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Figure 1. A comparison of PiLife with baseline I2V-Zero method given the same text and image inputs. I2V-Zero is a direct extension of
T2V-Zero [16] that accepts both image and text inputs. I2V-Zero suffers from visual collapse and image inconsistency. PiLife solves these
issues and outperforms I2V-Zero significantly.

Abstract

Image-to-video (I2V) generation is a challenging task that
requires transforming a static image into a dynamic video
according to a text prompt. For a long time, it has been a
challenging task that demands both subject consistency and
text semantic alignment. Moreover, existing I2V generators
require expensive training on large video datasets. To ad-
dress this issue, we propose PiLife (Prompt image to Life),
a novel training-free I2V framework that leverages a pre-
trained text-to-image diffusion model. PiLife can generate
videos that are coherent with a given image and aligned with
the semantics of a given text, which mainly consists of three
components: (i) A motion-aware diffusion inversion module
that embeds motion semantics into the inverted images as the

initial frames; (ii) A motion-aware noise initialization mod-
ule that employs a motion text attention map to modulate the
diffusion process and adjust the motion intensity of different
regions with spatial noise; (iii) A probabilistic cross-frame
attention module that leverages a geometric distribution to
randomly sample a frame and compute attention with it,
thereby enhancing the motion diversity. Experiments show
that PiLife significantly outperforms the training-free base-
lines, and is comparable or even superior to some training-
based I2V methods. Our code will be publicly available.

1. Introduction
The success of text-to-image generative models, particularly
stable diffusion (SD) [28–30], has led to remarkable progress



in text-to-video generation [2, 13, 27, 31, 42]. Despite their
achievements, the limited controllability of textual input has
spurred a growing trend in the field of image-to-video (I2V)
generation, aiming to produce a video sequence given both
an image and a textual description [27, 38, 43]. Recent stud-
ies on I2V generation [35, 38, 43] attempt to leverage the
power of pre-trained SD model by incorporating temporal
layers into existing SD models and training these larger mod-
els on video and image datasets. While these approaches
have displayed promising results, a significant drawback
remains their heavy reliance on extensive training with large-
scale labeled datasets [9, 39]. This can be prohibitively ex-
pensive, limiting the accessibility and development potential
of these methods.

In this paper, our objective is to address this challenge
through a “training-free” approach for I2V generation. In-
spired by Text2Video-Zero [15], our approach utilizes well-
trained text-to-image models without the need for fine-tuning
image or video data. To achieve this, we aim to modify the
Text-to-Image (T2I) diffusion models, injecting image prior
into the diffusion process and implementing adjustments
to ensure temporal consistency. However, we have found
this process not trivial. First, adding image prior can cause
the problem of visual collapse. As shown in Fig. 1 (right),
directly adding image prior to Text2Video may produce a lot
of artifacts. Second, it is hard to align the generated videos
with the given image, even with the trained I2V generation
models. This can be observed in Fig. 4, where existing I2V
generation models generate videos with different styles or
subjects from the image. The reasons behind these short-
comings are twofold, illustrated in Fig. 2. Firstly, the image
input may not follow the distribution of the diffusion model
for generating images, leading to sub-optimal image-wise
quality. Secondly, the noise variance across frames is evenly
distributed across the entire image, making it challenging for
the model to grasp motion semantics.

To this end, we introduce PiLife, a novel training-free
framework based on a pre-trained T2I diffusion model. PiL-
ife consists of three novel components: (1) A motion-aware
diffusion inversion module, which injects motion semantics
into the inversion process and takes the inverted images that
better reflect the motion semantics as the initial frames; (2) A
motion-aware noise initialization module, which harnesses a
motion text attention map to guide the DDPM, and obtains
a spatial noise intensity distribution that is consistent with
the attention map distribution. The spatial noise reflects the
motion regions and intensities according to the input text
description and it modulates the motion amplitude of dif-
ferent regions. Thus, our model can effectively capture and
animate the corresponding parts with appropriate intensity to
generate videos that match the text semantics while mitigat-
ing visual collapse. (3) A probabilistic cross-frame attention
module, which controls T2I diffusion model not only the
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Figure 2. We conclude two factors that affect image-to-video
generation qualities. First, image input misalignment with the
diffusion model’s distribution. Second, the noise variance across
frames uniformly distributed across the entire image.

consistency with the first frame and temporal coherence but
also the motion diversity of the generated frames. Overall,
by combining these components, our model can generate re-
alistic and diverse videos from texts that capture the motion
semantics and dynamics.

