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Abstract—Automatic sleep staging based on electroencephalogra-
phy (EEG) and electromyography (EMG) signals is an important
aspect of sleep-related research. Current sleep staging methods
suffer from two major drawbacks. First, there are limited infor-
mation interactions between modalities in the existing methods.
Second, current methods do not develop unified models that
can handle different sources of input. To address these issues,
we propose a novel sleep stage scoring model sDREAMER,
which emphasizes cross-modality interaction and per-channel
performance. Specifically, we develop a mixture-of-modality-
expert (MoME) model with three pathways for EEG, EMG,
and mixed signals with partially shared weights. We further
propose a self-distillation training scheme for further information
interaction across modalities. Our model is trained with multi-
channel inputs and can make classifications on either single-
channel or multi-channel inputs. Experiments demonstrate that
our model outperforms the existing transformer-based sleep
scoring methods for multi-channel inference. For single-channel
inference, our model also outperforms the transformer-based
models trained with single-channel signals.

Index Terms—sleep scoring, distillation, transformer, mixture-of-
modality experts

I. INTRODUCTION

Sleep is one of the most basic animal behaviours with wide
biological implications. Classifying sleep into stages (typically
Wakefulness, REM and non-REM) is an important aspect of
sleep-related research [37]. Currently, one of the most common
automated sleep staging techniques is based on electrophysi-
ological time-series data. Polysomnography (PSG) by experts
requires specialized knowledge of sleep architecture, as well as
considerable time (i.e.experts have to observe the whole sleep
process, which lasts about several hours), thus validating the
necessity of automatic sleep staging.

In recent years, deep-learning-based methods have shown po-
tential in sleep staging. Most of these works involve the elec-
troencephalography (EEG) time series signals signals [6], [12],
[29]. However, it has been shown that sleep staging with only
EEG signals is insufficient for sleep classification (typically in
distinguishing REM sleep and non-REM sleep) [4], [17], thus
necessitating multi-modality sleep staging (i.e. staging with
multiple types of input signals) [1], [15], [30], [32]. Although
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Fig. 1: The raw EMG and EEG time-series signals.

these multi-modality methods have improved the performance
of sleep staging, there are two major drawbacks.

First, previous methods suffer from limited information in-
teractions between modalities. While previous studies have
attempted to develop multi-modal models that integrate in-
formation across different modalities, they ignore the possi-
ble interrelationship of different electrophysiological signals.
Specifically, these models embed different signal inputs into
separate feature spaces and use a late fusion scheme to gener-
ate classification results. Since the electrophysiological signals
are quite noisy (see Fig. 1), the cross-reference from multiple
input signals can be essential in improving the robustness of
automatic sleep staging models.

Second, previous methods have not developed unified models
that can handle different sources of input, such as multi-
channel and single-channel signals. For instance, a model
trained on EEG and EMG signals cannot perform reasonable
inferences on new data with only EEG signals. This limitation
is brought naturally since such models focus on multi-channel
joint embedding, but neglect the quality of per-channel embed-



ding. As a result, the performance of these models is restricted,
and their potential applications are hindered. Therefore, there
is a need for a unified model that can handle different sources
of input and improve the performance of automatic sleep
staging models.

To address these problems, this study proposes a novel
sleep stage scoring model that emphasizes the cross-modality
alignment and per-channel performance. To achieve this, our
model introduces the mixture-of-modality-experts (MoME)
transformer. More specifically, we develop a model consisting
of three pathways for EEG, EMG, and mixed signals with
partially shared weights. Specifically, the attention weights
are shared across the three paths, and the weights of the
feed-forward networks are not fully shared (see Section IV
for details). The partially shared weights implicitly instruct
our model to align across different modalities. The three
pathways ensure that our model can promote high-quality
per-channel performance. Furthermore, we propose a self-
distillation method to ensure better information interaction
across modalities. We build an epoch MoME transformer for
one-to-one sleep staging and a sequence MoME transformer
for many-to-many sleep staging. Although our model is trained
with multi-channel time-series signals (i.e. EEG and EMG),
our model can accept single-channel (i.e. EEG or EMG)
as well as multi-channel time-series signal as input in the
inference phase.

