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Abstract: Artificial intelligence algorithms using passive and active
learning versions of  direct utility estimation, adaptive dynamic
programming and temporal difference approaches to simulate an
agent.  The explored worlds consisted of discrete states (positions)
bounded by internally generated “walls” that included one or more
terminal states and a pre determined configuration of rewards for
each state.  Passive learning algorithms use a pre-calculated optimal
movement policy to travel from the start state to the best terminal
state.  Active learning algorithms use an initially random movement
policy and correct the known policy based on the percepts received
within the world.  In a passive learning scenario, all three approaches
were found to be effective since the optimal policy was known.  In
active learning scenarios, direct utility estimation tends to result in
unsolvable situations or less than optimal policies as a result of poor
initial random that create unreachable areas.  Adaptive dynamic
programming is very effective in an active learning scenario but is
inefficient in storage space and often fails to evaluate the entire map.
Temporal difference learning approaches are very space efficient but
often require more trial runs to approach the same level of accuracy
that adaptive dynamic programming achieves.  These different
learning techniques can be tested with or without the use of quake
and the Quagent bot.

Keywords: Quagent, Quake, Active Learning, Passive Learning, AI
Exploration, Direct Utility, Adaptive Dynamic Programming, Temporal
Difference, Continuous Policy Iteration

Changes in this revision: SenseQuakeWorld and Continuous Policy
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Background and Motivation

The Quagent concept is the use of the Quake II 3D video game
engine for testing artificial intelligence algorithms. In this paradigm,
an agent, or “bot,” interacts with the Quake world under the direction
of an external program.  We design a learning mechanism to develop
a policy for obtaining a desired goal (usually the highest possible
reward) within a given world.  This world could be represented either
essentially internally or through probing a given quake world for
information about nearby items and the position of visible walls.  We
can then test that any given learning mechanism when allowed to
iterate successively approaches a known optimal policy or that it
successfully fulfills some given goal (such as searching for and
gathering all items within a quake world or exploring all unknown
areas to effectively create an internal map of the unknown world).

Methods

Each type of world and each learning algorithm is contained
within its own Java class.  The main Java Quagent controller is passed
parameters to indicate what type of world and learning algorithm to
use.  The Quagent controller can also be told to use and query an
actual Quagent bot within Quake or to just simulate what would
happen if the Quagent bot were to perform the same actions.  If the
Quagent bot is used, the Quagent can then be observed as it moves
within the Quake world as constrained by the type of “world” given as
a parameter.  Simulations work much faster than a Quagent bot but
sometimes cannot account for everything that might happen within
the Quake program (true Quake worlds are in fact dynamic whereas
the simulated worlds as stored are static).

There were three basic learning algorithms that were tested in
both active and passive learning scenarios.  These were direct utility
estimation, adaptive dynamic programming, and temporal difference
learning.  

Worlds

A controller was created which allowed for the testing of various
learning algorithms in conjunction with moving a quagent bot within
different types of quake and non-quake worlds.  In the case of the non-
quake dependent worlds this algorithms could be tested
independently of the actual quake program, allowing for faster run



time.  

Tests were performed on a four types of worlds.  The first was
four by three grid state with one of the states unreachable, one
terminal state with negative reward and one terminal state with a
positive reward.  The second was a ten by ten grid state with a
terminal state with a positive reward in one corner.  The third was a
ten by ten grid with a terminal state with a positive reward in the
center.  The fourth was an actual quake world as seen by the quagent
bot.

SenseQuakeWorld

This world was used to allow the bot to use its learning
techniques directly in the Quake level. This world was implemented
by Greg in the SenseQuakeWorld Java class.  

This class essentially learns the MDP from the quagent's
sensors, and then presents that MDP to the the MDP problem-solving
algorithms. This class presented any useful items (such as Data) as +1
rewards, and harmful items (such as Kryptonite) as -1 rewards. 

To learn the MDP, states near the current location, spaced 65
units apart, are generated. The mapping ability was used to identify
valid transitions.

Occasionally, certain states were reachable according to the
map, but  not reachable in reality. Often, these are cliffs. These
unreachable states are noted by SenseQuakeWorld and assigned
negative rewards.

To encourage exploration, states on the “fringe” of the currently
known states were assigned an optimistic 0.5 reward.



Above, the quagent is learning the map and the ideal policy. Note that
the color of the policy denotes the utility, ranging from green for
positive to red for negative. (The exact color was computed using the
sigmoid function, which can map an infinite range of utilities into a
finite range of colors.) Notice the green exploration fringe, as well as
the red cliff in the top-center room.

