
Final, CSC242, May 2009

Name:
Write your NAME legibly on your bluebook AND EXAM, WHICH YOU WILL ALSO TURN

IN. This is a 168-minute) test. Work all problems. You may use two double-sided pages of notes. Please
hand your notes in with your bluebook and exam. The best strategy is not to spend more than the indicated
time on any question (minutes = points). Please start each answer on a new page

1. Newpage! Logic: 15 Min.

(a) (5 min) Write in FOPC the assertion that every key will eventually be lost forever. Use only the
vocabulary Key(x) (x is a Key), Now (the current time), Before(t1, t2) (time t1 comes before time t2),
Lost(x, t) (x is lost at time t).
(b) (5 min) True or False, and why? If a FOPC clause can be resolved with a copy of itself it must be
logically equivalent to True

(c) (5 min) True or False? (A ∨B) ∧ ¬(A⇒ B) is satisfiable.
Answers:
(a)

∀xKey(x)⇒ [∃t1Lost(x, t1) ∧ ∀t2Before(t1, t2)⇒ Lost(x, t2)].

(b) To resolve with self it must have a symbol ORed with its negation, so it’s always true.
(c) A true and B false works.

2.New Page! Bayes Nets: 30 min. In the net below, the boolean variables have the semantics: I:
Intelligent, H: Honest, P: Popular, L: LotsOfCampaignFunds, E: Elected.

I H L  P(P)
t  t  t  .9
t  t  f  .4
t  f  t  .8
t  f  f  .2
f  t  t  .8
f  t  f  .3
f  f  t  .8
f  f  f  .1

I
H

L

P

E

H  P(L)
t    .3
f    .9

P(H) = .1P(I) = .5

P   P(E)
t     .6
f     .1

(a) (3 min) Which of these, if any, are asserted by the structure of the network (leaving aside the
conditional probability tables (CPTs)).
(i) P(I, L) = P(I)P(L)
(ii) P(E | P,L) = P(E|P,L,H)
(iii) P(P | I,H) = P(P | I,H, L)
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(b) (7 min) Calculate the value of P (i, h,¬l, p,¬e). Show and explain your work.
(c) (7 min) Calculate the probability that a candidate is intelligent given that she is honest, has few
campaign funds, and gets elected. That is, calculate P(I | h,¬l, e). Show and explain your work.
(d) (5 min) Suppose we want to add the variable S: StealsTheElection (stuffs ballot box, bribes election
judges, pays people to vote, etc.) to the network. Draw your new network and provide new or modified
CPTs as needed: just come up with reasonable probabilities and justify them.
(e) (3 min) If there are two candidates in the race, then to figure the joint distribution over the two sets
of variables, we just need two copies of the network, one per candidate. True or False and why?
(f) (5 min) True or False and why? Every Boolean function can be represented by some Bayesian network.

Answers:
(a) (i) and (ii)
(b) P (i, h,¬l, p,¬e) = P (i)P (h)P (¬l | h)P (p | i, h,¬l)P (¬e | p). = .5 ∗ .1 ∗ .7 ∗ .4 ∗ .4 = .0056.
(c)

P(I | h,¬l, e) = αP(I, h,¬l, e) =

α(P(I, h,¬l, p, e) + P(I, h,¬l,¬p, e)) = α(〈084, .063〉+ 〈.021, .0245〉) ≈ 〈.545, 455〉.

(d) S(teals election) is parent of E and child of H and possibly P (since someone popular probably
doesn’t need to rig the election). The CPT for E is the same as before given S = false but when S = true

it has a high probability for E, presumably with less dependence on P. The CPT for S should show S = true

less likely when H = true.
(e) False. Such independence is too simple, and would mean that both candidates can be elected, for

instance.
(f) True. In the worst case have one Boolean output node with n Boolean parents and an n-dimensional,

2n-big CPT.