We demonstrate the effectiveness of our proposed self-distilled
MOoME transformer, referred to as SDREAMER (self-distilled
Mixture-of-Modality-Experts Transformer), through experi-
ments on a public mice sleep dataset [18] labeled with sleep
stages by our expert. For multi-channel sleep staging, our
epoch MoME model and sequence MoME model outper-
form the transformer-based automatic sleep scoring method
by significant margins, respectively. For single-channel sleep
staging, our sequence MoME model also produces better
inference results than the transformer-based models trained
with single-channel signals.

In summary, the main contributions of our work can be
summarized as follows:

e We propose the unified sleep staging framework
sDREAMER that can handle either single-channel or
multi-channel input based on the MoME transformer.

o We propose a self-distillation method for our proposed
MOoME transformer to ensure the multi-modality informa-
tion interaction across different pathways (i.e.EEG, EMG,
and mixed).

o We demonstrate through extensive experiments that our
proposed model is effective for both single-channel and
multi-channel sleep staging.

II. RELATED WORK
A. Deep-learning-based Sleep Staging

The success of deep learning has inspired several deep-
learning-based sleep staging algorithms based on electro-
physiological signals. Basically, there are two ways to deal
with the raw data. One way is to directly learn from the
unprocessed signals [25], [34], [38]. Another way is to transfer
them to spectrograms and design models to learn from the
spectrograms using computer vision-based techniques [22],
[42]. Although introducing spectrograms may produce more
interpretable visual understanding for humans, Phan ez al. have
shown that introducing spectrogram inputs in addition to raw
signal inputs may actually lead to a performance drop [30].
Therefore, we focus on automatic sleep staging based on raw
electrophysiological signals in our work.

Most automatic sleep staging works involve the time-series
EEG signals [6], [10], [12], [26], [27], [29], [31], [36]. How-
ever, previous works have shown that sleep staging with only
EEG signals is insufficient for sleep classification (typically
in distinguishing REM sleep and non-REM sleep) [4], [17],
thus validating the necessity of multi-modality sleep staging
(i.e.staging with multiple types of input signals) [1], [15], [30],
[32]. One common way of modeling the different types of
input signals is the late fusion strategy [14], [21]. Despite
their success in introducing different time-series signals into
sleep staging, one major problem of these methods is the
lack of information interaction across modalities. Although
Jathurshan er al. have proposed cross-modal attention [32],
the shallow design is insufficient for information interactions.

B. Transformer-based Cross-modality Learning

Transformer [41] is a deep-learning framework that can han-
dle sequence input. The recent success in vision-language
has demonstrated the power of transformer in cross-modality
learning [19], [33], [43]. Typically, there are two types of
structures for cross-modality learning: 1) fusion encoder,
where different input modalities share the same encoder struc-
ture [39], [48] and 2) dual encoder, where different input
modalities have different encoder structure but are mixed
together in the feature space for cross-modal interactions [13],
[44], [46]. Bao et al. suggest that mixture-of-modality-experts
transformer can facilitate cross-modality learning efficiently
and competitively [5]. Despite the effectiveness of cross-
modality learning, most works on sleep staging ignore such
techniques for modeling different types of input signals.

C. Self Distillation

Self distillation is a type of knowledge distillation where the
teacher network and the student network share the same model.
In one type of self-distillation methods, knowledge can be
transferred from the earlier epochs to the later epochs [35],
[45], [51]. Knowledge can also be transferred from deeper
parts of a neural network to the more shallow parts [11], [47].
Other self-distillation methods focus on the data and label aug-
mentation [8], [50] or weak labels [3], [49]. The effectiveness



of self-distillation has been analyzed and validated by some
works [2], [23]. Recently, Wang et al. have proposed to distill
across vision and language domains [44]. Inspired by their
work, we propose a novel knowledge distillation scheme in
the MoME module to distill across signal modalities for sleep
staging.

