injections and simulations above we inspect
the FSDB waveforms to confirm this. Across 200,736 weights
of a layer, the standard deviation of the number of cycles a
weight spent on a weight FF is 0.025 (not exactly 0 due to
the ramp-down in the end).

The implication is that given that a transient fault occurs in
a weight (activation) FF, all the weights (activations) in the
same layer are equally probable of receiving that fault.
ASSUMPTION 4 The accelerator utilization is near 100%. That
is, every cell is associated with a software fault site throughout
the execution (no “empty cell”). This assumption does not hold
in extreme cases where the hardware resources are abundant
but the network is extremely small (e.g., a 1K × 1K PE array
executing a layer where the feature map dimension is 4 × 4).
At the end of this section, we will relax this constraint and
show how RA is estimated with an actual utilization factor.

Derivation. Given the observations above, the probability
of a software fault site j can be expressed as:

p(j) = T (j)× pTj
(4)

where T (j) denotes the number of cells that a software fault
site j (of type Tj in layer Lj) occupies, and pTj

denotes the
probability that a cell of type Tj receives a transient fault.
T (j) is further modeled as:

T (j) = M × LP (Lj)× TP (Tj)× V P (j) (5)

where:
• M is the total number of cells, which is 192 in Fig. 2.
• LP (Lj) is the percentage of the cells used by layer Lj .

In the example of Fig. 2, if Lj is the first layer, LP (Lj)
would be 2

3 . Thus, M × LP (Lj) is the total number of
cells belonging to layer Lj .

• TP (Tj) denotes the percentage of the FFs of type Tj .
It is equivalent to the percentage of the cells that be-
long to type Tj . In the example of Fig. 2, if Tj is
the input activation type, TP (Tj) would be 1

4 . Thus,
M × LP (Lj) × TP (Tj) is the total number of cells
belonging to FF type Tj in layer Lj .

• V P (j) is the probability that a transient fault occurs to a
variable j given that a fault has occurred to some variable
of type Tj . Thus, M × LP (Lj) × TP (Tj) × V P (j) is
the total number of cells belonging to the variable j.

Taking another perspective, Equ. 5 essentially computes the
joint probability of three independent events: 1) a fault occurs
while layer Lj is executing; the probability of this event is
LP (Lj), 2) a fault occurs in an FF that is of type Tj ; the
probability of this event is TP (Tj), and 3) a fault occurs to a
particular variable j among all the variables of the type T (j);
the probability of this event is V P (j). Let us now analytically
derive each of these terms in Equ. 5.

LP (Lj), given ASSUMPTION 1, is equal to the percent-
age of the execution time layer Lj takes, which, given
ASSUMPTION 4 (the hardware utilization is nearly full), can
be modeled as the ratio between the Multiply and Accumulate
(MAC) operation count in that layer over the total number of
MAC operations in the network:

LP (Lj) =
MAC(Lj)∑UF (j)+p(j)SA(1−UF (j))L

i=1 MAC(Li)
(6)

5

where MAC(Lj) denotes the number of MAC operations
performed in layer Lj , and L is the total number of layers.

TP (Tj) denotes the percentage of the FFs of type Tj . Given
ASSUMPTION 2, TP (Tj) is given as:

TP (Tj) =
FF (Tj)∑T
i=1 FF (Ti)

(7)

where FF (Tj) denotes the number of FFs of type Tj , and T
is the total number of FF types.

Based on ASSUMPTION 3 that all variables of the same type
are equally probable of receiving a fault, V P (j) is equal to the
probability that a variable j is selected out of all the variables
of the same type Tj , and can be expressed as:

V P (j) =
1

V (Tj)
(8)

where V (Tj) is the total number of variables of type Tj . For
control variables, V (Tj) is always 1 as each control FF is
mapped to one control variable.

pTj
, the probability of a cell of type Tj receiving a transient

fault, is given by:

pTj =
rawFIT (Tj)

M ×
∑T

i=1(TP (Ti)× rawFIT (Ti))
(9)

where rawFIT (Tj) denotes the raw FIT rate of FFs of type
Tj . One way to interpret Equ. 9 is that if all the FFs have
the same raw FIT rate, pTj is reduced to 1

M , matching our
intuition that when all FFs are equally faulty each cell has the
same chance of receiving the fault.

Technically, the traditional AVF metric is not concerned
with the raw FIT rate, which, among other factors, could vary
between different FF types (e.g., different sizes for different
FF types). We include the raw FIT rate in the pTj

formulation
just to show how to incorporate the impact of different raw
FIT rates, as we will later show in Fig. 7. To calculate the
actual AVF, pTj

should simply be 1
M .

Putting it together, Equ. 4 requires only basic statistics
of the hardware accelerator and the DNN, and is extremely
lightweight to calculate. Thus, one could calculate the fault
probability for all the software fault sites, even if there are
billions of them. Our approach can be seen as transferring
the hardware fault probability (raw FIT rate) to software fault
probability, hence the name “probability transfer.”

Using Actual Utilization Factor. So far we have assumed
that the Utilization Factor UF (j) of all the cells in Fig. 2 is
100%, which is obviously not always true. When a cell is not
utilized, i.e., a FF does not hold an actual value pertaining to
inference, a soft error occurring to that FF has no impact on the
inference accuracy. While UF in theory is a hardware concept,
statistically speaking the UF of a hardware FF type is the same
as the UF of the corresponding software variables. This is
because each software variables of the same type is assigned
the same amount of cells/FFs (ASSUMPTION 3). Therefore,
RA can be formulated as the average of the network inference
accuracy under each software fault weighted by both the faulty

probability of each software fault site and the Utilization
Factor UF (j) of a software fault site j:

RA =

Nfs∑
j=1

(p(j)UF (j)A(j) + p(j)(1− UF (j))SA) (10)

where (SA) is the fault-free, standard inference accuracy of
the network. Intuitively, Equ. 10 says a software fault site j
can affect the inference accuracy for just UF (j) portion of
the time; for the remaining (1− UF (j)) portion, it will have
no impact on the overall accuracy of the network, resulting
in an A(j) equal to the SA of the network. We will show
in Sec. V-B that using an actual UF obtained from RTL
simulation improves the RA estimation accuracy.

IV. ESTIMATING RA USING IMPORTANCE SAMPLING

To accelerate RA convergence, we propose to formulate RA
estimation as a Monte Carlo integration problem and solve it
using importance sampling (Sec. IV-A). We show that perfect
importance sampling is fundamentally impossible, and propose
two heuristics that leverage DNN-specific characteristics to
approximate importance sampling while retaining the main
benefits (Sec. IV-B).