Experiments show that our model can generate high-
quality videos that aligns with the given text and image. We
evaluate our approach by comparing it with both training-
free and training-based I2V methods. Our proposed PiLife
outperforms the training-free baseline method significantly,
and achieves comparable results or sometimes surpasses the
training-based methods in terms of subject accuracy, tempo-
ral consistency, and motion diversity.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to introduce
training-free framework for I2V generation based on the
T2I generation model.

• We introduce a motion-aware diffusion inversion and noise
initialization module that improves the DDIM latent code
of the diffusion model by incorporating the motion seman-
tics into the diffusion process. This yields more semanti-
cally coherent motion and mitigates the visual collapse.

• We devise a probabilistic cross-frame attention module,
which balances temporal consistency, subject fidelity, and
motion diversity of generated video.

• Experiments demonstrate that our method significantly
surpasses the training-free I2V generation baseline and
matches or even exceeds the training-based methods in
some aspects.



2. Related work
2.1. Image to Video Generation

Image-to-video (I2V) generation is a task of animating a
static image based on a text prompt. Many existing meth-
ods [4, 19, 21, 25, 26, 36] use a reference driving signal
(e.g. videos, images) to extract motion, appearance or pos-
ture information and guide the generation process. Some
GAN-based methods [8, 17] use additional guidance (e.g.
keypoint [32, 40], optical flow) that is pre-computed or pre-
dicted from the original image to perform image translation
and generate a video. However, these methods require extra
signal guidance, which limits their flexibility and applicabil-
ity. In the realm of diffusion models, VideoComposer [35] is
a multimodality video synthesis approach that can also per-
form open domain I2V generation, but it requires predefined
motion vectors to guide the specific actions in the generated
video. I2VGen-XL [43] and VideoCrafter1 [38] are some
of the few works that address the text-driven I2V genera-
tion challenge. However, these methods need additional
large-scale training data, and bring a huge computational
burden. Moreover, they have difficulty in generating specific
or large movements without prior guidance. In contrast to
these methods, we focus on a training-free text-driven image-
to-video model, which can generate temporally coherent and
large-scale motion videos with high quality.

2.2. Zero-shot Video Synthesis

Zero-shot video synthesis is the task of generating videos
from text without any training or optimization. Several pre-
vious works have tried to tackle this task using different
techniques. One common technique is to use pre-trained
text-to-image (T2I) diffusion models [23], which can gen-
erate high-resolution images from text prompts using a dif-
fusion process. These models can be extended to generate
videos by animating the text prompts with different motion
dynamics, such as walking, running, jumping, or flying. For
example, Text2Video-Zero [16] introduced a cross-frame
attention mechanism to ensure temporal consistency across
frames, while Free-Bloom [14] utilized large language mod-
els (LLMs) [20] as the director and latent diffusion models
(LDMs) [23] as the animator. Duan et al. [9] proposed a
latent in-iteration deflickering framework and a video de-
flickering algorithm to reduce the flickering effect. Other
approaches [3, 5, 6, 11, 22, 33, 34, 41, 44] explored text-
guided zero-shot video editing tasks, which only modify
some parts of existing videos. However, these methods can-
not animate static objects in an image, which is the focus of
our work.

3. Method
In this section, we provide detailed descriptions on the pro-
posed modules, motion-aware diffusion inversion module in

Sec 3.2, motion-aware noise initialization module in Sec. 3.3
and probabilistic cross-frame attention module in Sec. 3.4,
the overall pipeline are shown in Fig. 3.