It was decide to put the task of learning the MDP into the
SenseQuakeWorld, so that algorithms such as Continuous Policy
Iteration could be used. Additionally, the transitions are learned much
more quickly here than in a generic transition-learning algorithm,
because the agent's sensors can be directly exploited. Of course,
transition and MDP-learning algorithms can still be attached to this
world definition and simply ignore the extra information.

Learning Algorithms

Several learning algorithms were implemented, most in both a passive
as well as an active form. These are Direct Utility Estimation,
Adaptive Dynamic Programming (ADP), Temporal Difference (TD),
and Continuous Policy Iteration. 



Three algorithms (DU, ADP, and TD) were tested in passive learning
scenarios.  This consists simply of giving the algorithm initially the
optimal policy as calculated from the known states and then
comparing the utilities that it assigns to the world as it follows this
optimal policy to the optimal utilities expected.  Generally all three
algorithms approach the initially calculated values of the utilities for
the optimal policy.

The algorithms were also tested under an active learning scenario.  In
this type of scenario, each algorithm is given an initial random policy
from which it attempts to discover the optimal policy iteratively as in
adjusts the utilities of each state over time depending on the rewards
it receives while following the current policy.

Direct Utility Estimation

The Direct Utility Estimation algorithm was written initially by Greg
and later modified by Rob.  This algorithm tries to use the information
gathered from traversing the states of the world to recalculate the
appropriate utilities.   No change is made to the known utilities until
the quagent has reached a terminal state.

The passive version of this algorithm only adjusts the utilities, which
under ideal circumstances will tend to approach very closely the
utilities as calculated from the optimal policy.

The active version of this algorithm also adjusts the policy itself to
account for the rewards received within the world.  This is done
specifically by giving the quagent an initially random policy to follow
and then allowing it to follow this policy and learn from the results.

Adaptive Dynamic Progamming

The Adaptive Dynamic Progamming algorithm was written by Rob.
This algorithms tries to use the percepts received from the world to
adjust the known transition model to learn the transition model
needed to recreate the optimal policy.  This is a much different
approach to learning how to maneuver in the world than is Direct
Utility Estimation.

The passive version only attempts to learn the Transition model based
on the frequency with which performing a given action in a given
state results in another specific state.

The active version also adjusts the policy through the percepts that it



receives and attempts to learn the optimal policy and transition
model.  It uses modified policy iteration using value iteration to
update the utilities as suggested by Russell and Norvig (AI, p. 767).

Temporal Difference

The Temporal Difference algorithm was written by Rob.  The temporal
difference algorithm uses a table of frequencies similar to the ADP
algorithm but it does not calculate the transitions.  Instead it uses a
specific learning algorithm to recalculate the utilities of the world
based on rewards received there.  The frequency table is used to
determine how pertinent the percept is to the new calculation.  That is
to say that the new utility of each state visited is recalculated using
the old utility, the reward received at that state and the utility of the
next state reached.  A learning rate function is necessary for this
algorithm to work.  The learning rate function determines how heavily
the algorithm relies on current knowledge versus new percepts.  The
algorithm as described by Russell and Norvig (AI, p. 769) is:

U[s] = U[s] + α(Ns[s])(r + γ U[s'] – U[s])
s is previous state
r is previous reward
s' is current state
α is the learning rate function
γ  is the discount factor

The passive version only modifies the utilities. The active version also
modifies the policy instantaneously based on each percept, which
will impact subsequent knowledge gain. 

Continuous Policy Iteration

This algorithm, written by Greg, was aimed primary at the ever-
changing Quake world. As new states are added to the MDP, the
policy is updated with random actions for the new states, and the new
utilities are assigned zero. Next, policy iteration is executing using
this policy and utility set, which calculates meaning values for these.
This algorithm takes advantage of a gamma (that is, learning rate or
discount factor) less than one in order to simplify computations as the
number of states grows very large.

Standardized Interface For Worlds And Solution
Algorithms

Taking advantage of Java's ability to specify interfaces, Greg created



an interface for a Markov Decision Problem definition (the world), and
for a Learning Algorithm that will guide an agent in solving such a
problem. Depending on the type of learning algorithm, more or less of
the information from the MDP can be used. For example, although the
MDP definition must specify a transition model and set of states, the
learning algorithm can still attempt to learn it's own model and state
set. 

