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ABSTRACT
Increasingly, algorithms are used to make important deci-
sions across society. However, these algorithms are usu-
ally poorly understood, which can reduce transparency and
evoke negative emotions. In this research, we seek to learn
design principles for explanation interfaces that commu-
nicate how decision-making algorithms work, in order to
help organizations explain their decisions to stakeholders,
or to support users’ “right to explanation”. We conducted an
online experiment where 199 participants used different ex-
planation interfaces to understand an algorithm for making
university admissions decisions. We measured users’ objec-
tive and self-reported understanding of the algorithm. Our
results show that both interactive explanations and “white-
box” explanations (i.e. that show the inner workings of an
algorithm) can improve users’ comprehension. Although the
interactive approach is more effective at improving com-
prehension, it comes with a trade-off of taking more time.
Surprisingly, we also find that users’ trust in algorithmic
decisions is not affected by the explanation interface or their
level of comprehension of the algorithm.
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1 INTRODUCTION
Automated and artificially intelligent algorithmic systems
are helping humans make important decisions in a wide va-
riety of domains. To name a few examples, recidivism risk
assessment algorithms such as COMPAS have been used to
help judges decide whether defendants should be detained
or released while awaiting trial [11, 19]. Allegheny County
in Pennsylvania has been using an algorithm based on Pre-
dictive Risk Modeling (PRM) to help screen referral calls on
child maltreatment [10]. And according to an article in The
Wall Street Journal, the proportion of large companies using
Applicant Tracking Systems to automatically filter and rank
applicants is in the “high 90%” range [52].
Researchers, government bodies, and the media have ar-

gued that data users should have the “right to explanation” of
all decisions made or supported by automated or artificially
intelligent algorithms. The approval in 2016 of the European
Union General Data Protection Regulation (GDPR) mandates
that data subjects receive meaningful information about the
logic involved in automated decision-making systems [51].
However, it is challenging for people who are not algorithm
experts to understand algorithmic decision-making systems.
Due to this literacy gap, recipients of the algorithm’s output
have difficulty understanding how or why the inputs lead to
a particular outcome [7].

The recent surge of interest in explainable artificial intelli-
gence (XAI) (see [6] for a review) has lead to great progress
on transforming complex models (such as neural networks)
into simple ones (such as linear models or decision trees)
through approximation of the entire model [13, 48] or local
approximation [45]. Despite its mathematical rigor, there
are recent critiques that this line of research is based on the
intuition of researchers, rather than on a deep understanding
of actual users [38]. There is limited empirical evidence on
whether these “intelligible models” and explanation inter-
faces are actually understandable, usable, or practical in real-
world situations [1, 18]. On the other hand, HCI researchers
have conducted surveys, done interviews, and analyzed pub-
lic tweets to understand how real-world users perceive and
adapt to algorithmic systems (e.g. [14, 15, 20, 21]). However,
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how these empirical findings can guide the design of more ex-
plainable algorithms or more effective explanation interfaces
remains underexplored. Two recent review papers [1, 26]
both suggest bridging these two isolated research areas, by
drawing principles and methods from HCI to improve the
usability of explanation interfaces and performing empirical
studies to evaluate the efficacy of these interfaces.

The goal of this paper is to bridge these different research
areas through conducting human-centered design and em-
pirical comparisons of parallel interface prototypes to ex-
plore the effectiveness and trade-offs of different strate-
gies to help non-expert stakeholders understand algo-
rithmic decision making.We understand that there might
not be a universally effective strategy for algorithmic decision-
making. Therefore, we focus on whether there are more ef-
fective strategies in the context of profiling, defined as the
processing of personal data to evaluate certain aspects relat-
ing to a natural person 1[23]. In profiling tasks, the actual
evaluation outcomes (e.g. the risk of offenders, or the suit-
ability of applications to an organization or a university) are
difficult to observe.
We examined two sets of strategies for designing inter-

faces to explain algorithmic decision-making: white-box vs.
black-box (i.e. showing the internal workings of an algorithm
or not), and static vs. interactive (i.e. allowing users to ex-
plore an algorithm’s behavior through static visualizations
or interactive interfaces). We conducted an online exper-
iment where participants used four different explanation
interfaces to understand an algorithm for making university
admissions decisions. We developed measures to assess par-
ticipants’ objective and self-reported understanding of the
algorithm. Our results show that interactive explanations im-
proved both objective and self-reported understanding of the
algorithm, while “white-box” explanations only improved
users’ objective understanding. Although the interactive ap-
proach is more effective for comprehension, it requires more
of the user’s time. Surprisingly, we also found that users’
trust in algorithmic decisions was not affected by the expla-
nation interface they are assigned to.
The contributions of our work are three-fold. First, our