III. DATA COLLECTION AND PREPROCESSING

A. Data Collection

This section presents the data collection procedures of the
mouse sleep staging dataset. The dataset is a publicly available
mice sleep dataset [18], while our experts manually labeled
the dataset with sleep stages. All the sleep monitoring data are
recorded from wildtype C57BL/6 mice subjects including both
male and female ones. In particular, the EEG and EMG signals
are collected when the subjects are placed in the chamber
room. To denoise the collected EEG signals, experts apply
filters including a high-pass filter at 1 Hz and a low-pass
filter at 100 Hz. For the EMG signals, they apply a high-pass
filter at 10 Hz and a low-pass filter at 100 Hz. In addition,
a notch filter of 50 Hz is applied to eliminate the power line
noise. Based on these raw data and the videos of sleeping
mice, our experts annotate each collected signal epoch with
its corresponding sleep stage. Specifically, wake stages show
high muscle tonus and a high-frequency, low-amplitude EEG
pattern. SWS sleep shows no muscle tonus and low-frequency,
high-amplitude EEG pattern. REM sleep also shows no muscle
tonus but with high frequency, low-amplitude EEG. A detailed
description of the dataset can be found in Section V-A.

B. Data Preprocessing

The dataset mainly contains the EEG and EMG signal records
collected from sleeping mice, as well as the sleep stage labels
for every second. These raw data may suffer from ambiguity
in labels, data noise and excessive sequence length. Data
preprocessing is applied to the raw data, including irregularity
removal, subject-wise normalization, and temporal slicing.

Irregularity Removal. During the whole span of mice sleep,
there exists some time periods when experts are not sure which
stage these periods belong to. Such periods are not labeled,
which causes data irregularity. To handle these missing values,
a neurally controlled differential equation approach [16] was
considered. However, since missing values only occurs in a
small percentage of the total data, it is unnecessary to apply
this method to the large electrophysiological signal dataset.
Instead, we remove missing values from the time series during
loss calculation.

Subject-wise Normalization. Raw signal normalization is
performed using a subject-wise normalization approach, which
normalizes the signals of the same subject with their mean
and standard deviation. This method facilitates model learning
as electrophysiological signal features often differ greatly in
amplitude among individual subjects.

Temporal Slicing. To obtain input data of a fixed time span,
temporal slicing is performed. As our model aims to offer
accurate prediction at the second level, the input signals
are sliced into per-second signals. The sampling frequency
for both signals are equal, denoted as 7'. Since we choose
one second as the slicing time span, the sliced EEG or
EMG time-series signal can be denoted as zFF¢ € RT*! or
2BMG ¢ RT*1 respectively.

IV. METHODOLOGY

In this study, we propose SDREAMER, an efficient multi-
modal learning framework to stage sleep using a self-distilled
mixture-of-modality-experts transformer. We first establish the
problem hierarchically into epoch and sequence settings. Then
we present the data input under these two settings. Afterward,
the MoME module is introduced as the core for the unified
multi-modal learning framework. The MoME module also
serves as the foundation for our proposed Epoch sDREAMER
and Sequence SDREAMER. Both models support multi-modal
and mono-modal input cases. To further enhance the perfor-
mance of mono-modality input, we propose a self-distillation
pipeline that employs a multi-modal expert to guide the mono-
modality expert.

A. Problem Setup

Sleep stage scoring in mice is commonly approached as
a multi-class classification task, requiring the model makes
predictions according to the electrophysiological signals. Here
we introduce two different settings for sleep stage scoring:
epoch and sequence setup.

Epoch Setting. For sleep staging, the smallest annotation
window (one second for our dataset) of a signal is referred to
as an epoch. As previously defined, the sliced signals 2FFS or
2 EMG belongs to RT>1 where T is the size of time dimension,
representing number of signal data points in an epoch. Since
the input signals can be single-channeled or multi-channeled,
an additional modality dimension is introduced, and the epoch
extends to x € RM>XTX1 where M is the size of modality
dimension. The epoch setting can then be formulated as
producing a sleep stage prediction ¢ for each epoch signal
= RM xT ><1.