IV-A. Compute RA via Monte Carlo Integration
Equ. 3 presents an analytical form of accurately calculating

the RA of a DNN. However, that equation is impractical to
calculate because of the large N number, i.e., the number
of software fault sites. While p(j) for each fault site j can
be trivially calculated using Equ. 4, obtaining A(j) requires
inferencing over an entire test set. Take MobileNet as an
example: it has about 3.5 billion software fault sites; assuming
obtaining A(j) for each fault site requires 1 second, it would
take 111 years to precisely calculate the RA for MobileNet
using the exact formulation in Equ. 3.

Our observation is that calculating RA can be seen as
integrating a discrete function over a finite domain:

RA =

N∑
j=1

f(j) (11)

f(j) = p(j)A(j), j ∈ Z : j ∈ [1, N] (12)

The integrand f(·) does not have an analytical form that can
be calculated in practice. We propose to solve the integration
numerically using Monte Carlo integration [61].

Formally, RA can be estimated by drawing K independent
samples X1, ..., XK using a probability density function (PDF)
and calculate:

R̂A =
1

K

K∑
j=1

f(Xj)

PDF (Xj)
,

N∑
j=1

PDF (Xj) = 1 (13)

R̂A is called the Monte Carlo estimator of RA. It can be
shown that when K approaches infinity R̂A converges to RA
(or alternatively, the expected value of R̂A is RA). However,

6

f(x)

PDF(x)

x
(a) Uniform sampling (constant PDF).

f(x)

PDF(x)
x

(b) Importance sampling, where the
PDF is proportional to integrand f(·).

Fig. 3: Comparison of two PDFs used in sampling. Note that
the PDF must integrate to 1 by definition.

different sampling methods have significantly different conver-
gence rate. A naive method is to sample the domain uniformly
as shown in Fig. 3a, essentially using a PDF of 1

N . While a
common choice, uniform sampling takes a lot of samples to
converge as we will show later3.

Importance Sampling. To improve the convergence rate,
an observation is that we have the freedom to choose the
PDF used to draw the samples. Intuitively, we want to place
more samples where the contribution to the integration is
numerically high (i.e., “important”), hence capturing most of
the integral contributions. Fig. 3b illustrates the idea.

In particular, it is established that if the PDF (·) is exactly
proportional to the integrand f(·), that is:

PDF (j) = cf(j), (14)

where c is a normalization value that guarantees that PDF (j)
integrates to 1:

c =
1∑N

j=1 f(j)
(15)

then the variance of the Monte Carlo estimator is zero,
indicating that exactly one sample is sufficient [41].

However, perfect important sampling is impossible, because
determining c requires us to calculate the integration that we
set out to estimate in the first place.

IV-B. Heuristics for Importance Sampling
We do not know f(·) precisely and, thus, cannot construct

a PDF exactly proportional to f(·). However, we observe that
f(·) is a product of two terms: p(·) and A(·). Our idea is to
use a priori knowledge of p(·) and A(·) to construct a PDF
that is approximately proportional to f(·).

In particular, p(·) can be completely constructed in advance
given a particular DNN and the underlying hardware using
Equ. 4. In contrast, A(·) cannot be constructed offline in
practical terms since it requires enumerating hundreds of
billions of fault sites, each of which requires performing
inference on an entire test set.

3More formally, the standard deviation of uniform sampling is proportional
to 1√

N
, indicating that we must quadruple the number of samples to reduce

the error by half.

TABLE I: Workloads for validation.

Category Network Layer(s) Dataset

- Synthetic 7×7 CONV Random inputs
Classification CifarNet [31] All the layers CIFAR-10 [39]
Classification ResNet-18 [28] 3x3 CONV (layer 2,4,6) ImageNet [18]

Detection DETR-R50 [7] 3x3 CONV (layer 7) COCO [47]
Speech-To-Text DeepSpeech [26] FC (layer 10) LibriSpeech [55]

We propose two heuristics to empirically model A(·). Each
heuristic gives a unique approximation of A(·), which when
multiplied with p(·) gives a f̂(·), which is an approximation
of f(·). We then construct the PDF proportional to f̂(j) for
importance sampling.

Constancy Heuristic. The simplest heuristic is to assume
that A(j) is constant. That is, the inference accuracy under
any software fault site j is the same. This heuristic in turn
equates f(·) to p(·). Thus, the sampling PDF is constructed
proportional to p(·).

BP Heuristic. We can improve upon the uniform assump-
tion by observing that transient errors in certain bit positions
(BPs) have a higher impact on accuracy than other positions.
Taking the floating point representation as an example, a bit
flip in the sign and exponent fields changes the numerical
values much more significantly than bit flips in the fraction
field; as a result, prior work has shown that transient errors in
the sign and exponent fields degrade the inference accuracy
more than the fraction field [45].

Given this empirical observation, we can model A(·) with
respect to the BP. The exact impact of each BP in a number
representation can be profiled offline.

It is worth emphasizing that profiling does not have to (and
will not) capture the exact impact of BPs on A(·). This is
because f̂(·), as an heuristic for importance sampling, does
not have to be exactly the same as f(·). The approximation
of f̂(·) affects only the convergence rate, not the accuracy
of RA estimation. We will show in Sec. VI that even simple
assumptions of the BP-wise impact are sufficient.

V. VALIDATION

We first describe the RTL-based validation setup (Sec. V-A),
and show that the software fault site probability and RA
estimation analytically derived in Sec. III-B match well with
results obtained from RTL fault injection (Sec. V-B).

V-A. Validation Setup
We use a TPU-like systolic array with a 32 × 32 MAC array

using the output stationary data-flow. After synthesis, the dis-
tribution across the input activation, weight, output activation,
and control FFs is 30.56%, 30.56%, 21.87%, 17.0%.

Similar to prior work on (DNN) resiliency [20], [29], [48],
we use RTL fault injection to obtain ground truth data. We use
Synopsys Z01X™ [4], an industry-scale fault injection and
simulation tool, to pick possible hardware fault sites written
as < Cycle,FFType,BP >. Each run, the tool injects a bit-
flip injection at a fault site and performs the RTL simulation
that takes the DNN inference to the end. Therefore, this
methodology correctly captures the fact that one transient fault

7

10-7

10-6

10-5

10-4

10-3

R
es

N
et

-1
8

D
E

TR
-R

50

D

ee
pS

pe
ec

h
C

ifa
rN

et
 S

yn
th

et
ic

 L
ay

er

 G

ro
un

d
Tr

ut
h

P
ro

ba
bi

lit
y

10-7 10-5 10-3

Thales Probability

(a) Input Activations.

10-7

10-6

10-5

10-4

10-3

G
ro

un
d

Tr
ut

h
P

ro
ba

bi
lit

y

10-7 10-5 10-3

Thales Probability

(b) Weights.