work provides concrete recommendations for designing ef-
fective algorithm explanations. Second, our findings suggest
nuanced trade-offs between different explanation strategies.
Third, we provide a framework to evaluate algorithmic un-
derstandingwith end users in a real world application. Future
researchers can use and adapt our framework to evaluate al-
gorithmic understanding in other domains. The fundamental
goal of our work is to contribute to the ongoing conversation
1This definition is consistent with the definition of profiling in GDPR. Exam-
ples mentioned above, including recidivism risk assessment algorithms, risk
modeling algorithms for the maltreatment of children, and job application
assessment algorithms, are considered profiling algorithms

regarding the accountability and transparency of algorithms
and artificial intelligence.

2 RELATEDWORK AND RESEARCH QUESTIONS
Algorithmic Decision-making
We define “algorithmic decision-making”, or simply “algo-
rithm”, as the processing of input data to produce a score or
a choice that is used to support decisions such as prioritiza-
tion, classification, association, and filtering [16]. In some
settings, algorithmic decision-making systems have been
used to completely replace human decisions. But in most
real-world scenarios, there is a human operator involved
in the final decision, who is influenced by the algorithm’s
suggestions and nudging [16].
In this paper, we focus on algorithms generated through

supervised machine learning-based approaches. The first
step is to define a prediction target, often a proxy for the
actual evaluation outcome. With reference to the examples
cited above, this might consist of whether a defendant will
be charged with a crime if released, whether a child will be
removed from their home and placed in care, or whether a
job applicant will receive a job offer. The second step is to
use labeled training data, often in large volumes, to train and
validate machine learning models. Finally, validated models
are applied to new data from incoming cases in order to
generate predictive scores.

Note that in this paper, the goal is to help users and other
stakeholders understand the “algorithmic decision model”,
rather than the process of model training.

Explaining and Visualizing Machine Learning
Applied Machine Learning (ML) and visualization communi-
ties have long been working on developing techniques and
tools to explain and visualize ML algorithms and models (e.g.
[26]). However, there are two challenges in directly applying
these techniques to help non-experts understand algorithmic
decision-making, particularly profiling.
First, the majority of these techniques and tools are de-

signed to support expert users like data scientists and ML
practitioners (e.g. [2, 29, 31, 41, 44]) or serve educational
purposes for people who are machine learning novices but
often have good technical literacy [46]. For instance, these
tools often depend on performance measures (e.g. accuracy,
precision, recall, confusion matrices, and area under the ROC
curve measures) to help people understand and compare dif-
ferent models; these techniques might not help non-expert
users, especially those with low technical literacy.
Second, although there are some studies seeking to help

non-expert end-users interpret and interact with ML models,
they focus on applications such as image classification (e.g.
[8]), translation (e.g. [24]), text mining and text classification
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(e.g. [33, 36, 47]), and context-aware systems (e.g. [5, 34]). As
far as we know, there has been limited work seeking to help
end-users understand algorithmic decision-making systems
that address social problems, such as profiling algorithms.
Although the specific techniques and tools developed by

the visualization community cannot be directly applied to
explaining profiling algorithms, some high-level strategies
might still be relevant. Specifically, we examine two sets
of strategies: a black-box approach versus a white-box ap-
proach, and a static approach versus an interactive approach.

White-box vs. Black-box Explanation
There are two distinct approaches for explaining algorithms:
the “white-box” approach (i.e. explaining the internal work-
ings of the model) and the “black-box” approach (i.e. explain-
ing how the inputs relate to the outputs without showing
the internal workings of the model). Examples of the white-
box technique include showing probabilities of the nodes
for Bayesian networks [4], projection techniques [9] and
Nomograms [28] to see the “cut” in the data points for Sup-
port Vector Machines, and the visualization of the graph
of a neural network [50]. In contrast to the white-box ap-
proach, the black-box approach focuses on explaining the
relationships between input and output, regardless of how
complicated the model itself is. For example, Krause et al.
design an analytics system [31], Prospector, to help data sci-
entists understand how any given feature affects algorithm
prediction overall. Plate et al. [43] and Olden [39] propose
methods to show how input features influence the outcome
of neural network classifications. Martens and Provost [36]
show removal-based explanations such as “the classification
would change to [name of an alternative class] if the words
[list of words] were removed from the document.” How-
ever, we posit that the relative strengths and weaknesses of
white-box and black-box approaches in helping non-expert
users understand profiling algorithms remain unestablished.
For example, one possible trade-off is that the white-box
approach can give users a comprehensive understanding of
the model, but might cause information overload and create
barriers for users who are not technologically savvy [22].