Dynamic MDPs

To support representation of the Quake world as an MDP, it was
necessary for Greg to allow new states to appear in the MDP while the
agent is executing a learning algorithm. For the algorithms that were
not intended to support this, it was necessary to modify them.
Algorithms which maintain a policy were modified to initialize the new
states with random actions. Algorithms which assess utilities were
modified by giving a default utility value to these new states. Not all
algorithms were modified to support a changing MDP.

Modified Policy Iteration 

Several algorithms needed to compute the “ideal” utility values. The
policy iteration algorithm that Greg coded used iteration to solve for
the utilities of the states. This iteration stopped when the values
stopped changing by more than a constant, or when a maximum count
had been reached. 

Learning by Many Trials

For the algorithms that needed to be run over and over, the agent
would be restarted in a random state in the MDP, rather than the
original start state.

Results

Policy Iteration

Verification of Utility values determined by Policy Iteration in the
Four Three World [G]

Policy Iteration Result Twenty Trial Average
0.812 0.868 0.918 1 0.81 0.87 0.92 (1)

0.762 XX 0.660 - 1 0.76 XX 0.66 (- 1)



0.705 0.655 0.611 0.388 0.71 0.55 0.54 0.48

The policy iteration result has an RMS difference from the twenty trial
average of .052.

Note that the policy iteration result exactly matches the result found
by Russell and Norvig (AI, p. 619).

Policy Iteration Runtime

As the runtime is important for the feasibility of continuous policy
iteration, it is considered here. The below graph depicts an gamma of
1. By using a lower discount factor, this growth could be inhibited.

Direct Utility Learning

As shown below, the error seems to be related to the number of trials
by an exponential decay. The “bumps” represent sudden significant
information, which was falling into the -1 state in this case. Note that
this is the result of 5 runs averaged together; each indidual run has
larger variations.

Below, we see the result of Active Learning DU. One will notice from
the scale of the graph that it was about 3 times slower in learning. In
this particular case, rather than random restarts, both this active and
the passive DU we restarted in the same spot every time. This allowed
the active DU to sometimes “rule off” part of the world and then never
revisit it to update its estimations, leaving erroneous utilities.
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Temporal Difference Learning

Below, we see the result of using various alpha functions in both
passive and active learning. The alpha function is what TD uses to
weigh new knowledge against previous knowledge, where “n” is the
number of items already known. For example, the function “1/n” puts
little weight in new knowledge, whereas “60/(59+n)” (as suggested by
Russell and Norvig) puts significant weight on new knowledge. 

In the above graph, everything except 1/n seems to do well. The
explanation for this is that, during the active learning process, the
agent will tend to practically ignore new discoveries due to their low
weight. The other alpha functions all these new discoveries to be
investigated. Also note the 1/n line is smoother because new
information is not able to change things significantly.

In the passive mode, below, the “1/n” actually does best, because
using this alpha function calculates an accurate running average,
weighting each piece of information, new or old, equally. Since the
policy is fixed in advanced, this does not hinder exploration as it did in
active mode.
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Below, we see that active learning actually proceeds faster than
passive learning, although this may be less true for different alpha
functions.

Finally, in comparing the 10x10 world below with the above graphs,
one notices that the convergence happens much more slowly, in an
almost linear fashion, or rather having a slower exponential decay.
This appears to be connected to the amount of time the agent is
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spending learning relatively new information (since there are more
states to learn about), rather than spending time refining that which it

already knows.

Discount Factor

One of the factors that greatly impacts the effectiveness of any of the
learning algorithms is the discount factor.  Altering this factor from
the default of 1.0 can be very effective for some types of algorithms
and prove very detrimental for other algorithms.  In the case of the
TD algorithm as employed in the 4x3 world or any similarly pre-known
world (such as a 10x10 world) a lower discount factor is very
detrimental.  This is because the factor basically defines the
algorithms responsiveness to new information.  If it is close to one, it
favors new information, allowing for quick changes to the known
model.  This in turn tends to favor exploration of unknown states.  If it
is lower, it favors current knowledge in an effort to avoid possibly
“dangerous” outcomes.  
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In a small, simple world like the 4x3 world, exploration is not
necessary after only a few trials and it is more important to adjust the
knowledge base with new information.  As can be seen in the above
graph, an algorithm with even a slightly lowered discount factor is
slow to learn.  A subtle benefit to this is there are fewer suddent
changes.  In an unknown world such as the Quake World this is
beneficial.  It is more important to explore, as unexplored areas may
contain something of interest that would not be found otherwise so it
is effective to lower the discount factor slightly to allow for this.