10-7

10-6

10-5

10-4

10-3

G
ro

un
d

Tr
ut

h
P

ro
ba

bi
lit

y

10-7 10-5 10-3

Thales Probability

(c) Output Activations.

2

4

10-4
2

4

10-3
2

4

G
ro

un
d

Tr
ut

h
P

ro
ba

bi
lit

y

2 4

10-4
2 4

10-3
2 4

Thales Probability

(d) Control.

Fig. 4: Comparison of ground truth FF fault probabilities (y-axis) with analytically derived probabilities by THALES (x-axis).

in a software variable (e.g., a weight) could result in errors in
subsequent variables that depend on the variable receiving the
initial transient fault (e.g., all the output activations).

Tbl. I lists the workloads we use for validation. The first
workload is a synthetic 7 × 7 CONV layer, for which we
exhaust all the fault sites (i.e., every single bit at every single
FF at every single cycle), resulting in a total of 2.629 Billion
RTL-level fault injections and simulations (900 × 240 CPU
hours in total). The remaining workloads are individual layers
from popular DNNs, for which we run fault injections and
simulations on 332K randomly sampled fault sites, which are
obtained using Synopsys Z01X to achieve a 99% confidence
level with a 1% error margin.

V-B. Validation Results
Fault Probability Validation. Our goal is to validate that

the software fault site probability (i.e., p(j) in the RA formula-
tion in Equ. 3) is correctly calculated by our analytical model
given in Equ. 4. We take each sampled fault site and categorize
them as either Input Activations, Weights, Output Activations
or Control FFs. We then compare the faulty probability of
each category that our model calculates with the data obtained
from RTL fault injection and simulation. We assume that the
FFs have a raw FIT rate of 600/MB following the study from
Jagannathan et al. [33] and consistent with FIdelity [29].

Fig. 4 shows the validation results for the four FF cate-
gories. Overall, the Pearson correlation coefficient is 0.9998
between results obtained by our analytical model and the
ground truth, suggesting the accuracy of our approach. The
main source of inaccuracy of is FC layers, where the an-
alytically calculated probabilities are 6.4% away from the
ground truth. This is because FC layers do not fully utilize
the hardware (74.0% on average), while our model, absent
detailed RTL-level data, assumes 100% hardware utilization.
When using the actual hardware utilization data, the estimation
accuracy is brought to within 4.0% of the ground truth.

RA Validation We also validate that our RA estimation
matches well with the ground truth RA (RATrue) obtained
from RTL simulation. To that end, we perform RTL fault injec-
tions and simulations on the entire CifarNet [31] and ResNet-
18 [28] performing inference on 20 randomly selected images
from the CIFAR-10 [39] dataset. We obtain the Utilization
Factor (UF) of both the networks from RTL simulations. We

TABLE II: RA estimation validation. RATrue is the ground
truth RA, RAEst is the RA estimated with Thales, and UF
is the utilization factor of the hardware obtained from RTL
simulations. The error percentage is for RAEst estimated
using the actual UF.

Network UF RATrue RAEst % Error
Actual UF UF = 1

CifarNet [31] 0.2632 0.930517 0.923981 0.890132 0.70240
ResNet-18 [28] 0.36733 0.88445 0.870438 0.828221 1.5842

show two RA estimatios (RAEst), first by assuming UF = 1
(i.e., using Equ. 3) and then by using the actual UF values
(i.e., using Equ. 10). The results are shown in Tbl. II.

We observe that the RA estimation is much closer to the
ground truth RA when using the actual UF. Specifically, the
RA when assuming UF = 1 is lower than that when using
the actual UF. This is down to the fact that with higher
utilization of the hardware, more FFs are vulnerable to soft
errors. The percentage error in RAEst for CifarNet [31] and
ResNet-18 [28] reduces from 4.34% and 6.35% to 0.7% and
1.58% respectively when considering the actual UF.

VI. EVALUATING SAMPLING STRATEGIES

We now evaluate the importance sampling strategy proposed
in this paper on different DNNs and accelerators.

VI-A. Experimental Setup
DNN Accelerators. We evaluate on two DNN accelerators:

a systolic array, whose configuration is the same as that used in
Sec. V, and Nvidia’s NVDLA [3]. We configure the NVDLA
with 2 convolution cores, each with a 4× 4 MAC units using
the FP16 data type. Thse configuration is exactly the same as
in FIdelity [29] , which also reports the FF distribution.

DNN Models. We evaluate five common DNNs covering
both image classification and object detection. Two DNNs are
small in scale: a 5-layer LeNet [19] and a 4-layer MNIST-
Hogwild [57], on the MNIST dataset. We also consider three
larger networks: AlexNet [40] and MobileNet [32] for image
classification on the CIFAR-10 dataset [39] and YOLOv3 [68],
an object detection DNN, using the COCO dataset [47].

Evaluation Plan. We aim to show that our sampling
method 1) converges to the ground truth RA, and 2) converges
faster than existing sampling methods.

8

1.0

0.8

0.6

0.4

0.2

0.0

R
A

6000400020000
Samples

Uniform MAC IS IS-B

 Not Converging

1.0

0.9

0.8

0.7

0.6

R
A

6000400020000
Samples

 PoC
(IS-B)

 Not Converging

 PoC
 (IS)

(a) LeNet.

1.2

1.0
0.8

0.6

0.4
0.2

0.0

R
A

6000400020000
Samples

 Uniform MAC IS IS-B

 Not Converging

1.0

0.9

0.8

0.7

0.6

0.5

R
A

6000400020000
Samples

 PoC
(MAC)

 PoC
(IS-B)

 PoC
 (IS)

(b) MNIST-Hogwild.

0.25

1

4

16

64

R
A

1000080006000400020000
Samples

 Uniform MAC IS IS-B

 Not Converging

0.9

0.8

0.7

0.6

0.5

R
A

1000080006000400020000
Samples

 Not Converging
 PoC
(IS-B)

 PoC
 (IS)

(c) AlexNet.

4

3

2

1

R
A

6000400020000
Samples

 Uniform MAC IS IS-B

 Not Converging

1.0

0.9

0.8

0.7

0.6

0.5

R
A

6000400020000
Samples

 PoC
(IS-B)

 PoC
(MAC)

 PoC
 (IS)

(d) MobileNet.

250

200

150

100

50

0

R
A

2000150010005000
Samples

 Uniform MAC IS IS-B

 Not Converging

60

50

40

30

R
A

2000150010005000
Samples

 Not Converging

 PoC
(IS-B)

 PoC
 (IS)

(e) YOLOv3.

Fig. 5: Convergence comparison of different sampling strategies. PoC stands for Point of Convergence. Overall, the order of
convergence speed is IS-B > IS > MAC > UNIFORM, which does not converge within given several thousands samples and
produces physically unrealizable results.