ResearchQuestion 1:How effective are the white-box and
black-box strategies in helping non-expert users understand
profiling algorithms?

Interactive vs. Static Explanation
In practice, most algorithm explanations are static and as-
sume that there is a single message to convey. However, as
Abdul et al. [1] suggest in their review paper, an alternative
approach would be to “allow users to explore the system’s
behavior freely through interactive explanations.” Interac-
tion can be a powerful means to enable people to iteratively

explore, gather insight from large amounts of complex in-
formation, and build a deep understanding of an algorithm.
Weld and Bansal sketched a vision for an interactive explana-
tion system [53], which should support follow-up questions
and drill-down actions from the users, such as redirecting
the answer or asking for more details. We posit that the in-
teractive interface for algorithm explanation for non-experts
is promising but still relatively underexplored.

Research Question 2: How effective are the interactive
and static interfaces in helping non-expert users understand
profiling algorithms?

Interpersonal Difference
Users who are not algorithm experts may still vary substan-
tially in terms of their education levels and general technical
literacy, potentially influencing how effective the explana-
tion interfaces are. Our third research question is:

Research Question 3: How will users’ personal charac-
teristics (i.e. education level and technical literacy) influence
the effectiveness of the explanation interface in helping them
understand profiling algorithms?

Relationship between Explanation and Trust
Research has shown that many users and stakeholders dis-
trust algorithmic systems and thus are not willing to use
such systems. For instance, studies have shown that even
when algorithmic predictions are proved to be more accurate
than human predictions, both domain experts and laypeople
remain resistant to using the algorithms (e.g. [17]). Therefore,
our final research question is as follows:

ResearchQuestion 4:Will explanation interfaces increase
users’ trust in the profiling algorithms?

3 METHODS
In our study, we used a mixed-method approach and con-
ducted two main activities: (1) design workshops to create
parallel algorithm explanation prototypes using different
strategies; and (2) online experiments to evaluate their effec-
tiveness. We began by selecting the task domain, creating
a dataset, and developing a machine learning model to be
explained in the design and empirical evaluation stages.

Task Domain, Dataset and Model
Task domain. Student admission is a classic profiling task,
as university admissions offices increasingly use algorithms
to profile and predict students’ behaviors [40]. Furthermore,
student admission is a domain for which we can recruit a
large group of people who have some amount of personal ex-
perience. According to a survey conducted by Pew Research
Center [25], 51% of Mechanical Turkers have a bachelor’s
degree or higher. Therefore, student admission is suitable
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for both small-scale design workshops in the lab and large-
scale crowd studies. In the study, we use the task domain of
graduate school admission in the US.

Dataset. We created a dataset based on publicly available
aggregate statistics of applicants and admitted students for
a public university. In other words, we generated the dataset
without using any real information from individual students,
but is nonetheless consistent with the distribution of the ac-
tual applicant population. The dataset contains 100 student
profiles, with attributes that admission committees actually
consider in the real admission process 2. We also introduced
three “additional attributes” to assess users’ comprehension
of the algorithms (see “Evaluation Metrics” section for more
details). To generate labels for the purpose of training, two
authors evaluated the strengths and weaknesses of each in-
dividual student profile, and manually classified each profile
into one of the four admission decisions (strong reject, weak
reject, weak accept, strong accept) based on their experience
of student admissions at the university.

Model. We selected a multi-category linear model to explain
in our study for several reasons: (i) linear models are widely
used in real-world problems (e.g. [42] ); (ii) we can approxi-
mate complex models like neural networks to simple linear
models or generalized additive models (at least locally) [45];
(iii) although linear models are “intelligible models” [53],
there is a lack of understanding of whether these models
and explanation interfaces are actually usable in real-world
scenarios [1, 18], especially when they have a wide range of
features. We trained the multi-category linear model with
the labeled dataset described above. We used the linear re-
gression model as a decision classifier by discretizing the
predicted response into one of the four decision labels. The
area under the macro-average ROC curve of the four classes
is 0.88.

Design Workshops
We conducted a series of design workshops:

Design Workshop 1: We invited one algorithm expert,
two UI designers (current graduate students at a public uni-
versity), three prospective students interested in applying to
the university, two current graduate students, and one faculty
member (an HCI researcher who has served on the commit-
tee for graduate school admissions at the public university
over the last three years) to join the workshop. We intro-
duced the goal of positioning participants as experts in their
own right and equalizing the power between researchers and
participants. We shared the identified challenges, opportuni-
ties, and design choices in algorithm explanation and asked

2The dataset and details of the attributes can be viewed at:
https://github.com/flyerfei/algorithm-explanation-chi19

participants to respond, reflect, and critique these thoughts.
Then the participants and researchers worked together to
make sketches and paper prototypes, informed by differ-
ent design directions (white-box vs. black-box, and static vs.
interactive). After Design Workshop 1, the research team
developed medium-fidelity prototypes inspired by the paper
sketches generated in Design Workshop 1, which were then
used in Design Workshop 2.