3.1. Preliminaries on Diffusion Models

Diffusion models are probabilistic generative models that
can produce realistic images from random noise by reversing
a stochastic process. We use Stable Diffusion (SD) [23], a
powerful latent diffusion model, for text-to-image generation.
SD uses an image encoder E and decoder D to map an
input image I to a low-dimensional latent code x0 = E(I),
and then adds Gaussian noise to x0 gradually through the
diffusion forward process: ////

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where t = 1, . . . , T , denotes the timesteps, and βt ∈ (0, 1)
is a predefined noise schedule. We can sample xt at any
timestep from x0 directly using a parameterization trick:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt =
∏t
i=1 αi, and αt = 1 − βt. Therefore, noisy

data can be obtained through xt =
√
ᾱtx0+

√
1− ᾱtϵ, ϵ ∼

N (0, I). The diffusion model uses a neural network ϵθ to
learn to predict the added noise ϵ by minimizing the mean
square error of the predicted noise which writes:

min
θ

Ex,ϵ∼N (0,I),t[∥ϵ− ϵθ(xt, t, c)∥22], (3)

For SD, the network takes both a conditional index t and
a text-prompt c to predict the noise ϵθ(xt, t, c), therefore the
SD can generate images that have contents whose semantic
meaning aligns with the input text-prompt c. Once the model
is trained, we can adopt a deterministic sampling process,
called DDIM [29], to iteratively recover x0 ∼ Pdata(x)
from random noise xT :

xt−1 =
√
ᾱt−1 x̂t→0︸ ︷︷ ︸

predicted x0

+
√
1− ᾱt−1ϵθ(xt, t, c)︸ ︷︷ ︸

direction pointing to xt−1

, (4)

where x̂t→0 is the predicted x0 at timestep t,

x̂t→0 =
xt −

√
1− ᾱtϵθ(xt, t, c)√

ᾱt
. (5)

During the inference phase, we can exploit DDIM sam-
pling [29] to synthesize a denoised representation x0 from
the standard Gaussian noise xT = zT , zT ∼ N (0, I), and
then decode x0 into a generated image I ′

= D(x0) using the
pre-trained decoder D. DDIM inversion [7] can perform a
deterministic forward diffusion process to recover the latent
code xt, t = 1, . . . , T from the encoded image x0.
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Figure 3. Our PiLife framework consists of three main modules. (1) The motion-aware diffusion inversion module processes the input text
and image to obtain the initial frame with motion information. (2) The motion-aware noise initialization module generates the noise with
motion features and initial latent code. Z∗

0 → ϵrec is formulated in Eq. 8, 9. M , G, D are formulated in Eq. 10, 12, 7, respectively. (3) The
probabilistic cross-frame attention layer replaces the self-attention layer to enhance motion features.

3.2. Motion-aware Diffusion Inversion

In the context of the I2V task, we have observed that the
quality of the image prior plays a vital role in the overall
quality of the generated videos. If the input image is of low
quality or falls out of the typical SD image distribution, it
can directly lead to videos that suffer from reduced image
fidelity. Furthermore, the image prior may not be aligned
with the motion semantics conveyed in the text prompt. This
misalignment poses a challenge for the Diffusion model in
producing videos that correspond to the motion semantics
outlined in the text prompts. Consequently, our objective is
to reconstruct the input image that not only maintains the
visual characteristics of the original image but also conveys
the motion-related semantics specified in the accompanying
text description.

Inspired by the null-text inversion [18], we propose a
novel motion-aware diffusion inversion module that incor-
porates motion features into the denoising network. We
optimize the conditional embedding of the target text by
minimizing the diffusion loss. Formally, we have the opti-
mized object

ψ∗
t = argminψ E(ϵθ(Z∗

t , t, ψt), Zt−1)), (6)

where ψt is the input embedding for DDIM sampling at
tth timestamp, and ψ∗

t is the optimized embedding at the
t-th timestamp, E(·) is the reconstruction error, Zt−1 is the
diffusion trajectory of DDIM inversion [12], Z∗

t−1 is the
intermediate latent code of the DDIM sampling process with
Z∗
t and optimized embedding ψ∗

t as the input.