1.0

0.9

0.8

0.7

0.6

R
A

RATrue RASW RASW-cA RATrue-nc

SA 0.800 0.8070.802 0.810

NVDLA Systolic Array

(a) AlexNet.

1.0

0.9

0.8

0.7

0.6

R
A

RATrue RASW RASW-cA RATrue-nc

SA 0.931 0.9330.925 0.927

 NVDLA Systolic Array

(b) MobileNet.

60

55

50

45

40

R
A

RATrue RASW RASW-cA RATrue-nc

SA 52.1 52.251.9 52.4

 NVDLA Systolic Array

(c) YOLOv3.

Fig. 6: Comparison of RA formulations on the three large networks; the trend on the two small MNIST networks is similar.
RATrue is our RA formulation (Equ. 3); RATruc−nc uses Equ. 3 but assumes all control FFs are fault-free; RASW is obtained
using PyTorchFI and represents Equ. 2; RASW−cA uses PyTorchFI but with the correct A(j) estimation using FIdelity [29].

To obtain the ground-truth RA, we exhaust all the fault
sites for two small networks LeNet (352K) and MNIST-
HogWild (412K), but for three larger networks we evaluate, it
would take unrealistically long time. Instead, our strategy is
to intentionally target a subset of the hardware fault sites and
validate within that subset. Specifically, we randomly sample
500K fault sites for AlexNet, MobileNet, and YOLOv3.,
and assume that these are all the hardware fault sites. All
subsequent evaluations are restricted to only those fault sites.
The raw FIT rate is the same as described in Sec. V-B

VI-B. Comparing Sampling Methods

We also aim to compare how effective different sampling
strategies are for estimating RATrue. To that end, we will
compare the following four sampling methods:

• UNIFORM: this strategy draws a software fault site uni-
formly at random.

• MAC: this sampling strategy is adapted from Mahmoud
et al. [51]; the probability of a weight or an activation
getting sampled in fault injection is proportional to the
number of MAC operations they are involved in.

• IS: this is importance sampling using the constancy
heuristic in Sec. IV-B, where the PDF for sampling is

proportional to the faulty probabilities of the software
fault sites p(j) while assuming A(j) is constant.

• IS-B: this is importance sampling using the BP heuristic
in Sec. IV-B. A(j) that considers the different accuracy
impacts of different BPs. We randomly inject faults into
different BPs and observe the accuracy drop. Averaging
our profiling results, we assume an inference accuracy
drop of 15% for the MSB in the exponent and an
8% accuracy drop for the next four exponent bits; the
accuracy drop of other BPs are assumed to be zero.

The convergence curves of different sampling methods are
shown in Fig. 5. The Point of Convergence (PoC) must satisfy
two criteria: the average RA in a window of 300 samples must
be within 0.3% of the ground truth and the variance in the
same window must be below 10−2.

Immediately noticeable is that the RA under uniform sam-
pling for the three large networks is well above one, which is
physically impossible, indicating that UNIFORM would take a
lot more samples to converge. The reason that UNIFORM has
a hard time converging is that the probabilities of the software
fault sites vary by orders of magnitude, for which uniform
sampling is inefficient (Sec. IV). For instance, in YOLOv3
the faulty probability of a weight of the first convolution layer
is two orders of magnitude higher than that of in the twelfth

9

convolution layer 1.61×10−4% vs. 2.67×10−6%). The same
difference exists within a layer, too.

Comparing other sampling strategies, we observe a general
trend, IS-B converges faster than IS, which is faster than
MAC, confirming the benefits of using a sampling PDF
that is more proportional to the integrand during Monte
Carlo integration. MAC converges more slowly than the two
importance sampling-based methods, because MAC, while
considers different reuse factors of weights/activations based
on the MAC operations, does not take into account the actual
FF distribution in the underlying hardware architecture.

VII. COMPARATIVE STUDIES

Comparing RA Methods. Using the three larger networks
and the setup described in Sec. VI-A, Fig. 6 compares the RA
estimated from a set of different formulations/methods:

• RATrue: RA estimated using our formulation.
• RATrue−nc: RA estimated using our formulation, but

assuming all global FFs are fault free.
• RASW : RA estimated using the formulation in Equ. 2,

which represented the method used by common tools
today such as PyTorchFI and TensorFI.

• RASW−cA: RA estimated using the Equ. 2 formulation
but using the correct A(j) estimated from FIdelity [29],
but still (incorrectly) assumes that all software fault sites
are equally faulty.

RASW is always higher than RATrue, indicating an over-
estimation. In fact, under RASW a DNN’s RA is very close
to SA. For instance, AlexNet has only a 0.7% accuracy drop
and YOLOv3 has only a 1.2 mAP drop compared to their
SAs, giving a perhaps rather optimistic impression that today’s
DNNs are resilient to transient faults.

A primary source of over-estimation in RASW is that
software fault injection does not consider global control FFs,
which in NVDLA contribute to 11.3% of the total FFs. To
tease apart the effects of global control FFs and other FFs,
we compare RATrue−nc with RATrue. “RATrue” is over
10% lower than “RATrue−nc”, matching our intuition that
application crashes dramatically lower the accuracy.

RATrue−nc is slightly, but consistently, higher than RASW

across all DNNs even though both do not consider control FFs.
This is because RASW assumes that a corrupted weight affects
all the output activations, where in reality the affected neurons
are fewer due to the limited reuse factor of a FF.

RASW−cA consistently under-estimates the RA compared
to RATrue. The reason is that a uniform faulty probability
distribution across software fault sites made by RASW−cA

exaggerates the accuracy degradation effect caused by the
control FFs, which occupy a small portion of the total FFs
but result in much lower (zero) RAs given bit flips.

Comparing Networks. YOLOv3 has a lower SA to
RA drop compared to the two image classification networks
AlexNet and MobileNet. Specifically, AlexNet and MobileNet
have a SA-to-RA drop of 11.4% and 12.0%, whereas the
SA-to-RA drop for YOLOv3 is 8.2%. The reason is that
object detection is generally more resilient: a slight change

0.95
0.90
0.85
0.80
0.75
0.70

R
A

None Weight Input Output Control All

SA
 NVDLA Systolic Array

Fig. 7: We pick one FF type (x-axis) to harden at a time and
evaluate the resulting MobileNet RA (y-axis).

in bounding box position and size can be tolerated as long as
its intersection with the ground truth bounding box over the
union of them is higher than the threshold.

