Low-Latency Proactive Continuous Vision

Yiming Gan

Department of Computer Science, University of Rochester

with

Yuxian Qiu, Shanghai Jiao Tong University

Lele Chen, University of Rochester

Jingwen Leng, Shanghai Jiao Tong University

Yuhao Zhu University of Rochester

Continuous Vision: Long Frame Latency

Bottleneck: Serialization

Sensor

Bottleneck: Serialization

Bottleneck: Serialization

Traditional Pipeline

Latency

Frame 1

Sensing

Imaging

Vision

Frame 1 Sensing Imaging Vision

Pred

Frame 1 Sensing Imaging Vision

Pred Vision

Vision

Frame 2

Sensing

Imaging

Frame 3

Sensing

Imaging

Frame 3

Sensing Imaging Chek

Snapdragon 675

CPU

4th gen Kryo CPU Performance @ 2.0GHz Efficiency @ 1.7GHz

Artificial Intelligence
3rd gen Qualcomm® Al Engine

Modem

Snapdragon X12 Cat 12 DL, up to 600 Mbps

Audio

Qualcomm Aqstic[™] audio Qualcomm[®] aptX[™] audio

DisplayUp to FHD+ display

GPU

6th gen Adreno GPU

DSP

6th gen Hexagon DSP DSP Security

Camera

2nd gen Qualcomm Spectra ISP Up to 25 Megapixels @ 30fps ZSL 48 Megapixels snapshot

Charging

Qualcomm[®] Quick Charge[™] 4+ technology

Commercial devices expected in Q1 2019

Qualcomm Al Engine and Qualcomm Quick Charge are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Snapdragon 675

CPU

4th gen Kryo CPU Performance @ 2.0GHz Efficiency @ 1.7GHz

Artificial Intelligence
3rd gen Qualcomm® Al Engine

Modern

Snapdragon X12 Cat 12 DL, up to 600 Mbps

Audio

Qualcomm Aqstic[™] audio Qualcomm[®] aptX[™] audio

DisplayUp to FHD+ display

Qualcommus snapdragon

GPU

6th gen Adreno GPU

DSP

6th gen Hexagon DSP DSP Security

Camera

2nd gen Qualcomm Spectra ISP Up to 25 Megapixels @ 30fps ZSL 48 Megapixels snapshot

Charging

Qualcomm[®] Quick Charge[™] 4+ technology

Commercial devices expected in Q1 2019

Qualcomm Al Engine and Qualcomm Quick Charge are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Relaxing Checking Criterion (Threshold T)

Relaxing Checking Criterion (Threshold T)

Relaxing Checking Frequency (Degree K)

Frames Sequence

Precise Frames

UncheckedPredicted Frames

CheckedPredicted Frames

Time

I. In house simulator modeling state-of-the art SoCs

Real measurement of latency and energy on different IPs.

I. In house simulator modeling state-of-the art SoCs

Real measurement of latency and energy on different IPs.

II. RTL Implementations for NPU and Predictor

20x20 Systolic Array for NPU, 10x10 Systolic Array for Predictor

I. In house simulator modeling state-of-the art SoCs

Real measurement of latency and energy on different IPs.

II. RTL Implementations for NPU and Predictor

20x20 Systolic Array for NPU, 10x10 Systolic Array for Predictor

III. Evaluate on Object Detection and Tracking

KITTI dataset for object detection, VOT-challange for tracking.

I. In house simulator modeling state-of-the art SoCs

Real measurement of latency and energy on different IPs.

II. RTL Implementations for NPU and Predictor

20x20 Systolic Array for NPU, 10x10 Systolic Array for Predictor

III. Evaluate on Object Detection and Tracking

KITTI dataset for object detection, VOT-challange for tracking.

IV. Different Input Resolutions

Baselines

I. Base

Baseline with traditional execution pipeline

II. BO

Baseline with optimized back-end

III. FCFS

Traditional pipeline with multiple hardware IPs

Results

Latency Reduction (%)

Energy Budget (mJ)

Results

Latency Reduction (%)

Energy Budget (mJ)

Results

Energy Budget (mJ)

Conclusion

I. Long Latency Bottleneck Continuous Vision

II. Proactive Execution Pipeline

- 1) Leveraging Heterogeneities in Mobile SoCs
- 2) Relaxed Checking

III. Non-mission-critical System

Collaborators

Yuxian Qiu Jingwen Leng Lele Chen

Yuhao Zhu

Questions