3. New Page! Language: 22 Min.

A probabilistic context-free grammar (PCFG) is a CFG with probabilities on the rules, so that in
generative mode it induces a probability distribution over all allowable sentences in the language. As
you’d expect, the probabilities are independent, for each non-terminal they sum to one, and each defines
how likely this rule is used to expand the non-terminal. Here’s a PCFG, with Λ denoting the empty string:
0.6 : NP → Det AdjString Noun

0.4 : NP → Det AdjString NounNounCompound

0.5 : AdjString → Adj AdjString

0.5 : AdjString → Λ
1.0 : NounNounCompound→ Noun Noun

0.8 : Det→ the

0.2 : Det→ a

0.5 : Adj → small

0.5 : Adj → green

0.6 : Noun→ village

0.4 : Noun→ green

(a) (3 min) What is the longest NP that can be generated by the grammar?
(b) (5 min) Which of the following have a nonzero probability of being generated as complete NPs?
(i) a small green village (ii) a green green green (iii) a small village green.

(c) (5 min) What is the probability of generating the green green? Show and explain your work.
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(d) (3 min) What types of ambiguity are exhibited by the phrase in (c)?
(i) lexical, (ii) syntactic, (iii) referential, (iv) stochastic, (v) none
(e) (3 min) Give a compelling argument for or against this statement: Given any PCFG and any finite
word sequence, it is possible to calculate the probability of that sequence being generated by the PCFG.
(f) (3 min) True or False and why? Context free grammars fall to capture English grammar because the
meaning of an English sentence may depend on the context of the utterance.

Answers: (a) With exponentially decreasing probability we can have NPs of any length.
(b) (i), (ii), and (iii).
(c) ’the green green’ can be generated two different ways. If first ’green’ is Adj, p1 = .6∗.8∗.5∗.5∗.5∗.4 =

.024, If noun p2 = .4∗.8∗.5∗1∗.4∗.4 = .0256: The probabilities are independent so we can sum (marginalize!)
and get p = .0496.

(d) (i) and (ii)
(e) True: there’s a finite number of parses and each parse has a probability that is the product of its

rules’ probabilities...
(f) False: the C in CFG refers to syntactic context of a non-terminal.

4. New Page! Search: 31 Min.

Below is a search space with S the start state and G0 – G5. satisfying the goal test. Arcs are labeled
with the cost of traversing them and the estimated cost to a goal is reported inside nodes. The space is a
tree, so you have an OPEN list but no CLOSED list. (ONLY) where applicable, search proceeds “left to
right” through successors. Where applicable, in case of ties, nodes with earlier letters are expanded first.

A B E

I K

G0 G1 G2 G3 G5

C

S

D

F

G4

1 3 6 4
10

15 15 8 10

10 12 3 3

10

2 10 20 16 20

30 10
3 J

17

1

2

H
20 10

For each of the following search strategies (a) – (e), list in order all the states popped off the open list.
(Hint: all answers start with S).
(a) (5 min) Hill Climbing (Greedy)
(b) (5 min) Iterative Deepening: Assume S is put on OPEN at the start of each iteration.
(c) (5 min) Uniform Cost
(d) (5 min) Depth First
(e) (5 min) A*
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(f) (3 min) We proved that A* is an optimal search strategy. Verify that it found the optimal (cheapest)
path to a goal here, or explain what happened otherwise.
(g) (3 min) Uniform cost seems like it should act like BFS, but its complexity is not measurable in terms
of branching factor and depth. In fact, its time and space complexity can be much worse than BFS: why?

Answers
(a) S A H G1
(b) S S A B C D E S A F H B I C G3
(c) S A B D J C G4
(d) S A F G0
(e) S A B D I G2
(f) Node J overestimates the cost to the goal, so the heuristic is not admissible, and A* proceeds down

I instead, missing best solution. Inadmissibility means the optimality theorem does not apply.
(g) UC can spend lots of time and space exploring cheap actions that may not have much effect. Its

worst-case complexity goes as bC/e, where b is branching factor, C is the cost of the optimal solution and
e is the minimal cost of an action.