Comparing Accelerators. We make two observations
when comparing the results between NVDLA and systolic
array. First, RATrue on NVDLA is higher than that on the
systolic array. This is due to the absence of the FFs before
the on-chip memory in our simple systolic array design.
Faults in FFs before the on-chip memory corrupt data in the
SRAM and propagate faults to a significantly larger number
of neurons. Second, RASW−cA on NVDLA is higher than
that on the systolic array. This difference, again, arises from
the absence of FFs before the on-chip memory in the systolic
array. Without those FFs, the faulty probability for control FFs
increases, reducing RASW−cA on the systolic array.

Sensitivity of Raw FIT Rates. Hardening FFs in hardware
is a widely used technique to mitigate transient errors [58],
[64]. To study the impact of FF hardening on RA, we perform
an experiment where we harden one FF type at a time.
We assume that FFs are hardened using the common Dual
Interlocked storage Cell (DICE) technology [6], and the raw
FIT rate for DICE-hardened FFs is 200/MB (cf. 600/MB for
unhardened FFs) following Jagannathan et al. [33].

Fig. 7 shows the resulting RA of MobileNet (y-axis);
the x-axis shows the FF type that is hardened. “None” and
“All” mean no and all FF types are hardened, respectively.
Unsurprisingly, RA with one hardened FF type is between
that of “None”and “All”.

Our results provide insight into which category of FFs
should be hardened for improving RA. For instance, hardened
the control FFs has the highest RA improvements, since
transient faults on control FFs usually crash an accelerator
altogether. Interestingly, while in NVDLA output FFs are the
largest in number of all categories, hardening them does not
provide the highest RA improvement. This is because the reuse
factor of output FFs is the smallest (one), so transient faults
on them have low impact on accuracy.

RA, FIT, and SDC Correlation. We use ten networks
found by the NAS framework (Sec. VIII) to study the
RA vs FIT rate correlation. Like prior work on DNN re-
siliency [29], [45], we use a threshold T in estimating the FIT
rate. Specifically, a transient fault is considered to generate a
failure if the inference accuracy under that fault is lower than
the fault-free accuracy by T . Similar to Fidelity [29], we use
two thresholds for this study: 20% and 40%.

10

3.0

2.5

2.0

1.5

1.0

N
or

m
al

iz
ed

 F
IT

 R
at

e

0.80.70.60.50.4
RA

(a) 20% threshold.

2.5

2.2

1.9

1.6

1.3

1.0

N
or

m
al

iz
ed

 F
IT

 R
at

e

0.700.600.500.40
RA

(b) 40% threshold.

Fig. 8: RA (x-axis) vs FIT rate (y-axis) correlation under two
thresholds for ten NAS-generated networks.

Fig. 8 shows the results under the two thresholds. The
FIT rate is normalized to the lowest FIT rate among the ten
networks. While in general RA is inversely correlated with the
FIT rate, notable outliers exist especially when the threshold is
large: the Pearson correlation coefficients are -0.90 and -0.53
under the 20% and 40% threshold, respectively. In addition,
the FIT rate does not provide the actual inference accuracy
results, which could be critical to algorithm designers.

SDC rate is similarly defined as the FIT rate (and thus shares
the same caveats above) except SDC does not consider the
potential system crashes under transient errors, which is non-
trivial. On CifarNet [31], ResNet-18 [28], DETR-R50 [7],
and DeepSpeech [26], 6.86%, 7.13%, 5.55% and 4.79% of
the transient faults yield crashes, respectively.

VIII. RA-AWARE NAS

We show how our RA estimation can help automatically
design DNNs with high RAs through Network Architec-
ture Search (NAS). We first introduce our RA-aware NAS
framework (Sec. VIII-A) followed by the experimental setup
(Sec. VIII-B). We show that networks generated using our
NAS framework possess significantly higher RA than NAS
that uses other RA estimation methods (Sec. VIII-C).

VIII-A. The NAS Framework

As a case study, we focus on multi-modal DNNs, which fuse
two or more data modalities and are widely used in application
domains such as autonomous machines [1], [36]. We study
multi-modal fusion DNNs for two reasons. First, they are
widely used in applications such as autonomous machines,
where resiliency against soft errors is critical. For instance,
autoware [36] and Baidu Applo [1] fuse RGB cameras and
LiDAR-generated point clouds for object tracking. Second,
these networks are challenging workloads for NAS, because
they expose additional degree of freedom such as at what
layers and using what operators to fuse different modalities.

We propose a RA-aware NAS algorithm for search fusion
DNNs. Our NAS algorithm is built on top of the MFAS fusion
NAS framework [59], which was originally designed to search
fusion networks with the highest standard accuracy. We claim
no algorithmic novelty over MFAS. Rather, our intention is
to show that our RA estimation algorithm can be readily

0.75
0.70
0.65
0.60
0.55
0.50

R
A

1 2 3 4
Top DNNs Ranked by RA

 RATrue RASW

Fig. 9: Top architectures’
RA comparison between us-
ing RATrue and RASW .

3.0x103

2.0

1.0

0.0Ti
m

e
(h

ou
rs

)

543210
Number of Fusion Layers

Baseline IS-B Uniform

Fig. 10: NAS latency of using
IS-B and UNIFORM.

integrated into existing NAS frameworks, such as MFAS, to
enable RA-aware NAS.

Problem Setup. We consider a basic fusion DNN contain-
ing two branches, each processing a particular input modality
(e.g., RGB images vs. point clouds). The intermediate feature
maps at certain layers of each branch are fused before going
through a unified branch to generate the output. The searching
space includes three degrees of freedom:

1) the number of layers, L, from each branch to fuse; note
that each branch could have more than L layers, but only
L layers from each branch are used for fusion;

2) the exact L layers from the first branch (X1, ..., XL) and
the exact L layers from the second branch (Y1, ..., YL) to
fuse; layers are fused in order — that is, Xi and Yi are
implicitly a pair of fusion layers;

3) the activation function after each of the L fusion pairs.
Our goal is to identify a network whose fusion configuration

maximizes the RA.

VIII-B. Experimental Setup
Network and Datasets. We target two-branch fusion

networks for action recognition. The first branch takes RGB
videos as the input and the second branch takes skeleton-based
pose data as the input. Following the setup in MFAS [59], we
use the inflated ResNet-50 [5] for the video branch and the
deep co-occurrence model [44] for the pose branch. We use
the NTU RGB+D dataset [73]. We set the maximum L to be
3, i.e., at most three fusion layers are allowed in NAS.

Evaluation Plan. We have two aims. First, we aim to show
that our RA estimation algorithm allows the NAS framework
to identify networks with higher RAs than today’s software-
level RA estimation algorithms. Second, we aim to show that
our importance sampling method improves the NAS speed
over random sampling.