Sequence Setting. The sequence setting differs in considering
multiple epochs as input and producing multiple predictions
as output. A sequence is a larger window within the whole
signal trace. It consists of multiple consecutive epochs. A
K-size sequence is denoted as (xi)fil where z; is the i-th
epoch within the sequence. The sleep staging for a sequence
is defined as the process of using a set of epoch signals,
represented as (azi)fil to predict a corresponding set of
predictions, denoted as (y})f; by the model. These two
settings are also referred to as one-to-one and many-to-many
predictions conventionally [28] [32].

B. Data Input

Patching Operator To process the epoch signal z; in a K -size
sequence (z1, %2, -+ , Xk ), & patch operator is used to divide
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Fig. 2: The overall structure of the mixture-of-modality-experts module and the epoch sSDREAMER model.

each epoch signal into a series of non-overlapping windows
of equal length W. This operation generates a patched signal
z; € RP*W where P = [ |. The patch operator reduces
the number of tokens for transformer input by a factor of
P, resulting in a significant decrease in the computation
complexity for multi-head self-attention by a factor of P2,
thereby enabling more efficient modeling.

Initial Representation Given an EEG and EMG epoch z,
we apply the aforementioned patching operator to obtain their
signal patches. The resulting patches are then embedded in
latent spaces to form intermediate initial tokens I’ as in
Equation 1, where m denotes the modality, m,; denotes the i-th
epoch of the modality, and E; . is the linear transformation
matrix of this modality.

c RWXD
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Following the Vision Transformer [9], we initialize two [CLS]
tokens for EEG and EMG semantic representation within an
epoch. To preserve the temporal and modality relationships
among patch tokens, we introduced joint attribute encoding
which combines learnable positional and modality encodings.
The intermediate initial representations are concatenated with
the [CLS] tokens, and the attribute encoding is then added
elementwise to the combined representation as shown in
Equation 2.
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Here, T, Ep, Ejq and Tgn(i) represents the [CLS] token,
positional encoding, modality encoding and final initial rep-
resentations for modality m. Afterward, the initial tokens for
EEG and EMG at i-th epoch are created and denotes as 77 ="

and TV, respectively.
C. Mixture-of-Modality-Experts Module

The success of mixture-of-modality-experts (MoME) [5] in
the visual language understanding task led us to investigate
its potential strength in mice sleep scoring. In our paper, the
MoME module is a module of three pathways for EEG, EMG
and mix data, with partially shared weights. Our proposed
epoch sDREAMER and sequence sDREAMER models are
all built upon the MoME module to learn the contextual
information within a given signal window. In this section, we
discuss a unified token processing framework for the MoME
module that applies to both models.

Specifically, a MoME module is composed of multiple MoME
layers, as shown in Fig. 2. Each MoME layer is an efficient
variant of the transformer layer but differs in the use of
modality-agnostic shared multi-head self-attention (MSA) and
modality-aware feedforward neuron networks (FFN). These
modality-aware FNNs that capture modality-specific latent
features are conventionally referred to as modality experts. To
specify, our sleep staging model has three modality experts:
EEG, EMG, and mix experts. By designing different forward
propagation pathways that pass through these modality ex-
perts, the MoME module is able to generate both mono-modal
and multi-modal representations.

Given the initial representations of N tokens from a modality
m denoted as Ty , a pathway of L layers is represented as
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Fig. 3: Overview of the sequence SDREAMER model. The structure of MoME module has already been illustrated in Fig. 2.

follows:

Ty = [toitd; - 5t)]" 3)
=MSA (LN (T7%,)) + T} ., ¢ =1...L 4

TP = (m, ) LN(IP) + T8, ¢ =1...L (5)

Here, the 1) (m,¢) is a mapping function from the layer-
modality joint space D to the modality experts space F' as
shown in Equation 6. In other words, the activation of the
modality experts is determined by the input modality and layer
index. Such a mapping design allows the model to handle
various inputs and produce multiple outputs with a unified
model. Fig. 2 provides a graphical illustration of this mapping
function.