5. New Page! Reinforcement Learning: 25 Min.

You are a passive learning agent; you follow a fixed policy. You always start in state S1. You make
three trials in your state space, each of which ends in the terminal state S3, which has a reward of 10.
Your experience (actions, rewards) are as follows (your state sequence reads left to write interspersed by
the actions that cause state transitions, with reward below each state). Trials 2 and 3 are identical, that’s
not a misprint.

Trial State action State action State action State

Reward Reward Reward Reward

1 S1 A S1 A S2 B S3

-1 -1 -2 10

2 S1 A S2 B S2 B S3

-1 -2 -2 10

3 S1 A S2 B S2 B S3

-1 -2 -2 10

(a) (2 min) At this point, what can you say about the number of states in your state space?
For the following, initially your guess at the utilities of all states is 0. When you hit a terminal state you

are entitled immediately to set its utility to its reward. Your discounting constant γ = .9. Your learning
constant α = .5,

First, assume you’re using Adaptive Dynamic Programming (ADP) to learn.
(b) (5 min) At this point what is your estimate of T (s, a, s′)?
(c) (5 min) You decide to use value iteration to compute the utilities of states. What is your first estimate
of U(S2)?
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(d) (3 min) Besides value iteration, how might you have computed this utility? (hint: you would also get
U(S1)).
(e) (5 min) Now assume instead you’re using Temporal Difference to learn. After trial 1 above and the
TD computation, what is your estimate of U(S2)?
(f) (5 min) For realistically high-dimensional states and maybe actions with parameters, T (s, a, s′) would
be impossibly huge to learn or even to represent. What can we do to address these problems?

Answers:
(a) there are at least 3 states (and the minimum reward is 10). More you don’t know.
(b) The table should show T(S1,A,S1) = .25, T(S1,A,S2) = .75, T(S2,B,S2) = .4, T(S2,B,S3) = .6.
(c) Russell and Norvig eq. 17.6 is the Bellman update equation. using it, U(S2)←− −2+ .9∗(6) = 3.4,

where the factor in parens is the result of a max operation.
(d) You could substitute all the information you’ve gathered into the simplified Bellman equation

(Russell and Norvig eq. 21.2) and solve the linear system for all utilities.
(e) Using one form of the standard TD equation (R&N eq. 22.3), U(S2) = 0+.5∗(−2+.9∗10−0) = 3.5.
(f) Don’t use raw state vectors, use a smaller number of relevant features based on them, and use

a function approximation (linear, neural net, splines, whatever) to get a compact representation that
“generalizes” (i.e. interpolates) over experiences and can thus supply some sort of useful guess (you hope)
for unexplored parts of the space.

6. New Page! Perceptron Learning: 20 Min.

Σ

−1 w 0

O.5

.5
1I

2I

Here is a two-input perceptron with its threshold implemented as a weight w0 applied to an input whose
value is a constant -1. Say weights w1, w2 for inputs I1, I2 respectively are both set to .5 and .5. Its output
is labeled O (that’s not a zero!).
(a) (5 min) Plot the decision boundary of the perceptron with these settings for w1 and w2, and with
w0 = 0, in the (I1, I2) input space. Also plot the point (-1,-1), which represents the point in input space
with both inputs equal to -1. Let’s say this input is on the WRONG side of the decision boundary:
successful learning will get the boundary below (or on) the (-1,-1) point somehow.