Design Workshop 2. We then invited three new par-
ticipants, who were prospective or current students at the
public university, to represent the stakeholders who are af-
fected, directly and indirectly, by the algorithmic decisions.
We asked these participants to reflect on their own experi-
ences, use and critique the prototypes, and provide feedback.
For instance, one participant pointed out that the interac-
tive interfaces lacked appropriate feedback: it was unclear
whether the tool had incorporated changes to the values of
attributes or not. To address this issue, we added a loading
animation and refreshed the algorithmic decision explicitly
every time users made an adjustment, regardless of whether
the decision changed. The research team then integrated
all the feedback from participants and developed four high-
fidelity prototypes.

Explanation Interface Prototypes
We created four interface prototypes (white-box interactive,
white-box static, black-box interactive, and black-box static)
to explain student admission algorithms (see Figure 1(a)). All
versions of the interfaces followed the principles below:

(1) We used a “card”-based design. The interface presents a
student’s fifteen attributes and corresponding values, as well
as the algorithm’s decision (i.e. strong accept, weak accept,
weak reject, and strong reject). The users could obtain a quick
overview of all the information relevant to one student.

(2) We presented the student’s attributes in groups. Specif-
ically, we categorized the fifteen attributes into four groups
(test scores, academic performance, applicationmaterials and
additional attributes). Detailed description of the attributes
was provided when users hovered over their labels.

Next, we describe how the interface of the tool varies
between different explanation strategies.

White-box vs. Black-box. The key difference between
the white-box and black-box explanation is whether the inner
workings of the model are visualized or not. The white-box
explanation shows how the algorithmic decisions are com-
puted. As shown in Figure 1 (b), there is a bar chart in the
white-box interface illustrating the breakdown of the deci-
sion: how the weighted attributes add up to the final output
(i.e. the algorithm’s recommendation). The influence of each
attribute is represented by a distinct color on the bar. The
decision boundaries of the adjacent output categories are
also labeled on the bar.
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Figure 1: The explanation prototypes designed to communicate how the admission decision-making algorithm works.

Interactive vs. Static. The key difference between the
interactive and static explanations is that the interactive in-
terface allows users to explore the algorithm freely through
adjustable inputs. Figure 1(c) shows a comparison between
interactive and static interfaces. In the interactive prototypes,
users can change the attribute values and observe how the
algorithmic decision changes accordingly. Users gain an un-
derstanding of the algorithm by exploring different input
combinations. In contrast, the static explanation does not
allow users to change students’ profiles. Instead, users can
browse through a fixed set of profiles by scrolling left and
right. We randomly picked 20 student profiles to display in

the black-box prototypes, selecting an equal number of pro-
files from each output category (e.g. strong accept or weak
reject).

Evaluation Metrics
Objective Understanding. It has been a challenge in the XAI
research community to quantitatively measure “understand-
ability” or “interpretability” [35]. We adapt Weld and Bansal
(2018)’s definition that a human user “understands” the al-
gorithm if the human can see what attributes cause the algo-
rithm’s action and can predict how changes in the situation
can lead to alternative algorithm predictions.

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 559 Page 5



Following this principle, we designed three types of quiz
questions to assess participants’ objective understanding of
the algorithm: Unnamed Attributes Questions, Alternative
Prediction Questions, and Decision Prediction Questions.
Each type of question measures one aspect of users’ under-
standing of the algorithm.

Question Type 1: Unnamed Attributes. We want to mea-
sure to what extent users understand the influence of in-
dividual attributes on the algorithm’s output. However, in
any real-world scenarios, users’ pre-existing beliefs can com-
plicate the assessment of algorithm understandability. For
example, if asked how increasing GPA would influence the
algorithm’s decision, most people would probably say the
chance of acceptance would increase. However, we cannot
tell whether this answer is based on their understanding of
how the algorithm works, or simply on a preexisting assump-
tion that a higher GPA is a good thing. To address this issue,
we introduced the idea of “unnamed attributes”. We inten-
tionally hid the names of some attributes, and then asked
users whether increasing each of these “unnamed attributes”
would increase, decrease, or have no impact on an applicant’s
chance of acceptance.