By using the optimized embedding from the motion text
embedding as the unconditional embedding input for the
denoising step, we can obtain a reconstructed image prior
that better preserves the appearance details and reflects the
motion semantics of the text. This image prior serves as
the first frame in the generated video. As shown in Fig. 3,
the image after motion-aware diffusion inversion provides
a motion-aware prior for both the latent code and the cross-
frame attention of the subsequent frames.

3.3. Motion-aware Noise Initialization

To prevent static image regions from distortion by motion,
we propose the motion-aware noise initialization module.
It has two main components: (1) Attention-guided DDPM,
which can disentangle dynamic and static parts and adjust the
motion by incorporating motion semantic attention scores
into DDPM [12] to get different noise intensity. (2) Noise
clipper, which confine the noise within the scope of the at-
tention map and constrains the L2 norm of the noise, thereby
reducing the noise discrepancy between frames that leads to
visual collapse.

Attention-guided DDPM To address flickering artifacts
and visual collapse in static regions caused by motion, we
disentangle static and dynamic regions. This is achieved
by introducing a motion attention score (denoted as A) that
reflects the significance of each pixel to the dynamic seman-
tic correlation, into the diffusion process of DDPM [12].
Attention-guided DDPM models the spatially dynamic trans-



formation of the initial latent code by adjusting the noise
intensity of the static and dynamic regions. Specifically, as
explained in Sec. 3.1, the initial latent code zt is obtained by
reparameterizing the diffusion process as follows:

z∗t =
√
ᾱt · z∗0 +

√
1− ᾱt · ϵM, ϵM ∼ N(0, I) (7)

where z∗0 and z∗t denote the original image latent codes and
initial latent codes inverted to the t-th step, respectively.
We consider the inverted noise ϵrec to represent the random
noise that needs to be input when adding noise to the original
image during the DDPM reparameterization process. Adding
this noise can obtain the current step’s initial latent code,
which is the inverse operation of reparameterization.

ϵrec =
z∗t −

√
ᾱt · z∗0√

1− ᾱt
(8)

ϵrec may not follow ϵrec ∼ N(0, I). To ensure the rele-
vance of the noise predicted by the UNet and the structural
information of the original image, we adjust it proportion-
ally according to the variance and map it to the N ∼ (0, 1)
distribution:

ϵ∗rec =
ϵrec − µ

σ
(9)

The attention-guided noise mt is then defined as:

mt = A⊙ ϵ+
√
1−A2 ⊙ ϵ∗rec (10)

where ⊙ denotes element-wise multiplication. The motion
attention score A is computed by,

A = Softmax(
QKm√

d
) (11)

The deep spatial features of the noisy image ϕ(zt) are pro-
jected to a query matrix Q = LQ(ϕ(zt)). To extract the
motion text from the given sentence, we use a pre-trained
text classifier to identify the words that describe the motion
semantics. We constructed a small dataset and finetuned a
bert to recognize the tokens that indicate motion text in the
sentence. The motion text embedding ψ(P) is projected to
a key matrix K = LK(ψ(P)) via learned linear projections
LQ and LK .

The attention-guided noise mt can maintain the variance
of the original noise ϵ in the regions where the attention
map A is high, and decrease the variance of the noise in
the regions where the attention map A is low. In this way,
the regions of the initial latent code that are relevant to the
dynamics of the video have higher noise variance, which can
generate more diverse motions, while the regions that are
irrelevant to the dynamics have lower noise variance, which
can preserve the features of the original image and reduce
the impact of the classifier guidance on these regions.