We’re going to learn only w0, our threshold, by (repeatedly) using only one input training instance:
I1 = I2 = −1, which you plotted in (a). Thus we shall hold all three inputs and two of the weights
constant (w1 = w2 = .5). We start with w0 = 0. Our perceptron’s activation function is a step function
that evaluates to 1 (accepts the input) if its weighted-input sum is ≥ 0 and evaluates to 0 (rejects the
input) if the sum is < 0. We want our perceptron to output 1 on the (-1,-1) input.
(b) (10 min) Here’s the first row of a table that makes everything explicit. You are to extend the table until
the perceptron learns (rows stop changing) or You’re convinced it isn’t learning. Of course you use the
perceptron learning rule to update w0. Use learning rate constant α = .5. The Error = Correct−Output.
(Hint: only numbers in * columns can change).
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*trial I0 *w0 I1 w1 I2 w2 *sum *Output Correct *Error

1 -1 0 -1 .5 -1 .5 -1 0 1 1

2

3

...

(c) (5 min) Suppose our training point was (-10, -10): How much would w0 change per iteration in this
case? If in general we wanted more error to cause faster learning, what could we do? Discuss the merits
of adjusting α and of changing the activation function.

Answer:

−1

−1

I 1

I2

(a) 45 degree line , oriented NW-SE. It goes thru origin at w0 = 0: changing w0 moves it parallel to
itself.

(b) wj = wj + αIjErr

*trial I0 *w0 I1 w1 I2 w2 *sum *Output Correct *Error

1 -1 0 -1 .5 -1 .5 -1 0 1 1

2 -1 -.5 -1 .5 -1 .5 -.5 0 1 1

3 -1 -1.0 -1 .5 -1 .5 0 1 1 0

(c) Same old .5. We’d need the error to increase for worse answers, so we’d abandon the simple step
activation and go for something like a ramp or sigmoid function. Changing the learning rate alone would
still give a constant change since errors are either 0 or 1.

7. New Page! Planning: 10 Min.

A simple computer has a bunch of memory cells M and some registers R. Two computer instructions
could be LOAD(M,R) (copy contents of M into R, overwriting what’s there) and ADD(M,R) (add contents
of M to contents of R, leaving result in R).
(a) (5 min) Express these instructions as STRIPS rules.
(b) (5 min) With several registers, you could imagine a compiler being inefficient with register usage
(overwriting partial results that could be reused, for instance). Relate what you know or can imagine
about code optimization to what you know about planning.

Ans: (a) want precondition, add and delete lists: here, preconditions are null it seems, others obvious.
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(b) partial order planning an obvious one, and in fact I guess conditional planning (for guessing about
IF statements), or generally graph planning could have rules for literal and figurative ’mutex’ computer
constraints.

Chetan notes: Just an interesting note of what i had learnt from the compilers class taught by Chen.
This register efficiency problem is converted to a graph coloring problem (constraint satisfaction problem).
The graph consists of nodes that are the registers and the dependences in the statements are the edges.

8. New Page! Robotics: 15 Min.

Figures of 2-DOF robot and configuration space are here unintentionallyh left blank.
This robot arm has a telescoping upper arm fixed at its left-hand end, which is also the origin. Its

minimum length is d = 1 and maximum length (shown) is d = 3. The forearm is a thin wand of constant
length 3 that can rotate at the elbow, but not past vertical in either direction. Two obstacles are shown
with left edges at x = 4, separated by a distance of 2. The diagram shows a start configuration and a goal
configuration.
(a) (5 min) the next page shows four configuration spaces. Circle the correct one for this problem.
(b) (5 min) On that space mark the locations of the starting configuration with S and the goal with G and
draw an appropriate plan for the robot to move from S to G.
(c) (5 min) Malfunction!! Robot loses all position (and angle) sensing! Contact, motion limit, and time
sensing are still working, however. Linear and rotary motions are always at a constant (but unknown)
speed. Describe a plan to reach the goal from the start state, or explain why you cannot.

Answers:
(a) (iii).
(b) S is at d=3 in upper gap, G at d=3 in center, path goes off to left, around the obstacle, back in to

G.
(c) E.g. retract arm to d=1, bend arm to minimum angle limit, start timer, bend arm to maximum

angle limit, stop timer, bend arm back for elapsed time; it should be now be pointing straight right, so
extend arm to d=3.

7