• An example question in this category: “Considering
the following profile: If other attributes remain un-
changed, what effect does increasing ‘Unnamed At-
tribute 1’ from 40 to 70 have on the algorithm’s deci-
sion for this applicant?”

Question Type 2: Alternative Prediction.Wewant tomea-
sure whether people can predict how changes in the input
profile lead to alternative algorithm predictions. Specifically,
we presented a profile and then asked which of the listed
changes would give that applicant the best chance of accep-
tance.

• An example question in this category: “Which change
would give an applicant a higher chance of acceptance
— Increasing the GRE Verbal score from 150 to 165, or
increasing the GRE Quant score from 150 to 165?”

Question Type 3: Decision Prediction. We want to mea-
sure people’s holistic understanding of the algorithm by
asking them to predict the algorithm’s actions. We created
two types of prediction questions:

• We presented one profile and asked “How would the
algorithm categorize this applicant? ”

• Wepresented three different profiles and asked “Which
of the following three applicant profiles has the highest
chance of being accepted?”

We created 12 objective understanding questions in to-
tal (3 unnamed attribute questions, 4 alternative prediction
questions, and 5 decision prediction questions).

Self-reported Understanding. We measured the self-reported
understanding of participants using a 7-point Likert scale.
Participants answered the question “I understand the admis-
sion algorithm”, on a scale from “Strongly disagree” (1) to
“Strongly agree” (7).

Time Cost. We measured how much time participants spent
using the tool and answering the objective understanding
questions.

Trust. We adapted Corritore et al.’s definition [12] and define
trust as the confident expectation that one’s vulnerability
will not be exploited. We adapted the questions from prior
research measuring trust in human-machine systems into
a 7-point Likert scale [32]. Details of the questions can be
found in the auxiliary material.

Technical Literacy. To evaluate technical literacy, we asked
participants to self-report their (1) familiarity with popular
applications of computer algorithms (e.g. email spam filter,
Amazon recommendation), and (2) programming experience.
We adapted these questions from [49, 54].

Algorithm Literacy. To measure users’ literacy in algorithm,
we asked participants to report their knowledge of computer
algorithms. We adapted these questions from [33].

Demographic Information. We asked participants to report
their education level, gender, and age. In the analysis, we
operationalized education level as whether or not the partic-
ipants had completed a bachelor’s degree.

Open-response questions. As the Likert scale questions alone
do not tell us why people understand/ trust the algorithm or
not, we added a number of open-ended questions to uncover
the mechanisms underlying algorithm understanding and
trust. We asked participants to discuss how the interface
helped their understanding of the algorithm. We also asked
participants to explain the reasons why they trust or do not
trust the algorithm.

Experimental Design
To evaluate the effectiveness of the four explanation inter-
faces, we conducted a randomized between-subject experi-
ment on Mechanical Turk (MTurk). We used a 2x2+1 design,
resulting in five conditions: white-box interactive, white-box
static, black-box interactive, black-box static, and control. In
the first four conditions, participants were given access to the
explanation interface of the respective condition. They were
allowed to spend as much time as they needed to understand
the algorithmic decision with help of the interface. In the
control condition, participants were only provided a static
webpage which displayed the list of attributes considered by
the algorithm.
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Objective Understanding Self-report Understanding Time Cost Trust
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12
Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Intercept 4.63***
(.30)

4.88***
(.22)

5.70***
(1.30)

4.70***
(.17)

4.82***
(.13)

2.01**
(.69)

4.81***
(1.15)

5.29***
(.85)

6.90
(4.98)

4.46***
(.18)

4.47***
(.13)

1.69*
(.75)

Whitebox Interactive
vs control

2.87***
(.44)

0.69**
(.25)

7.07***
(1.66)

0.05
(.26)

Blackbox Interactive
vs control

2.31***
(.45)

0.64*
(.26)

5.23**
(1.73)

0.24
(.27)

Whitebox Static
vs control

1.34**
(.45)

0.30
(.26)

2.71
(1.72)

0.24
(.27)

Blackbox Static
vs control

0.55
(.45)

0.28
(.26)

1.06
(1.71)

0.02
(.27)

Interactive
vs Static (IvS)

2.06***
(.41)

1.69
(1.86)

0.51*
(.23)

2.41*
(1.00)

4.75**
(1.55)

12.26
(7.15)

0.24
(.24)

2.06
(1.07)

Whitebox
vs Blackbox (WvB)

1.09**
(.40)

2.33
(1.87)

0.18
(.23)

-1.08
(1.00)

2.24
(1.53)

-3.44
(7.18)

0.23
(.24)

0.12
(1.08)

IvS * WvB -0.54
(.62)

