
Intelligent Control System for Collection, 
Survival, and Mapping

Michael Silverman 
Department of Computer Science 

University of Rochester 
msilver3@mail.rochester.edu 

March 10, 2006 

Abstract 
To implement intelligent control, it is necessary to use a sophisticated 

control system. The control algorithm for this agent uses the JESS 
production system to perform three tasks. The first task, collection, is 
achieved by a greedy move-to-target algorithm. The second task, survival, 
simply moves the agent away from danger. The third task, mapping, is 
achieved using a zigzag algorithm in which the agent moves as far as it can 
see in a given state, and then rotates. Two methods of mapping, the zigzag 
and random walk are compared. The three tasks are controlled by a 
hierarchical algorithm that ranks the tasks in order of importance. The agent 
is compared to a simple random search agent. The agent controller is written 
in Java and interfaces with the Quagents engine and a GUI that displays the 
agent’s mental state. The display includes all walls that have been seen, the 
path the agent has taken, and the locations of all seen objects, which are 
stored in absolute world coordinates. 



Background and Motivation 

Sophisticated control systems need structure as they grow more 
complex. Therefore, it is necessary to formalize and organize controlling 
agents. JESS is a logical choice for providing this structure. It has the 
capabilities necessary for basic decision making. Essentially JESS allows for 
the declaration of rules that can be seen as logical predicates. It has tools for 
matching symbols it knows are true and applying various results which can 
change values and call functions. Since rules for decision making in JESS 
can be stored in files, it makes comparing and changing agents easy and 
efficient. 

Another issue with controlling an agent is its mental state. When an 
agent is running, it must store a large amount of data about the world. Not 
only are there objects and the environment to keep track of, but actions as 
well. Furthermore, it is difficult to calculate the absolute position of these 
items because agents can only perceive information relative to themselves. 
To organize this information, it is necessary to create an interface that stores 
all relevant information on images, and displays them. The interface can take 
information the agent provides and convert it into absolute positional data. 
Also, since the interface has all the information about objects and walls, it 
can provide information back to the agent when it needs to remember 
something about the world. 

To test the system, it must be used to control a complicated task. The 
first task, mapping, is difficult because it requires searching without any real 
information about the world. It is hard to find an efficient path through an 
unknown area. Another task is collecting objects. To collect objects, their 
locations must be stored and the correct commands must be executed to 
reach them and pick them up. Finally, avoiding danger is almost the opposite 
of collecting objects. The agent needs to find a dangerous object and move 
away from it. 

There is also an implicit task of organizing these behaviors. It would 
be foolish, for example, to try to map an area where there is a dangerous 
object nearby. These tasks require complex organization, making them good 
choices for organization by a productions system like JESS. 



Methods 
To create the agent control system, the JESS production system must 

be combined into the Java client for the Quagent. To combine the two, 
simply compile the JESS source into the Quagent client code. Since JESS is 
object based, all that is needed is to instantiate the JESS interpreter. Then the 
Quagent client can load rules into the JESS interpreter and display the 
results. Also, the Quagent client must be bound into the JESS rules. This is 
done by adding the Quagent client into JESS and making a JESS rule that 
finds all Quagent clients and stores them in a global JESS variable. Once 
that is done, JESS commands and rules can call various helper functions in 
the Quagent client class. 

To store information about the locations of objects and walls in the 
Quagent world, the agent must call the “get where” command. The 
command causes the agent to send its global position and direction. Once the 
position of the agent is updated, it is possible to locate any object because all 
object coordinates are sent relative to the agent position. The object 
information is accessible through helper functions, so the JESS rules can 
reason about the locations of objects and walls. 

Once the world is represented, JESS only needs rules to interpret 
agent behavior. The agents have a state, and plan variable. State is set by the 
Quagent client when commands finish or information about the world 
changes. Also, information about the dangers and objects nearby are 
embedded in JESS assertions, so the rules can reason about which plan the 
agent should execute. See the Appendix for agent rules.