VIII-C. Analyzing the Networks
We show that NAS guided by our RA estimation algorithm

RATrue yields networks that have higher RAs than those
guided by RASW . Fig. 9 compares the RAs of the top 4
networks generated by NAS using the two RA estimation
methods. Note that the RAs of all networks, regardless of how
they are generated, are all evaluated using our RA estimation
algorithm to obtain the true RAs. The average improvement
of RA is 9.0% across the four networks. In fact, the fourth

11

TABLE III: Top five networks generated by NAS when the
number of fusion layers L is 2 vs. 3 (L is capped at 3). Each
<X,Y > denotes a fusion pair. For instance, <4, 1> means the
output of layer 4 in the first branch and the output of layer 2
in the second branch are fused together.

RA (L=2) <X,Y> RA (L=3) <X,Y>

40.2% <4,2>,<2,2> 66.4% <4,3>,<3,2>,<3,1>
42.4% <4,3>,<3,4> 68.1% <2,1>,<4,4>,<4,2>
43.5% <4,3>,<2,3> 68.9% <4,3>,<3,2>,<4,1>
60.3% <2,1>,<4,4> 69.3% <4,3>,<2,3>,<4,1>
68.9% <4,3>,<3,2> 71.0% <4,3>,<3,4>,<4,1>

resilient network using RATrue to guide NAS has a higher
RA compared to the best network searched using RASW .

Analyzing the NAS-ed Networks. We find that fusion
DNNs that have higher RAs share two common characteristics.

First, using more fusion layers generally improve the re-
silience of the fusion networks. Tbl. III compares the RAs of
the top five DNNs when L = 2 (two fusion layers) vs. L = 3
(three fusion layers). By adding one more fusion layer, NAS
is able to improves the highest RA of a network by 2.1% and
the average RA of the top five networks by 17.8%.

Second, high-RA DNNs usually fuse feature maps from
later stages of both branches. Tbl. III shows the fusion
configuration of the top-RA DNNs, where <X,Y > indicates
that layer X from the first branch and layer Y from the second
branch are fused. All these networks make extensive use of the
last two layers for fusion (i.e., frequent use of <4, 3>, <3, 4>,
and <4, 4>). That said, while earlier layers are rarely fused
with each other, they do participate in certain fusion pairs,
indicating the need to mix different layers in fusion.

Improving NAS Speed. Our importance sampling strategy
significantly improves the NAS speed by requiring fewer
samples in each NAS iteration, which must estimate the RA
of the top K network that the surrogate function predicts.

Fig. 10 shows the total NAS time on two Nvidia 2080Ti
GPUs across different schemes. “Baseline” denotes the NAS
time when SA is the search target, i.e., no time spent on RA
estimation. The other curves represent the NAS time under
different sampling strategies. The x-axis shows the number
of the fusion layers allowed to be searched. Naturally, when
more fusion layers are allowed the total NAS time increases.
Compared to the baseline, UNIFORM sampling almost double
the NAS time. IS-B limits the overhead to be only 25.5%.

IX. RELATED WORK

The main novelty of our work is two-fold. First, we formu-
late the new RA metric, which quantifies the accuracy of a net-
work given that a fault has occurred. In contrast, FIdelity [29]
estimates the FIT rate; TensorFI [13] and PyTorchFI [50] both
report the SDC rate. Both the FIT rate and the SDC rate
quantify how often hardware faults show up in software, rather
than how bad the network inference would be under faults.
Mahmoud et al. [51] estimates the “relative vulnerability of
each fmap in the CNN” (for selectively protecting feature
maps [46]), a metric different from our RA.

Second, we provide an importance sampling-based method
to estimate the RA metric without exhausting all the soft-
ware fault sites. Prior work mostly sample faults sites uni-
formly. Uniform sampling in software (PyTorchFI [50] and
TensorFI [13]) under-estimates RA (Sec. VII). Uniformly
sampling in hardware, e.g., Li et al. [45], in theory could
yield the same RA estimation as ours. But hardware sim-
ulation is known to be extremely time consuming, which
our work avoids. Mahmoud et al. [51] breaks away from
uniform sampling. They instead sample based on the number
of MAC operations to calculate each activation. As shown in
Fig. 5, such a method, while significantly better than uniform
sampling, converges more slowly than importance sampling.

We use importance sampling with PDF heuristics derived
from DNN-specific characteristics. The PDF heuristics are
reminiscent of the classic Monte Carlo methods used in solv-
ing the rendering equation for physically-based rendering [60].

Much of the prior work studies the DNN resiliency against
faults in memory [8], [52], [66]. Memory faults could also be
introduced by an attacker [11], [30], [65]. This work focuses
on the transient faults in FFs as discussed in Sec. II-B. Hong
et al. [30] considers faults just in the most significant bits of
a floating point representation and, thus, over-estimates the
impact of transient faults.

Transient faults are most accurately studied in hard-
ware [14], [15], [80], which is impractical due to slow RTL
simulations. Modeling transient errors at the model level,
instead, has been the dominant approach for studying DNN
resiliency [10], [12], [13], [30], [50]. We discuss the sources
of inaccuracies of this approach in Sec. II-D. FIdelity [29]
provides a methodology that captures the impact of a single
hardware fault without RTL simulation, which this paper uses.

Of course, transient faults are not the only source of vulnera-
bility in real-world applications such as autonomous machines,
where safety issues arise from latency variation [85], adver-
sarial attacks to DNNs [24], [63], and others; different sources
of vulnerability have different implications on the safety [25].
An interesting line of future work is to examine DNN soft
errors in the context of end-to-end applications.

Our RA estimation framework assumes that a DNN’s data
reuse is regular: all variables of the same type in a layer
have the same reuse. This assumption does not hold for
Graph Neural Networks [69], [74], [83] and point cloud
DNNs [62], [79], [84], [86], where data reuses are not uniform
because of the irregular connections in graphs and/or neighbor
searches [23], [35], [70], [78], [82], [87].

X. CONCLUSION

We propose a statistically-based formulation to quantify a
DNN’s RA. The crux of the formulation is to correctly model
the faulty probabilities of software fault sites. Our RA formu-
lation can be seen as the DNN-specific AVF. We show that
importance sampling coupled with proper sampling functions
is key to efficiently estimating the RA in software. We show
that transient faults present far greater degradation to DNN’s
inference accuracy than what existing metrics estimate.

12

REFERENCES

[1] “Baidu Apollo team (2017), Apollo: Open Source Autonomous Driving,
howpublished = https://github.com/apolloauto/apollo note = Accessed:
2019-02-11.”

[2] “Expected Value, howpublished = https://en.wikipedia.org/wiki/
expected_value.”

[3] “Nvdla open source project, howpublished = http://nvdla.org/
primer.html, note = Accessed: 2018.”