-0.46
(.62)

-0.13
(.35)

-0.28
(.33)

-0.40
(2.34)

-0.18
(2.37)

-0.43
(.37)

-0.50
(.36)

techLiteracy -0.31
(.25)

0.59***
(.14)

-0.32
(.97)

0.56***
(.15)

hasBachelor 1.11*
(.45)

-0.27
(.24)

0.04
(1.72)

-0.08
(.26)

techLiteracy * IvS 0.19
(.38)

-0.38
(.20)

-1.31
(1.45)

-0.37
(.22)

hasBachelor * IvS -0.90
(.68)

0.09
(.37)

-1.36
(2.63)

0.08
(.39)

techLiteracy * WvB -0.17
(.38)

0.18
(.20)

0.72
(1.47)

-0.03
(.22)

hasBachelor * WvB -0.55
(.69)

0.56
(.37)

3.18
(2.63)

0.46
(.39)

Adjusted R-Sq 0.21 0.21 0.22 0.03 0.03 0.17 0.09 0.09 0.09 -0.01 -0.01 0.08

p-value significance: * p < 0.05; ** p < 0.01; *** p < 0.001
Table 1: Results of the Explanation Strategies on Algorithm Understanding, Time Cost and Trust.

Participant Recruitment. We recruited 202 participants from
MTurk in August 2018 for the study. To ensure the qual-
ity of the survey responses, we only recruited participants
with a HIT approval rate of 90% or above, who reside in the
US and are aged 18 or above. We randomly assigned each
participant to one of the five conditions. The average time
for completing the survey was 20 minutes. Each participant
received a base payment of $2 and an additional bonus (up
to $3) based on the number of correct answers they gave
for the objective understanding questions. On average, each
participant received a payment of $3, which is above the US
minimum wage ($7.25/ hour at the time of writing).

Study Procedure. After consenting, participants completed a
background survey. In the survey, participants reported their
familiarity with the US graduate school admission process,
their algorithm literacy, and their general technical literacy.
We told the participants that a computer algorithm had been
developed to make automated decisions for university ad-
mission for a master’s program at a pubic university. Each

participant was then randomly assigned to one of the five
conditions. Participants explored the interface and then com-
pleted a survey which evaluated their understanding of the
algorithm and trust in the algorithm 3.
We used an instructed-response question for an atten-

tion check, which directed respondents to choose a specific
answer in order to detect careless responses [37]. The atten-
tion check we included is “Please choose ‘disagree’ for this
question.”. We excluded participants who failed the atten-
tion check from the study, and did not use their data in our
analysis.

4 RESULTS
202 participants completed the study on MTurk. 199 re-
sponses were recorded after filtering out the 3 participants
that failed the attention check. Regarding algorithm literacy,
70.35% of participants indicated they had “No Knowledge”
or “A little knowledge” of algorithms, while 22.61% indicated

3The full survey is available in the auxiliary material.
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they had “Some knowledge”, and 7.04% indicated they had
“A lot of knowledge” of algorithms. The population is aligned
with our target user group – people who are not algorithm
experts.

Overview of Statistical Models
We used linear regression models to examine whether the dif-
ferent interface conditions led to different levels of objective
and self-reported understanding of the algorithm, trust in
the algorithm, and time costs (see Table 1). For example, with
objective understanding we first used the control group as a
baseline, comparing the four experimental groups against it
(Model 1); then we examined the comparison between white-
box and black-box, and interactive and static, as well as how
the two sets of strategies interact with each other (Model 2);
finally we included the education level and technical literacy
as moderating variables (Model 3).

RQ1 and RQ2: What are the Trade-offs of Different
Strategies?
Overview. We found that, compared to the static conditions,
participants in the interactive conditions not only scored
higher in the "objective understanding" quizzes but also self-
reported a higher level of understanding of the algorithm.
Participants in the white-box conditions scored higher in
the objective quizzes but did not have a higher self-reported
understanding than those in the black-box conditions. To
answer the same number of questions, participants in the
interactive conditions spent more time than those in the
static conditions; there was no significant difference in the
amount of time spent between white-box conditions and
black-box conditions.

Objective Understanding. Model 1 and Model 2 in Table 1
show the differences in objective understanding across dif-
ferent conditions. Model 1 illustrates that all four versions
of the explanation interfaces led to significant increases in
participants’ "objective understanding" of the algorithm com-
pared to the text-based explanation (see Figure 2 for a visual
presentation). Model 2 explicitly compares the two sets of
interfaces: interactive versus static and white-box versus
black-box. On average, participants in the interactive condi-
tions answered two more questions (out of twelve) correctly
compared to the participants in the static conditions (Coef.=
2.06, p < 0.001). Participants in the white-box conditions an-
swered one more question correctly compared to those in
the black-box conditions (Coef.= 1.09, p < 0.01).