WY (ml): D F,D= {(m,mm eM,le {z’}le}
F = {FFN*2 FFN°"¢ FFN"™} M = {eeg, emg, mix}

(6)

EEG and EMG Pathways. Our MoME modules consist of
two mono-modal pathways, namely the EEG-pathway and the
EMG-pathway. The EEG/EMG pathway takes the input tokens
corresponding to each modality and feeds them through each
MOoME layer to learn mono-modal contextual information. In
each MoME layer, the representations first pass through the
multi-head self-attention layer to learn the temporal dependen-
cies between tokens. Next, the representations are projected
into modality specific latent space. Finally, the token represen-
tations T7% and T'; at the last MOME layer L are outputted.

Mix Pathway. The mix pathway serves to capture both intra-
modal and cross-modal information by concatenating tokens

from EEG and EMG and feeding them to the MoME layers.
Initially, the mix tokens T3 pass through MSA in the
early MoME layers before being split and mapped back to
their original latent space to maintain modality coherence.
Using EEG/EMG modality experts ensures stable modality
interaction, as earlier layers’ low-level features are susceptible
to noise. By projecting representations to their own space,
the potential noise entering another space is constrained to a
certain degree. However, at later layers, token representations
are mapped to a multi-modal space with mixed experts to
enable deeper modality interaction. The MoME module’s
output is the token series from the last layer, denoted as Trfi".

D. Epoch Mixture-of-Modality-Experts Transformer

Following epoch settings in previous works [28], [32], we
proposed an Epoch sDREAMER model for sleep state classi-
fication with a one-to-one paradigm. The Epoch sDREAMER,
depicted in Fig. 2, consists of an epoch-level MoME module
with three pathways, each assigned a modality-specific classi-
fication head. The model takes the initial representations for
patches of a given epoch signal as input, and the epoch-level
MoME module aggregates representative information among
patches to mine epoch context.

During training, all three pathways are enabled. The EEG
and EMG initial representations propagate along their re-
spective pathways to produce the final representations, and
their corresponding [CLS] tokens T5% and T¢ are fed to
their respective classifiers for prediction. However, the model
still lacked cross-modal information, so we leveraged the
mix pathway to learn rich cross-modal information while
maintaining the information within each modality. The final

T™™ token is utilized, which is a combination of the EEG



and EMG representations. During inference, the model can
flexibly select the pathway according to the specific token type
and generate predictions using only the relevant information
within the input token.

E. Sequence Mixture-of-Modality-Experts Transformer

To tackle sleep staging in a sequence setting, we proposed a se-
quence sSDREAMER model that captures contextual informa-
tion hierarchically. Unlike the epoch setting, where each epoch
is considered as a separate sequence, Sequence SDREAMER
views each epoch in relation to its neighboring epochs. The
architecture of the proposed Sequence SDREAMER model is
illustrated in Fig. 3, which employs an epoch-level MoME
module at a lower hierarchy to capture epoch-level contexts.
Next, a sequence-level MoME transformer is used to capture
sequence-level contexts at a higher hierarchy.

Epoch Encoder. Although the epoch-level MoME module
in Epoch sDREAMER and Sequence sDREAMER trans-
former shared the same network architecture, their information
flow differs for both training and inference stages. The mix
pathway is not enabled in the epoch-level MoME module
because multi-modality information is better modeled during
the sequence stage at a higher level. This design decision
ensures robustness to noise during training and speeds up
inference. Thus, the epoch-level MoME module functions as
a context extractor for EEG and EMG epoch signals. To
compute the initial representations for an EEG/EMG sequence
consisting of K epochs, we concatenate the initial tokens
from each epoch to form the whole sequence’s epoch-level
initial representations, denoted as H{'. Each epoch’s initial
representation is then passed through the EEG/EMG pathway.
Finally, the resulting [CLS] tokens that have passed through
the MoME module for all K epochs are concatenated to form
the sequence-level initial representations of the given modality.

Hy = 15Ty @] @
T — Epoch-MoME (Tg”(”) Gi=1...K (8

cls
) o

» Toels

Zy" = Concat (T:fs(l); Tgls(Q); -
After passing through both pathways, two sequence-level
tokens are generated: Z;® and Zj"®.