[4] “Z01X Functional Safety Assurance, howpublished =
https://www.synopsys.com/verification/simulation/z01x-functional-
safety.html.”

[5] F. Baradel, C. Wolf, J. Mille, and G. W. Taylor, “Glimpse clouds: Human
activity recognition from unstructured feature points,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 469–478.

[6] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design
for submicron cmos technology,” IEEE Transactions on nuclear science,
vol. 43, no. 6, pp. 2874–2878, 1996.

[7] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–
229.

[8] N. Chandramoorthy, K. Swaminathan, M. Cochet, A. Paidimarri, S. El-
dridge, R. V. Joshi, M. M. Ziegler, A. Buyuktosunoglu, and P. Bose,
“Resilient low voltage accelerators for high energy efficiency,” in 2019
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE, 2019, pp. 147–158.

[9] C.-L. Chen and M. Hsiao, “Error-correcting codes for semiconductor
memory applications: A state-of-the-art review,” IBM Journal of Re-
search and development, vol. 28, no. 2, pp. 124–134, 1984.

[10] D. Chen, G. Jacques-Silva, Z. Kalbarczyk, R. K. Iyer, and B. Mealey,
“Error behavior comparison of multiple computing systems: A case
study using linux on pentium, solaris on sparc, and aix on power,” in
2008 14th IEEE Pacific Rim International Symposium on Dependable
Computing. IEEE, 2008, pp. 339–346.

[11] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Proflip: Targeted trojan
attack with progressive bit flips,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 7718–7727.

[12] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “Binfi: An
efficient fault injector for safety-critical machine learning systems,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–23.

[13] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. De-
Bardeleben, “Tensorfi: A flexible fault injection framework for ten-
sorflow applications,” in 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2020, pp. 426–435.

[14] E. Cheng, S. Mirkhani, L. G. Szafaryn, C.-Y. Cher, H. Cho, K. Skadron,
M. R. Stan, K. Lilja, J. A. Abraham, P. Bose et al., “Clear: C ross-l ayer e
xploration for a rchitecting r esilience-combining hardware and software
techniques to tolerate soft errors in processor cores,” in Proceedings of
the 53rd Annual Design Automation Conference, 2016, pp. 1–6.

[15] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” in Proceedings of the 50th Annual Design Automation
Conference, 2013, pp. 1–10.

[16] D. A. G. G. de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation
and mitigation of radiation-induced soft errors in graphics processing
units,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 791–804,
2015.

[17] V. Degalahal, N. Vijaykrishnan, and M. J. Irwin, “Analyzing soft errors
in leakage optimized sram design,” in 16th International Conference on
VLSI Design, 2003. Proceedings. IEEE, 2003, pp. 227–233.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[19] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[20] F. F. dos Santos, J. E. R. Condia, L. Carro, M. S. Reorda, and
P. Rech, “Revealing gpus vulnerabilities by combining register-transfer
and software-level fault injection,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2021, pp. 292–304.

[21] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2018.

[22] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: probabilistic
soft error reliability on the cheap,” ACM SIGARCH Computer Architec-
ture News, vol. 38, no. 1, pp. 385–396, 2010.

[23] Y. Feng, G. Hammonds, Y. Gan, and Y. Zhu, “Crescent: taming memory
irregularities for accelerating deep point cloud analytics,” arXiv preprint
arXiv:2204.10707, 2022.

[24] Y. Gan, Y. Qiu, J. Leng, M. Guo, and Y. Zhu, “Ptolemy: Architecture
support for robust deep learning,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2020,
pp. 241–255.

[25] Y. Gan, P. Whatmough, J. Leng, B. Yu, S. Liu, and Y. Zhu, “Braum:
Analyzing and protecting autonomous machine software stack,” in
ISSRE, 2022.

[26] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[27] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level de-
tectors for reducing silent data corruptions,” in IEEE/IFIP international
conference on dependable systems and networks (DSN 2012). IEEE,
2012, pp. 1–12.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[29] Y. He, P. Balaprakash, and Y. Li, “Fidelity: Efficient resilience anal-
ysis framework for deep learning accelerators,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 270–281.

[30] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, , “Termi-
nal brain damage: Exposing the graceless degradation in deep neural
networks under hardware fault attacks,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 497–514.

[31] J. Hosang, M. Omran, R. Benenson, and B. Schiele, “Taking a deeper
look at pedestrians,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 4073–4082.

[32] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[33] S. Jagannathan, T. Loveless, B. Bhuva, N. Gaspard, N. Mahatme,
T. Assis, S.-J. Wen, R. Wong, and L. Massengill, “Frequency dependence
of alpha-particle induced soft error rates of flip-flops in 40-nm cmos
technology,” IEEE Transactions on Nuclear Science, vol. 59, no. 6, pp.
2796–2802, 2012.

[34] S. M. Jahinuzzaman, D. J. Rennie, and M. Sachdev, “A soft error tolerant
10t sram bit-cell with differential read capability,” IEEE Transactions on
Nuclear Science, vol. 56, no. 6, pp. 3768–3773, 2009.

[35] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 1, pp. 117–128, 2010.

[36] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,” in
Proceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems (ICCPS), 2018, pp. 287–296.

[37] T. Kloek and H. K. Van Dijk, “Bayesian estimates of equation system
parameters: an application of integration by monte carlo,” Econometrica:
Journal of the Econometric Society, pp. 1–19, 1978.

[38] K. Kobayashi, K. Kubota, M. Masuda, Y. Manzawa, J. Furuta, S. Kanda,
and H. Onodera, “A low-power and area-efficient radiation-hard redun-
dant flip-flop, dice acff, in a 65 nm thin-box fd-soi,” IEEE Transactions
on Nuclear Science, vol. 61, no. 4, pp. 1881–1888, 2014.

[39] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

13

https://github.com/apolloauto/apollo
https://en.wikipedia.org/wiki/expected_value
https://en.wikipedia.org/wiki/expected_value
 http://nvdla.org/primer.html
 http://nvdla.org/primer.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[41] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of monte carlo
methods. John Wiley & Sons, 2013.

[42] L. Lantz, “Soft errors induced by alpha particles,” IEEE Transactions
on Reliability, vol. 45, no. 2, pp. 174–179, 1996.

[43] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2009, pp. 502–506.

[44] C. Li, Q. Zhong, D. Xie, and S. Pu, “Co-occurrence feature learning
from skeleton data for action recognition and detection with hierarchical
aggregation,” arXiv preprint arXiv:1804.06055, 2018.

[45] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[46] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga,
C. Frost, and P. Rech, “Selective hardening for neural networks in fpgas,”
IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 216–222,
2018.