Discussion

Learning Algorithms

Direct Utility Estimation

Direct Utility Estimation tends to be fairly quick in its calculations
however the active version has some shortcomings.  First, if the initial
random policy prohibits the quagent from accessing some part of the
world, it cannot learn the optimal policy for that section of the world.
Second, since the utilities and policy are calculated only once a
terminal state has been found, a world with no pre-known or pre-
defined terminal state would not allow the quagent to learn from its
actions, nor have a basis for what actions to take.  The initial
shortcoming can be resolved by allowing the quagent to start each
iteration in a randomly selected state, thereby eliminating
unreachable states due to a poor initial policy.  The second
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shortcoming can only be resolved by using a different learning
algorithm.

Adaptive Dynamic Programming

The Adaptive Dynamic Programming solution runs very quickly and is
relatively simple in design and code.  It however requires large
amounts of memory to store the frequencies with which one state is
reached from another given some action.  In a small world such as the
4x3 world this is not prohibitive.  However, in a large world this would
require very large arrays of information.  In a world of unknown size,
this would require the use of expandable arrays or some other data
structure that could grow with time.  This too could in turn be
expensive at runtime.  ADP also has the shortcoming that it has to
solve all of the equations using the transition model that it calculates
in each iteration.  Again, for a small world this is not very difficult but
in a large world with many states this could be very slow at runtime.

For the Temporal Difference algorithm, the passive version only
modifies the utilities, whereas the active version also  updates the
policy as new information is discovered.  This allows for much faster
reaction to new knowledge.  The dependence on current knowledge is
defined heavily by the learning rate function.  Since the active version
starts with an initially random policy, it too has the possible
shortcoming of creating unreachable sections of the world.  However,
by starting the quagent  in a random state in each iteration, this
shortcoming is eliminated and the data received is much closer to the
optimal because the quagent gets the chance to observe the entire
world more equally.



The passive version of the algorithm exhibits a higher degree of
“jitter” in the RMS difference because it does not adjust its policy to
the known utilities.  Since the active version does, it is much less
likely to uncover situations that cause it to have to make drastic
changes in the utilities at any given point.

Because of the efficient runtime and storage of the TD algorithm, it
was used as a primary test algorithm for making several comparisons.
Since its performance can depend greatly on the parameters of the
above equation, it is necessary to find which parameters provide
optimal results.

Continuous Policy Iteration

Learning factors (gammas) of 1.0, 0.9, and 0.8 were tried. The higher
numbers provide more “foresight,” but the lower number allow
calculations to converge more quickly. One concrete impact of this
was that, in the Quake world, 0.9 or 1.0 would cause the agent to
explore the bottom of the room where it starts, but at 0.8 it would
move on right to the next room without finishing the first, as depicted
below. Notice, in the image below, how the agent did not get close
enough to the bottom to even generate all the states for it. (Also, be
aware that the directional letters shown on the map “up” “down”
“left” and “right” are oriented such that up in to your right. Now that
the bot has already left the room, it is no longer useful to leave the
room, so if it were to return, it would be directed to explore the rest of
it.)
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Common Algorithmic Issues

FourThreeWorld versus QuakeWorld

Algorithm behavior in QuakeWorld was less effective. The robot
tended to become very sluggish with calculations. Additionally, the
utility values converged much more slowly. Especially when starting
with a random policy, the agent would get stuck. Due to the real-time
nature of the actual Quake world, this took too long.

Time to evaluate utilities in the Quake World

One algorithmic issue discovered was that, since the current position
is almost never precisely one of the predefined states, one needs to
find the nearest predefined state that matches reality. This was
implemented by checking all states to see the closest. As a result, in a
few places (particularly, in determining the utilities from a policy) an
extra loop, increasing the order of the runtime, was introduced. To
improve efficiency, it would be useful to be able to directly access
nearby states using a hash-based data structure. This is certainly a
possibility for future implementations.

Modified Policy Iteration

Since the utility evaluation was inexact, we found that it was in fact
possible to get into a infinite loop between two policies. To address
this issue, the policy iteration loop saves the past 2 policies, and
verifies that the new policy is different from them, to detect and exit
such loops. Unfortunately, with gamma values that are equal or
extremely close to 1, it is also possible to get into infinite loops
containing more than two steps, in which case the algorithm may run



forever.

Concluding Remarks

Several algorithms were examined, and the details of their behavior
were discovered and analyzed in-depth.  Additionally, these
algorithms have shown themselves as effective solutions to problems
such as the Quagent paradigm.
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