Sequence Encoder. Considering a series of EEG/EMG
tokens outputted from the epoch-level MoME module as the
context features of each epoch, we now transform them into
initial representations to sequence MoME module. To denote
the temporal relationship between epochs, two sequence-level
positional embeddings Ej € RF*P and Efcé € R**P are
added elementwise to EEG and EMG tokens, respectively.

Next, the sequence-level MoME blocks begin to learn
dependencies between epochs within the same sequence.
Like the Epoch sDREAMER, the EEG and EMG pathways
process the input tokens separately and map their learned
representations to modality-specific latent space. The output

tokens from each pathway are then projected with pathway-
specific classification heads to the label space. Regarding the
mix pathway, the mixed EEG-EMG tokens are first projected
separately before being mapped to a multi-modal latent space.
To better aggregate the multi-modal information learned in
the mix pathway, the output EEG-EMG tokens from the
same epoch are concatenated along the feature dimension.
These concatenated tokens are then mapped to the label space
with another pathway-specific head. Finally, three sets of
.. eeg K emg K
output predictions are generated: {zi g}i:r {zi g}i:1 and

{zlim}iK:r

F. Self-Distillation

Provided a multi-pathways structure, we seek an effective
approach that enables such pathways to co-improve with
each other. To this end, a self-distillation framework for
better mono-modal and multi-modal representation learning
is presented. To specify, the output from the mix pathway is
leveraged to distill the outputs from EEG and EMG pathways.
Given the outputs of each pathway, the self-distilled loss
formulates as the KL-divergence between the predictions from
EEG/EMG and pseudo-targets provided by the mixed pathway.
Let p. denotes the softmax function with temperature factor
7 defined as

exp(z]"" /1)

3

> exp(z"Y /)]

where zlm(k) denotes the k-th dimension of the logits vector
for i-th prediction given by m modality pathway. The self-
distillation loss for EEG and EMG formulates as shown in
Equation 11 and 12, respectively.

m(k
p.(z]"™) =

(10)

»Csd—eeg =KL (pq—eeg (zeeg) ” pTEeg (Zmix)> (11)

Lueme =KL (pr, (2™ | P, (™) (12)

The logits vectors of predictions from three pathways are
denoted as z°%¢, z°™2 and z™X, Teeg and Ty g are temperature
factors for the distillation of EEG and EMG. Along with the
self-distillation loss, a cross-entropy loss is also incorporated
into the optimization process.

L
Loe=—) y;log(p,_,(z"))

i=1

13)

The y; and 2™ indicate the i-th ground truth and prediction
from the mix pathway. L is the number of epoch signals. The
total loss for MoME models, shown in Equation 14, is a linear

combination of self-distillation and cross-entropy loss.
o}
Emome = (1 - a) Ece + 5 (‘Csd»emg + Esd»emg) (14)

Here, the « is a scaling factor used to balance the weightage
of the loss terms.



TABLE I: Performance comparison between different model architectures on the mouse sleep staging dataset.

Method Hierarchy  Shared Self-Attention CA Level # of Epochs Acc(%) F1-Score(%)
Decision Tree Epoch - - 1 79.25 67.65
Random Forest Epoch - - 1 85.47 74.55
AdaBoost Epoch - - 1 85.85 77.78
XGBoost [7] Epoch - - 1 85.29 75.79
MLP Epoch - - 1 81.46 67.05
Bi-LSTM Epoch - - 1 85.57 76.09
Channel-Independent Transformer [24] Epoch v - 1 86.70 78.40
Dual-Encoder Transformer Epoch - - 1 87.17 78.68
Cross-Attention Transformer Epoch - Epoch level 1 87.07 79.13
Cross-Modal Transformer [32] Epoch - - 1 87.01 -
Epoch sDREAMER Epoch v - 1 88.25 81.30
MLP + Transformer Sequence - - 16 88.88 83.33
Bi-LSTM Sequence - - 16 90.07 85.21
Dual-Encoder Transformer Sequence - - 16 90.65 86.37
Cross-Attention Transformer Sequence - Epoch level 16 90.37 86.31
SeqCross-Attention Transformer Sequence - Sequence level 16 90.93 86.48
Cross-Modal Transformer [32] Sequence - Sequence level 16 87.84 -
Sequence SDREAMER Sequence v - 16 91.72 87.64
V. EXPERIMENTS
A. Experiment Setup 90000 35000
Dataset. We conduct an evaluation of our proposed epoch 80000 30000
sDREAMER and sequence sSDREAMER models using the 70000 25000
mouse sleep staging dataset, which so far comprises EEG- 60000
EMG paired signals collected from mice during sleep and 50000 20000
will include additional modalities in the future. Experts have 40000 15000
labeled the sleep stages of the mice every second based on 30000 10000
these electrophysiological signals, assigning each second of 20000 5000
recorded data one of the following labels: Wake, SWS (slow- 10000 u -
wave sleep), or REM (rapid eye movement). An illustrative 0 0
example of the data is shown in Fig. 4. Wake =SWS mREM Wake =SWS mREM