To control the influence intensity of the attention-guided
noise, we use a Gaussian mixture to fuse the attention-related

Algorithm 1 Clipping technique for noise generation

Require: Initial latent code ϵrec
1: Sample a noise signal ϵM with the same length and

parameters as ϵ∗rec
2: Define ∥ϵ∥2 =

√∑N
i=1 ϵ

2
i as the L2 norm of ϵ

3: Compute ∆∥ϵ∥2 = ∥ϵM − ϵrec∥2 and ∥ϵM∥2
4: Set γ ← ϵM
5: while ∆∥ϵ∥2 > ∥ϵM∥2 do
6: Sample a random parameter t from a uniform dis-

tribution on the interval [η, 1 − η], where η is a small
positive constant

7: Update γ := (1− t) · ϵrec + t · γ
8: Recalculate ∆∥ϵ∥2 = ∥γ − ϵrec∥2
9: Return γ

noise and the random noise and introduce a parameter π to
control the relative weights of the two components. The
Gaussian mixture is as follows:

ϵM =
1√

1 + η2
· ϵ+ π√

1 + η2
·mt (12)

where η > 0. When η → 0, ϵM ≈ ϵ, when η → ∞,
ϵM ≈ mt.

Noise Clipper To reduce the excessive deviation of the
initial latent code from the original distribution and prevent
visual degradation, we propose a clipping technique to limit
the L2 norm difference between the noise and the inverted
noise. We linearly interpolate the noise signals until the dif-
ference is below a threshold if it exceeds the noise norm. The
clipping technique is shown in Algorithm. 1, which ensures
that the noise signals stay close to the original distribution
and retain the features of the initial latent code. This im-
proves the quality and diversity of the video generation and
prevents visual collapse.

3.4. Probabilistic Cross Frame Attention

We introduce probabilistic cross-frame attention (PCFA) to
enhance the temporal consistency of our model. Specifically,
we replace the self-attention layers in the original SD model
by calculating the cross-attention score of the current frame
with the first frame, the previous frame, and a randomly
sampled frame based on a geometric distribution. PCFA bal-
ances the strength of cross-frame attention between different
frames based on their relative distance from the current frame
t. This way, the PCFA achieves three key objectives: (1) it
maintains consistency with the given first frame; (2) it keeps
continuity with the previous frame; (3) it brings in motion
diversity by sampling frames according to a probabilistic
distribution. The details are as follows.



We use geometric distribution to measure attention
strength, defined as:

P (k) = (1− p)k−1 · p (13)

where k is the distance from the current frame, and p is the
probability of sampling a frame. The distribution has the
property that the sampling probability decreases with the
distance, which is desired for applying stronger attention
to frames near the source frame. PCFA adjusts the self-
attention value according to the diffusion timestep. This
prevents visual collapsing and ensures temporal consistency.
The distribution also introduces a tunable parameter p, which
controls the temporal smoothness and diversity of the video
generation. Intuitively, larger p leads to more diverse mo-
tions, while smaller p leads to smoother motions. The PCFA
maintains the motion continuity by probabilistically assign-
ing attention to previous frames.

Besides the probabilistic frame sampling, we also sample
the first frame for cross-frame attention to maintain appear-
ance consistency with the original image. The set of sampled
frame indices for the current frame t is:

St = {1, t− 1} ∪ {t− k|k ∼ P (p)} (14)

where 1 is the first frame index, t−1 is the previous frame in-
dex, and t−k is sampled from the distribution (13). To avoid
future information leakage, we only sample frames that are
causally before the current frame. Overall, the Probabilistic
Cross Frame Attention (PCFA) is then defined as:

PCFA(Qt, St) = Attention(Qt, [Kj |j ∈ St], [Vj |j ∈ St])

= Softmax(
Qt · [Kj |j ∈ St]T√

dk
) · ([Vj |j ∈ St]) (15)

whereQt, Kt, and Vt are the query, key, and value vectors of
the current frame t, respectively, K1 and V1 are the key and
value vectors of the first frame, Kt−1 and Vt−1 are the key
and value vectors of the previous frame. dk is the dimension
of the key vector.

