Formal Languages

Progression of Concepts

- Symbol
- Alphabet
- String
- Language

Symbols

• Letters or numerals:

a b c ... z

0 1 2 ... 9

• Bits:

0 1

• English words:

fox dog jobs

 Syntactic components of a programming language:

for begin end while ; :=

Alphabet

An **alphabet** Σ is a finite set of symbols.

EXAMPLE.

$$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$$

EXAMPLE.

$$\Sigma_2 = \{0, 1\}$$

EXAMPLE.

The set of lexical elements of a programming language (keywords, syntax, identifiers, etc.)

String

A **string** over Σ is a finite sequence of symbols from Σ .

EXAMPLE.

Strings over Σ_1 are sequences of letters:

$$r, a, b, b, i, t \\ f, o, x \\ e, a, g, l, e$$

Generally just omit the commas:

EXAMPLE.

Strings over Σ_2 are sequences of binary digits:

String Notions

Every string v has a **length**, denoted length(v), that is the length of the sequence of symbols.

The string with no symbols is the **null string** or **empty string**, which has length 0. It is denoted λ , e, or ϵ .

If u and v are two strings, then another string results if u is followed by v. This is the **concatenation** of u and v, denoted $u \cdot v$ or just uv.

The empty string is an identity for the concatenation operation. For every string u,

$$u\lambda = u = \lambda u.$$

Other String Notions

String u is a **substring** of v if v = xuy for some strings x and y.

String u is a **prefix** of v if v = uy for some string y.

String u is a **suffix** of v if v = xu for some string x.

String v^R is the **reversal** of v if it is the sequence v in last-to-first order.

If $v = v^R$, then v is a **palindrome**.

EXERCISE.

Apply the definitions to v = bacb.

How many palindromes of length 4 are there over $\{a, b, c\}$? Length 5?

Languages Languages

Languages

Start with an alphabet Σ .

The set of all strings over Σ is denoted Σ^* .

A **language** over Σ is any subset of Σ^* .

EXERCISE. What can you say about the number of languages over Σ ?

Sample Languages

Example languages over $\Sigma = \{a, b, c\}$:

- ∅, the empty language
- {aaab, aabb, abab, abbb, aacb, acab, accb,
 abcb, acbb}, the set of strings of length 4
 that begin with a and end with b
- $\{u \in \Sigma^* \mid length(u) \geq 7\}$, the set of all strings of length at least 7

Operations on Languages

- Union: $L_1 \cup L_2$
- Intersection: $L_1 \cap L_2$
- Complementation: $\bar{L} = \Sigma^* L$
- Concatenation:

$$L_1L_2 = \{uv \mid u \in L_1, v \in L_2\}$$

EXAMPLE.

$$\{b, ba\}\{\lambda, a, ab\} = \{b, ba, bab, baa, baab\}$$

Powers of Languages

$$L^0 = \{\lambda\}$$

• For i > 0,

$$L^i = L^{i-1}L.$$

EXERCISE.

$$\emptyset^{O} = ?$$

$$\{a,ba\}^3 = \boxed{?}$$

Languages Languages

Kleene Closure

The Kleene closure (or Kleene star) of a language L is

$$L^* = \bigcup_{i=0}^{\infty} L^i.$$

The **Kleene plus** of a language L is

$$L^{+} = \bigcup_{i=1}^{\infty} L^{i}.$$

Some Facts

$$L^{+} = LL^{*}$$

 $L^{+} = L^{*} - \{\lambda\} \text{ if } \lambda \notin L$
 $L^{+} = L^{*} \text{ if } \lambda \in L$

Exercises

2.
$$\emptyset^+ = \boxed{?}$$

3. What language is described by

$${a,b}^*{cab}{b,a}^*$$
?

4. Give a recursive definition of L^* .

Regular Languages

Fix an alphabet Σ . The set of **regular** languages or **regular sets** over Σ is defined recursively:

- 1. **Basis:** The sets \emptyset , $\{\lambda\}$, and $\{a\}$, where $a \in \Sigma$, are regular sets.
- 2. Recursive step: If L_1 and L_2 are regular sets, then

$$L_1 \cup L_2, \ L_1L_2, \ \mathrm{and} \ L_1^*$$

are regular sets.

3. **Closure:** Only sets attainable by a finite number of applications of the recursive step to the basis are regular sets.

Regular Expressions

A **regular expression** over Σ is defined recursively:

- 1. **Basis:** The expressions $\underline{\emptyset}$, $\underline{\lambda}$, and \underline{a} , where $a \in \Sigma$, are regular expressions representing, respectively, \emptyset , $\{\lambda\}$, and $\{a\}$.
- 2. Recursive step: If u_1 and u_2 are regular expressions representing, respectively, languages L_1 and L_2 , then $\underline{(u_1 \cup u_2)}$, $\underline{(u_1 u_2)}$, and $\underline{(u_1)^*}$ are regular expressions representing, respectively, $L_1 \cup L_2$, $L_1 L_2$, and L_1^* .
- 3. **Closure:** Only expressions attainable by a finite number of applications of the recursive step to the basis are regular expressions.

Examples

An algebraic notation for representing regular languages.

EXAMPLE.

The regular expression $\underline{((b \cup (ba))(\lambda \cup (a \cup (ab))))}$ represents the regular language

$$\{b, ba\}\{\lambda, a, ab\} = \{b, ba, bab, baa, baab\}$$

Precedence: Kleene closure, concatenation, union (highest to lowest). Allows dropping unnecessary parentheses.

EXAMPLE.

The revised regular expression $\underline{(b \cup ba)(\lambda \cup a \cup ab)}$ also represents the regular language

$$\{b, ba\}\{\lambda, a, ab\}$$

Further Examples

Abusing notation, we often write

$$\underline{(b \cup ba)(\lambda \cup a \cup ab)} = \{b, ba\}\{\lambda, a, ab\}.$$

Fix
$$\Sigma = \{a, b, c\}$$
. Then

$$\underline{(a \cup b \cup c)^*} = \Sigma^*.$$

As shorthand, let $\underline{u^+}$ represent the same language as $\underline{uu^*}$.

Two regular expressions can represent the same language:

$$\Sigma^* = \underline{(a \cup b \cup c)^*}$$
$$= \underline{(a^*b^*c^*)^*}.$$

Representation Exercises

- **Problem 12.** The set of strings over $\{a,b,c\}$ in which all the a's precede all the b's, which in turn precede all the c's ?
- Problem 13. The same except excluding the empty string ?
- **Problem 21.** The set of strings over $\{a, b\}$ in which the substring aa occurs exactly once ?

Regular Expression Identities

Table 2.3.1. Show these identities:

7.

$$\underline{u \cup u} = \underline{u}$$

10.

$$\underline{(u \cup v)w} = \underline{uw \cup vw}$$

11.

$$\underline{(uv)^*u} = \underline{u(vu)^*}$$

Regular Expression Identities

Problem 38 (d). Use the identities in Table 2.3.1 to establish this identity:

$$\underline{(a \cup b)^*} = \underline{(a^* \cup ba^*)^*}.$$

Answer with explanations:

$$\frac{(a \cup b)^*}{12. \ \underline{(u \cup v)^*} = \underline{(u \cup vu^*)^*}}$$

$$= \underline{(a^* \cup ba^*)^*}$$

$$12. \ \underline{(u \cup v)^*} = \underline{(u^* \cup v)^*}$$