[47] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[48] C. Lunardi, F. Previlon, D. Kaeli, and P. Rech, “On the efficacy of
ecc and the benefits of finfet transistor layout for gpu reliability,” IEEE
Transactions on Nuclear Science, vol. 65, no. 8, pp. 1843–1850, 2018.

[49] H. Madeira, D. Costa, and M. Vieira, “On the emulation of software
faults by software fault injection,” in Proceeding International Confer-
ence on Dependable Systems and Networks. DSN 2000. IEEE, 2000,
pp. 417–426.

[50] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime perturbation
tool for dnns,” in 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W). IEEE,
2020, pp. 25–31.

[51] A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Optimizing selective protection for cnn resilience,” in 32nd IEEE
International Symposium on Software Reliability Engineering, ISSRE
2021. IEEE Computer Society, 2021, pp. 127–138.

[52] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104,
p. 101689, 2020.

[53] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36. IEEE, 2003, pp. 29–40.

[54] R. Naseer, Y. Boulghassoul, J. Draper, S. DasGupta, and A. Witulski,
“Critical charge characterization for soft error rate modeling in 90nm
sram,” in 2007 IEEE International Symposium on Circuits and Systems.
IEEE, 2007, pp. 1879–1882.

[55] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr
corpus based on public domain audio books,” in 2015 IEEE international
conference on acoustics, speech and signal processing (ICASSP). IEEE,
2015, pp. 5206–5210.

[56] G. Papadimitriou and D. Gizopoulos, “Demystifying the system vulnera-
bility stack: Transient fault effects across the layers,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 902–915.

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[58] C. Peng, J. Huang, C. Liu, Q. Zhao, S. Xiao, X. Wu, Z. Lin, J. Chen,
and X. Zeng, “Radiation-hardened 14t sram bitcell with speed and power
optimized for space application,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 2, pp. 407–415, 2018.

[59] J.-M. Pérez-Rúa, V. Vielzeuf, S. Pateux, M. Baccouche, and F. Jurie,
“Mfas: Multimodal fusion architecture search,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 6966–6975.

[60] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering:
From theory to implementation. Morgan Kaufmann, 2016.

[61] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-
merical recipes 3rd edition: The art of scientific computing. Cambridge
university press, 2007.

[62] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652–660.

[63] Y. Qiu, J. Leng, C. Guo, Q. Chen, C. Li, M. Guo, and Y. Zhu,
“Adversarial defense through network profiling based path extraction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 4777–4786.

[64] R. Rajaei, M. Tabandeh, and M. Fazeli, “Single event multiple upset
(semu) tolerant latch designs in presence of process and temperature
variations,” Journal of Circuits, Systems and Computers, vol. 24, no. 01,
p. 1550007, 2015.

[65] A. S. Rakin, Z. He, and D. Fan, “Tbt: Targeted neural network
attack with bit trojan,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 13 198–13 207.

[66] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying
the resilience of deep neural networks,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[67] R. L. Rech and P. Rech, “Reliability of google’s tensor processing
units for embedded applications,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 376–381.

[68] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[69] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[70] T. Seidl and H.-P. Kriegel, “Optimal multi-step k-nearest neighbor
search,” in Proceedings of the 1998 ACM SIGMOD international con-
ference on Management of data, 1998, pp. 154–165.

[71] N. Seifert, V. Ambrose, B. Gill, Q. Shi, R. Allmon, C. Recchia,
S. Mukherjee, N. Nassif, J. Krause, J. Pickholtz et al., “On the radiation-
induced soft error performance of hardened sequential elements in ad-
vanced bulk cmos technologies,” in 2010 IEEE International Reliability
Physics Symposium. IEEE, 2010, pp. 188–197.

[72] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, C. Brookre-
son, A. Vo, S. Mitra, B. Gill, and J. Maiz, “Radiation-induced soft
error rates of advanced cmos bulk devices,” in 2006 IEEE International
Reliability Physics Symposium Proceedings. IEEE, 2006, pp. 217–225.

[73] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large
scale dataset for 3d human activity analysis,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
1010–1019.

[74] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls
of graph neural network evaluation,” arXiv preprint arXiv:1811.05868,
2018.

[75] C. W. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp.
397–404, 2005.

[76] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural depen-
dency from architectural vulnerability,” in 2009 IEEE 15th International
Symposium on High Performance Computer Architecture. IEEE, 2009,
pp. 117–128.

[77] G. Srinivasan, P. Murley, and H. Tang, “Accurate, predictive modeling
of soft error rate due to cosmic rays and chip alpha radiation,” in
Proceedings of 1994 IEEE International Reliability Physics Symposium.
IEEE, 1994, pp. 12–16.

[78] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor search,”
in VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases. Elsevier, 2002, pp. 287–298.

[79] M. Tiator, C. Geiger, and P. Grimm, “Point cloud segmentation with
deep reinforcement learning,” in ECAI 2020. IOS Press, 2020, pp.
2768–2775.

[80] N. J. Wang, J. Quek, T. M. Rafacz et al., “Characterizing the effects of
transient faults on a high-performance processor pipeline,” in Interna-
tional Conference on Dependable Systems and Networks, 2004. IEEE
Computer Society, 2004, pp. 61–61.

[81] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,” in

14

2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2014, pp. 375–382.

[82] T. Xu, B. Tian, and Y. Zhu, “Tigris: Architecture and algorithms for
3d perception in point clouds,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
629–642.

[83] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 793–803.

[84] J.-F. Zhang and Z. Zhang, “Point-x: A spatial-locality-aware architecture
for energy-efficient graph-based point-cloud deep learning,” in MICRO-

54: 54th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2021, pp. 1078–1090.

[85] H. Zhao, Y. Zhang, P. Meng, H. Shi, L. E. Li, T. Lou, and J. Zhao,
“Safety score: A quantitative approach to guiding safety-aware au-
tonomous vehicle computing system design,” in 2020 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2020, pp. 1479–1485.

[86] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 4490–4499.

[87] Y. Zhu, “Rtnn: accelerating neighbor search using hardware ray tracing,”
in Proceedings of the 27th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, 2022, pp. 76–89.

15

	Introduction
	Background and Motivation
	Scope and Assumptions
	Why a New Metric?
	Existing RA Formulation
	Error Sources in Existing RA Formulation

	Defining and Modeling RA
	Defining RA as an Expected Value
	Calculating RA Through Probability Transfer

	Estimating RA Using Importance Sampling
	Compute RA via Monte Carlo Integration
	Heuristics for Importance Sampling

	Validation
	Validation Setup
	Validation Results

	Evaluating Sampling Strategies
	Experimental Setup
	Comparing Sampling Methods

	Comparative Studies
	RA-Aware NAS
	The NAS Framework
	Experimental Setup
	Analyzing the Networks

	Related Work
	Conclusion
	References