EMGM

000

BV

qqqqq

Fig. 4: An example of the collected raw data. The two
graphs represent the EMG and EEG data, respectively. The
background colors of blue, green, and red are the labels of
sleep stages.

The dataset consists of EEG and EMG records of 16 mouse
subjects, with each record spanning approximately 4 hours.

(a) Bar plot of the training set (b) Bar plot of the test set

Fig. 5: Bar plot of the class distribution, including (a) training
set and (b) test set.

Given that the EEG and EMG signals are sampled at 512 Hz,
there can be about 5-10 million EEG/EMG data points for each
mouse record. To align with the expert labeling span, we set
the epoch window to 1 second, resulting in a total of 10,000
epoch data samples. To evaluate the performance of our model,
we adopted subject-wise split criteria, where the records of 12
mice subjects were used for training, while the records of 4
mice subjects were used for testing. The distribution of stages
in the training set and test set can be seen in Fig. 5a and
Fig. 5b, respectively.

B. Implementation Details

In this section, we explain the epoch and sequence settings
of our sDREAMER model. The epoch MoME model involves
a 4-layer MoME module, with the first three layers having
only EEG and EMG experts, and the last layer incorporating
a mixed expert. The feed-forward network dimension for each



expert is 512. The Sequence sSDREAMER model comprises
a 2-layer MoME module for epoch modeling and a 3-layer
MoME module for sequence modeling. The entire epoch-level
MoME module and the first two layers of the sequence MoME
module have only EEG and EMG experts, and the final layer
of the sequence MoME module has an additional mix expert.
All experiments are performed on an NVIDIA RTX 3090
GPU with AdamW [20] as the optimizer. The learning rate
and weight decay are set to le-3 and le-4, respectively. The
non-hierarchical model utilizes a batch size of 256, while the
hierarchical model uses a batch size of 16. The EEG and EMG
self-distillation temperature factors are set t0 Teee = 1.0 and
Temg = 3.0, respectively, and the distillation weight o is 0.33.

C. Baselines

We compare our method with both machine learning-based
and deep learning-based methods. Due to the limited work for
mice sleep staging, we implemented multiple baseline model
architectures with different settings, from simple to complex.
We also include a state-of-the-art cross-modal transformer
method [32] as one of the baselines.

Machine-learning-based Methods. Decision tree, AdaBoost,
XGBoost, and Random forest were chosen as the baselines
for the machine learning-based methods. However, due to the
high dimensionality of the EEG-EMG signal, capturing the
underlying patterns within the raw signal is challenging for
these methods. Therefore, we engineered several features of
EEG-EMG traces. In particular, statistical features(e.g. mean,
max, min, std, and skew) for the raw signal and its first-order
derivative are leveraged. Additionally, we applied a discrete
Fourier transform to both the raw signal and its derivative and
incorporated the statistics in the frequency domain as well.