4. Experiments
4.1. Experiment Settings

We take the pre-trained Dreamlike Photoreal v2.0 [1] as
the basis diffusion model, which is a photorealistic model
based on Stable Diffusion 1.5, specializing in generating
real-world images. In our experiments, we generate m = 6
frames with 512× 512 resolution for each video. However,
our framework allows generating any number of frames by
increasing m. The initial time step of our generated latent
code is 761 for all instances. All experiments are performed
on one Tesla V100 (32GB).

4.2. Comparison with Other Methods

We compare the performance of PiLife with three existing
methods. One of them is the baseline method Text2Video-
Zero [16], which is a well-known training-free video gen-
eration method. We adapted this method to the I2V task
and named it I2V-Zero, which we implemented ourselves by
closely following the official one since the official implemen-
tation of T2V-Zero does not support the I2V task. We also
compare our PiLife with the state-of-the-art training-based
methods, namely I2VGen-XL [43] and VideoCrafter1 [38],
to provide a comprehensive comparison of PiLife with both
training-based and training-free methods.

4.2.1 Qualitative Results

We show some results of our method in Fig. 1 and Fig. 4,
and compare them qualitatively with the baseline methods.
Our method aims to (i) address the issue of visual collapse
and (ii) retain more details of the source image.

Comparing our results with I2V-Zero [16], as shown in
Fig. 1, we demonstrate that our methods solved the prob-
lem of visual collapse. For instance, in the case of walking
panda, our method has less distortion and more stability on
the frame changes. We also observe that our method disen-
tangles the motion semantics of the dynamic part from the
static part while preserving the static features from being
influenced by redundant motion, i.e., the panda’s feet move
while the rest of its appearance remains undistorted. Such
advantage can be attributed to the motion-aware diffusion
inversion design, which provides a better understanding of
moving and static parts. This result illustrates the accuracy
and consistency of our method in capturing the motion se-
mantics of the dynamic and static parts.

Furthermore, we compared our method with the latest
training-based image-to-video models, I2VGen-XL [43] and
VideoCrafter1 [38]. It is noteworthy that I2VGen-XL fails
to generate high-quality videos that were consistent with
the given image in all the three cases shown in Fig. 4, sup-
porting the claim that image-to-video generation is a chal-
lenging task, even with a training-based model. Although
VideoCrafter1 [38] and our method could both generate
videos with good temporal consistency and image quality,
our method achieved better alignment with the input image.
Such advantage can be easily observed in the case of a girl
playing the piano, where the images generated by I2VGen-
XL [43] are completely inconsistent with the given image.
The frames generated by VideoCrafter1 [38] are closer to
the original image, but still far from being as similar as ours.
We think such an unsatisfactory performance is caused by
the limitation of the training-based I2V model’s insensitivity
to data that deviates from the video generation model dis-
tribution. On the contrary, our model accurately captures
the motion semantics from the given text by motion-aware
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Figure 4. Qualitative comparison of our method and the training-based methods I2VGen-XL [43] and VideoCrafter1 [38].

noise initialization. For the piano-playing action, the arm
movement amplitude and the finger movement amplitude
are more obvious than those of the other two training-based
methods without visual collapse, which demonstrates that
our model can accurately capture the motion semantic and
make a balance between the subject fidelity, the temporal
consistency and the motion diversity of the generated frames,
rather than simple translation.

4.2.2 Quantitative Results

In this part, we numerically evaluate I2V methods. We use
both objective metrics and user studies to measure the quality
of our generated videos. We consider the following three as-
pects: (i) Subject fidelity: the generated videos should con-
tain the given subjects. We use the pre-trained FasterRCNN-
MobileNet-V3-large model to detect the subjects in each
frame and calculate the DINO score [24] between the de-
tected subjects and the given subjects. (ii) Textual fidelity:

the generated videos should be consistent with the given
textual prompt. We use the average CLIP-T [10, 24] score
between each frame and the prompt to measure the textual
fidelity. (iii) Temporal consistency: the generated videos
should be smooth and coherent. We use the average CLIP
image cosine similarity between all pairs of frames to mea-
sure the temporal consistency [37]. We also present a user
study, where the expert participants are asked to rate the
fidelity, temporal coherence, and semantic coherence on a
scale of 1 to 5. The users are also asked to rank the videos
based on their personal preferences.