Self-reported Understanding. Model 4 and Model 5 in Table 1
show the differences in self-reported understanding of the
algorithm across different conditions. The results suggest
that only the interactive interfaces increased participants’
self-reported understanding of the algorithm. For instance,

Figure 2: Participants’ objective understanding of the algo-
rithms by interface conditions. Error bars represent 95% con-
fidence intervals.

Figure 3: Time cost of understanding the algorithm by inter-
face conditions. Error bars represent 95% confidence inter-
vals.

the white-box interactive interface increased participants’
self-reported understanding by 0.69 points on a 7-point scale
(p<0.01) compared to the control condition with a text-based
explanation; the black-box interactive interface increased
self-reported understanding by 0.64 points (p<0.05) com-
pared to the control condition. On average, participants in
the interactive conditions self-reported their understand-
ing of the algorithm 0.51 points higher than those in the
static conditions (p<0.05). However, there is no evidence sug-
gesting that the white-box interfaces increased self-reported
understanding.

Time Cost. Model 7 and Model 8 in Table 1 shows the time
participants spent using the explanation interfaces to answer
quiz questions. Model 7 suggests that the participants in the
two interactive conditions spent 7.07 more minutes (p<0.001)
and 5.23 more minutes (p<0.01) respectively compared to
the control condition (see Figure 3 for a visual presentation).
Model 8 shows that it costs participants in the interactive
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conditions 4.75 more minutes compared to their static coun-
terpart (p<0.01). We did not observe a statistically significant
difference in time spent between the white-box interfaces
and black-box interfaces. Therefore, while the interactive
interfaces are more effective at increasing comprehension,
the trade off is that users take more time gaining that com-
prehension.

RQ3: Moderating Effects of Individual
Characteristics
We found that education level and technical literacy hadmain
effects on the understanding of the algorithm. However, the
effects of the explanation interfaces were not affected by how
educated or technically literate a participant was. In other
words, we did not observe moderating (interaction) effects.

Models 3, 6, and 9 in table 1 include technical literacy
and education level, as well as their interactions with the
explanation conditions. According to Model 3, having a bach-
elor degree had a positive effect on objective understanding
(Coef. = 1.10, p<0.05). According to Model 6, higher technical
literacy was associated with higher levels of self-reported
understanding (Coef. = 0.59, p<0.001). However, we did not
find interaction effects between education, technical literacy,
and the explanation interfaces.

Overall, we did not find evidence that the effectiveness of
the explanation interfaces depends on participants’ educa-
tion level or technical literacy.

RQ4: Will the Explanation Improve Users’ Trust?
Interestingly, we found that the explanation interfaces had
no effect on users’ trust in the algorithm. Model 10 and 11 in
Table 1 both show that there was no significant difference in
the reported trust in the algorithm across all five conditions.
Model 12 shows that people with higher technical literacy
trust the algorithm more (Coef. = 0.56, p<0.001). However,
the explanation interfaces did not increase or decrease the
level of trust, no matter how educated or technically literate
the participants were.

5 SUMMARY AND DISCUSSION OF RESULTS
Our paper investigates the relative effectiveness of two sets
of explanation strategies in helping non-expert stakeholders
understand algorithmic decision-making. Findings include:
• Interactive interfaces increased both objective understand-
ing and self-reported understanding of the algorithm com-
pared to the Static interfaces. At the same time, users using
the Interactive interfaces spent more time answering the
questions (RQ1).

• White-box interfaces increased objective understanding
but not self-reported understanding compared to the black-
box interfaces (RQ2).

• The effects of the explanation interfaces were not influ-
enced by how educated or technically literate the partici-
pants were (RQ3).

• The explanation interfaces increased users’ understanding
of the algorithm, but not their trust in the algorithm (RQ4).

WhyWhite-box Interfaces Did Not Increase
Self-reported Understanding
We found that although white-box interfaces increased ob-
jective understanding, they had no effect on self-reported
understanding. One possible reason for this is that white-box
interfaces reveal more complexity than black-box interfaces
(i.e. the chart shows some complexity of the model), which
makes participants think they do not understand it as well
as they actually do. Another possible explanation is that, al-
thoughwhite-box interfaces increase people’s understanding
of the inner working of the algorithm, they also introduce
additional cognitive workload which might reduce people’s
confidence. As a result, white-box interfaces do not increase
people’s self-reported understanding of the algorithm.