Deep-learning-based Methods. For deep-learning methods,
we developed several baseline models and also compared
others’ methods. To start with, MLP is a straightforward model
with multiple feedforward layers. Bi-LSTM is a sequential
modeling model that captures temporal contexts from the
forward and backward directions. The channel-independent
transformer [24] is an architecture that shares the atten-
tion weight for multi-channel input signals. A dual-encoder
transformer represents a typical late-fusion model that uses
two independent encoders for each input signal and merges
the information late in the architecture. The cross-attention
transformer is a variant of the dual-encoder architecture that
add the cross-attention layer to capture cross-modal informa-
tion. Lastly, the state-of-the-art cross-modal transformer [32],
another variant of the dual-encoder model, uses a self-attention
layer to integrate information from two modalities.

D. Quantitative Results

Multi-modal Comparison. In order to demonstrate the ef-
ficacy of our model, we conducted a comparative analysis
against the aforementioned baseline methods on the multi-
modal input setting. Table I presents the experiment results
for EEG-EMG paired input, where we report the accuracy

and F1-score for each model. Results show that our proposed
epoch-level sSDREAMER outperforms the machine-learning-
based methods by a significant margin. Furthermore, our
sDREAMER model outperforms all the deep-learning-based
methods, including the state-of-the-art method cross-modal
transformer, on both epoch level and sequence level.

Mono-modal Comparison. To demonstrate our model’s gen-
eralizability on single-modal inputs, we evaluated our model’s
ability to produce accurate sleep stage predictions using a
single EEG or EMG signal input in the inference stage. It
is noteworthy that none of the baseline methods trained with
multi-modal input can make inference with single-modal input.
Therefore, we compare our model’s performance with the
baseline dual-encoder transformer model trained solely on
EEG or EMG. Results are presented in Table II. The results
indicate that our proposed model was able to learn a superior
mono-modal representation by utilizing the multi-modality as
a form of supervision during training.

E. Ablation Studies

In this section, we present the ablation studies for our model.
Specifically, as the effectiveness of the MoME transformer
has been validated, we hereby conduct an ablation study
regarding positional and modality embedding to investigate the
contribution of different attribute embedding. As shown in Ta-
ble 1V, the joint attribute encoding improves the performance
by an increase of approximately 1.0% in accuracy. Among the
two encodings, positional encoding is of greater importance
than modality encoding. One possible explanation for this is
that there are only two kinds of electrophysiological signals
incorporated within this sleep staging task, thus weakening the
impacts of modality encoding. In addition, we also perform an
ablation study on the contribution of self-distillation. Table III
indicates that the self-distillation not only improved the mono-
modality performance significantly but also promoted the
multi-modal performance by a large margin.

FE. Visualizations

t-SNE Analysis. To explore the embeddings learned by
our model, we utilized t-SNE [40] to visualize the high-
dimensional embedding in a two-dimensional space. The
resulting visualization, shown in Fig. 6, demonstrates the
disentangled and aligned latent space learned by Sequence
sDREAMER. In particular, the representations spaces for all
three pathways are visualized, and they indicate a similar spa-
tial pattern. This pattern alignment is non-trivial because we
did not provide any supervision directly that would promote
such alignment in the latent space—suggesting shared atten-
tion mechanism and self-distillation have implicitly benefited
the multi-modal alignment. The t-SNE plot also reveals spatial
continuity among the Wake, REM, and SWS sleep stages in
the embedding space, consistent with real-world scenarios.
Our model implicitly learns to maintain the relative spatial
relationships in the ground truth space without injecting any
prior knowledge of actual spatial relativity. These findings
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TABLE II: Mono-modal inference performance comparison of the vanilla transformer and Sequence sDREAMER on the
mouse sleep dataset. The results with the best performance are highlighted in bold. "EEG/EMG-Acc" represents the prediction
accuracy when taking EEG/EMG as input. Similarly, "EEG/EMG-F1" represents the Fl-score in the same context.

Method Train Signal EEG-Acc(%) EEG-F1(%) EMG-Acc(%) EMG-F1(%)
Dual-Encoder Transformer EEG 87.16 72.32 - -
Dual-Encoder Transformer EMG - - 83.78 57.57
Sequence SDREAMER EEG-EMG 88.12 77.83 83.78 62.82
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