The results are shown in Table. 1. PiLife significantly out-
performs the baseline method I2V-Zero [16] on all the met-
rics, which demonstrates the effectiveness of our model. Our
training-free method even surpasses the other two training-
based methods on subject fidelity, which demonstrates the
superiority of our model in preserving the original subjects
in video generation. Moreover, our method achieves com-
parable performance with VideoCrafter1 [38] on CLIP-T



Objective Metric User Study
Method Training-Free DINO ↑ CLIP-T ↑ Temporal Consistency↑ Fidelity ↑ Semantic ↑ Temporal ↑ Rank ↓

VideoCrafter1 × 0.513 0.329 0.937 4.6 3.624 3.771 1.875
I2VGen-XL × 0.426 0.301 0.927 4.1 3.247 3.584 2.031

I2V-Zero ✓ 0.451 0.287 0.781 2.7 2.958 2.238 3.762
Ours ✓ 0.556 0.321 0.923 3.9 3.598 3.385 2.332

Table 1. Quantitative results of training-based or training-free methods on image to video generation task. All metrics are average evaluations.

（B）w/o Motion-aware Diffusion Inversion

（A）w/o all components

（C）w/o Motion-aware Noise Initialization

（D）w/o Probabilistic Frame Sampling 

（E）Ours

Figure 5. Ablation study. The text prompt is ”A bear is dancing
happily”, and the given image can be seen in Fig. 4.

and temporal consistency, though the latter is trained on
large-scale video datasets.

4.3. Ablation Study

We conducted an ablation study to evaluate the effectiveness
of each component of our framework. We choose the case
“A bear is dancing happily” as the text prompt for the image-
to-video generation task. The results are shown in Fig. 5.

w/o all components For the baseline model without all
our proposed components, the generated videos suffered

from severe visual collapse, indicating that controlling the
frame consistency with the original image is challenging for
diffusion-based video generation methods.

w/o motion-aware diffusion inversion Without motion-
aware diffusion inversion, the generated videos produce
more artifacts and are less aligned to the text prompt. In this
example, the bear’s head deviates from the original image
details and hardly moves across the frames. This demon-
strates the importance of injecting motion information in the
inversion process, which provides a better prior first frame
for appearance preservation and motion amplification of the
subsequent frames.

w/o Motion-aware Noise Initialization We observed
that the generated frames suffered from visual collapse and
discontinuity when lacking motion-aware noise initialization.
This demonstrates that the motion-aware noise initialization
module can capture the parts with large motion magnitudes,
preserve the non-motion parts and enhance cross-frame sta-
bility.

w/o Probabilistic Frame Sampling We found that when
not performing probabilistic frame sampling, the generated
frames had monotonous and small motions, and lacked diver-
sity. Probabilistic frame sampling can increase the temporal
diversity of the generated videos.

5. Conclusion
We propose PiLife in this paper, a novel training-free frame-
work for image-to-video generation with text guidance. PiL-
ife leverages the power of diffusion models and introduces
three key innovations: motion-aware diffusion inversion,
motion-aware noise initialization, and probabilistic cross-
frame attention. These innovations enable PiLife to generate
high-quality videos that are consistent with the input image
and text, while diverse in motion patterns. We demonstrate
the effectiveness of PiLife through extensive experiments
and comparisons with existing methods. Experimental re-
sults also show that PiLife can generate videos for various
scenarios, such as human actions, animal movements, and
natural phenomena. PiLife opens up new possibilities for
image-to-video generation and paves the way for future re-
search in this direction.
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