Why an Improved Understanding Did Not Increase
Trust
Although the explanation interfaces were effective in increas-
ing users’ comprehension of the algorithm, none of them
increased participants’ trust in the algorithm over the con-
trol condition. We looked into the open-ended responses to
better understand this finding.
Some participants reported that they simply feel uncom-

fortable about the idea of using an algorithm to make impor-
tant decisions like graduate school admissions. Increasing the
transparency of the algorithm does not reduce such concerns.
For instance, P54 described the concern precisely: “[The algo-
rithm] takes a lot of factors into account so I think it is reliable,
but I am still uneasy about the idea of a machine making the
final decision.”
P119 directly compared humans and computers and be-

lieves that humans will consider exceptions that algorithms
might ignore.“There are situations that are an exception that
an algorithm could not detect or consider. I think it is important
for there to be considerations, and that cannot be done using a
computer."

P79 pointed out that one can “sell” their cases and appeal to
human decision makers, which is not possible in algorithmic
decision making. “Because it would allow me to interview and
sell my case to the admissions officer directly.”

Other participants think humans are “less cold” and more
forgiving than algorithms. “I want a person to get a feel for
who I am by my application.” – P4, “Programs can not judge
who I am as a person only what I have done in the past.” – P32.
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We also found that our “unnamed attributes” questions,
which were designed to assess people’s level of understand-
ing of the algorithm, caused some distrust in the algorithm.
Although we explained to the participants that we hid the
names of the “additional attributes” with the purpose of test-
ing their comprehension of the algorithm, some participants
thought this made them unable to fully trust the algorithm.
For instance, P156 pointed out “The mystery variables have a
lot of weight and without knowing what they are, I can’t have
full trust in the algorithm.” Note that the unnamed attributes
were displayed in all conditions (including the control con-
dition). Therefore, although the unnamed attributes may
reduce people’s level of trust, they do not affect our main
results.

6 LIMITATIONS AND FUTUREWORK
As with any study, it is important to note the limitations of
this work. One concern is the choice of using an experimen-
tal approach. While the experimental approach allows us
to draw causal conclusions, it limits our ability to observe
how the users actually interact with the explanation tools.
In the future work, we will observe how students and admis-
sion committees actually use the admission algorithm and
the explanation interfaces in real world settings, which can
potentially complement our experimental findings.
Supporting users’ “right to explanation” is an important

issue in a wide variety of domains that involve algorithmic
decision-making. We have developed and evaluated expla-
nation strategies and interfaces in the specific context of
student admission. Future work is needed to use different
contexts to replicate and validate our findings. Through repli-
cation, we can either validate our findings, or better under-
stand the circumstances in which these findings do or do not
apply.

One possible domain to replicate and validate our findings
is recidivism prediction. As mentioned in the introduction,
algorithms have been developed to help judges assess the
risk of recidivism and decide whether defendants should
be detained or released while awaiting trial. We can adapt
our interface prototypes to explain recidivism prediction
algorithms, with a real-world public dataset [3] and state-of-
the-art models (e.g. [30]) or their local linear approximations
using the method proposed by Ribeiro et al [45]. For example,
future work can be conducted with judges and people with
prior criminal histories to: (1) assess whether they can un-
derstand the recidivism prediction algorithms with the help
of explanation interfaces; (2) ask participants to compare
the different explanation interfaces and see if the results are
consistent with our findings; and (3) collect their concerns,
critiques, and reflections on algorithmic decision-making.
Our findings suggest that people do not fully trust algo-

rithms for various reasons, even when they have a better

idea of how the algorithm works. However, we argue that
it is not in society’s best interest to revert to complete hu-
man decision-making and ignore the significant efficiencies
gained from automated approaches. One promising direc-
tion for addressing this trust issue is to seek valuable syner-
gies between human control and automated machine learn-
ing approaches in decision-making, which is similar to the
mixed-initiative approach in user interface design [27]. For
instance, we can design innovative algorithmic approaches
and “human-in-the-loop” systems to leverage people’s ability
to deal with exception cases and machine’s advantages of
consistency and efficiency, or we can design mechanisms to
support people who wish to appeal to algorithmic decisions.

7 CONCLUSION
Artificial intelligence is rapidly shaping modern society to-
wards increased automation, in some casesmaking important
decisions that affect human welfare. We believe that HCI
researchers should strive to find ways to help people under-
stand the automated decisions that affect their livelihood. In
this paper, we took steps toward that goal by examining user
interface strategies for explaining profiling algorithms. We
found that our experimental interfaces increased algorithm
comprehension, and that features supporting interacting
with and visualizing the inner workings of an algorithm help
improve users’ objective comprehension.
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