To test the JESS system’s robustness and the efficiency of the 
mapping algorithm, it is necessary to create two sets of JESS rules for 
mapping and compare results. Since JESS can load agent behaviors from 
rule files, it is possible to compare the random walk agent to the zigzag 
agent.

In the random agent, the algorithm for mapping is simply to move and 
turn a random amount and then cast several rays to find the walls. The 
zigzag agent is equally simple, but performs much better. The zigzag 
algorithm tells the agent to cast rays, and then move to the farthest ray’s 
impact point. Then the agent rotates ten degrees and repeats. The agent 
winds up zigzagging across the map because it moves as far as possible, and 
then, due to the rotation, moves back almost to where it started.



 Aside from the differences in the mapping algorithms, the two agents 
are basically the same. When an object is near, JESS calls the helper 
functions to determine the nearest object and then executes a move 
command to go to it, and then pick it up. When dangerous objects are near, 
JESS calls the same movement functions, but instead of rotating the correct 
amount, it rotates the correct amount plus 180, thus moving in the reverse 
direction from the dangerous object. 

To compare the two algorithms, they were run head to head on the 
same complicated maze map. The maze has loops and tight passageways 
that could throw off the algorithms. The maze has no objects, insuring the 
test only compares the mapping behavior. 

Results 
The zigzag algorithm did surprisingly well. As Figure 1 demonstrates, 

it uncovered a much higher percent of the loopTest map than did the random 
traversal. Also, on the square map, the zigzag traversed the space much more 
evenly than the random. The pattern is due to the nature of the algorithm. 
Zigzag ensures an even pattern because it always tries to move as far as 
possible. By moving long distances, zigzag gets stuck in the same region 
less often. Essentially, it tries to escape any container. Random traversal 
leaves everything to chance. 

The other behaviors functioned correctly. When items are near, the 
agent, as demonstrated in figure 2, goes directly to them. Rather than 
wandering, the desire to get items overrides mapping behavior. While this 
function succeeds in the case demonstrated in figure 2, the agent could get 
stuck due to the greedy nature of the item grabbing behavior. If, for 
example, a wall blocked the path to an object, the agent would keep moving 
into the wall forever in an effort to get to the object. 

The same is true for the danger avoidance procedure. Shown in figure 
3, object grabbing is overridden by the avoid danger behavior and some 
items are left behind. The agent runs from the danger rather than take the 
objects near it. Also, like item grabbing, the avoidance behavior is greedy 
and can get stuck if the danger is near a corner. The agent would run into the 
corner forever trying to escape the danger. 



The results show that the hierarchy works correctly, and that the agent 
takes intelligent courses of action. When mapping, the agent searches 
through the maze until it finds objects. It grabs the objects unless there is 
danger. Furthermore, the results show that the architecture is modular, 
because it is possible to interchange behavior algorithms without changing 
overall behavior. 





Discussion and Further Work 
The agent described here completes its task, but several modifications 

could prove beneficial. The most obvious is another set of rules to move 
around walls that block the path to goals. In addition, a set of rules to 
prevent getting cornered while escaping kryptonite also will be beneficial. 
Finally, the zigzag algorithm could be enhanced to update world information 
more frequently. While zigzag covers a lot of space, it does not check for 
nearby objects as often as random walk, thus letting some objects slip 
through. These slight modifications could create a more powerful intelligent 
agent. The agent described here, however, clearly demonstrates that the 
JESS production system can power such tasks. 

JESS provides an effective control system for complex agents. It is 
capable of reasoning about a hierarchy of behaviors. Furthermore, the 
behaviors are interchangeable, and expandable. It provides the structure 
necessary to create an agent that intelligently maps, grabs items, and avoids 
dangers. That control, combined with an internal model of the agent’s world 
allows for a complex and robust agent capable of many intelligent tasks. 








