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The goal of this project is to provide a Java program that plays a game of 3D 4x4 Tic Tac 
Toe . The program uses a minimax algorithm with optional alpha-beta pruning. In 
addition to specifying whether alpha-beta pruning is used or not, the user may also 
choose among a few different evaluation functions, and specify the number of turns 
ahead the program looks. Also provided is a python script for pitting two different 
computer-controlled players against each other. 
 
Algorithms 
This program makes use of the minimax algorithm with optional alpha-beta pruning. The 
board is represented as a one-dimensional array. A variety of different evaluation 
functions are provided. Also included is a function for checking if the game has been 
won. 
 
Board State Representation 
To represent the board, this program uses a 1x64 array of integers. The player’s pieces 
are represented with 1s, the opponent’s pieces with -1s, and blank spaces with 0s. With 
this representation, position x,y,z in the 3D board is located at position x+4*y+16*z. 
 
Win Detector 
To detect a win, this program simply looks at every possible row, column and diagonal to 
see if any one player’s pieces occupy all 4 spaces. This is achieved using a series of 
conditionals. There are 76 different possibilities for a win (16 rows in each direction, 2 
diagonals per face in each direction (which makes 12 faces), and then 4 corner-to-corner 
diagonals), and this algorithm checks each one in sequence. 
 
Static Evaluators 
This program provides four different static evaluators. Each one begins by looking at 
every row, column, and diagonal in turn. If both players have pieces in that row, it is 
ignored; if only one player has pieces in it, the evaluator counts these n pieces. At the end 
of this tally, the evaluator has a list of how many 1-in-a-rows, 2-in-a-rows, 3-in-a-rows 
and 4-in-a-rows each player has. Where the evaluators differ is in what they do with this 
information, as described below. 
 
Eval1 
This was the initial static evaluator first used in testing. It assigns a positive value to 
every n-in-a-row the player has, and a negative value to every n-in-a-row the opponent 
has. An n-in-a-row is worth about an order of magnitude more than an (n-1)-in-a-row.  In 
addition, the opponent’s rows are worth slightly more than the player’s rows. This is to 
encourage the player to block before building its own rows. 
 



Eval2 
This evaluator is almost identical to Eval1; it only differs in the values assigned to the 
various n-in-a-rows. This evaluator makes sure that the value assigned to an n-in-a-row is 
greater than 76 times the value assigned to an (n-1)-in-a-row. This is to ensure that no 
matter how many (n-1)-in-a-rows a player (or its opponent) gets, it still considers an n-in-
a-row more important. 
 
EvalSame 
This evaluator is the same as Eval1 except it assigns the same values to the player’s and 
the opponent’s n-in-a-rows. This is for testing purposes, to see if making the opponent’s 
n-in-a-rows more valuable actually makes a difference. 
 
EvalAbsolute 
This evaluator is written on a different philosophy than the other three. Rather than 
assigning points for each n-in-a-row, it just returns a flat value based on who has more of 
the largest n-in-a-rows (positive if it’s the player, negative if it’s the opponent). 
 
Minimax Algorithm 
This is the algorithm that allows the player to look ahead to future moves and pick the 
move that gives him the best options for future moves. It has two main functions, the 
minmove and maxmove functions, which are mutually recursive. Given a set of potential 
moves, the player considers what the opponent’s best move would be in each of those 
potential states (using the minmove function), and then chooses the move that gives his 
opponent the worst options. Similarly, the minmove function considers all the potential 
moves from a given state, considers what the player’s best move would be from those 
(using maxmove), and returns the value of his worst option. This mutual recursion 
continues until the depth limit is reached, at which point the function simply evaluates all 
the potential states (using one of the static evaluators). 
 
Alpha-Beta Pruning Algorithm 
This algorithm is basically a fancier version of minimax. It calls minmove and maxmove 
exactly as described above, but also passes around two variables, alpha and beta. Alpha, 
initially set to -650001 (one less than the value of the worst possible move, one where the 
opponent wins), keeps track of the best move the opponent will let us get so far. If the 
minmove function encounters a worse move than alpha, it can quit right away, since it 
knows that the player can do better. Similarly, beta, initially set to 600001 (one more than 
the value of a win for the player), keeps track of the worst move the opponent can make 
the player take. If the maxmove function encounters something better, it can quit right 
away, since it knows the opponent will never let it take that move. Together, these 
variables allow the algorithm to examine many fewer nodes, thus speeding up 
performance considerably. 
 
Results and Statistics 
 
Comparing Static Evaluators 



In order to determine which evaluator had the best performance, they were pitted against 
each other in the combinations documented below. Each contest consisted of twenty 
games, run with a lookahead level of three. 
 
Eval1 vs. Eval2 
Verdict: about equally matched 
Eval1: 11 wins 
Eval2: 9 wins 
 
Eval2 vs. EvalSame 
Verdict: about equally matched 
Eval2: 11 wins 
EvalSame: 9 wins 
 
Eval2 vs. EvalAbsolute 
Verdict: Eval2 is much better 
Eval2: 20 wins 
EvalAbsolute: 0 wins 
 
 
Comparing Lookahead Levels 
In order to determine the effect of lookahead levels on performance, players with 
different levels of lookahead were pitted against each other. The evaluator Eval2 was 
used for all players. As above, each contest consisted of 20 games. The results are as 
follows: 
 
1ply vs. 2ply 
Verdict: about equally matched 
1ply: 11 wins 
2ply: 9 wins 
 
2ply vs. 3ply 
Verdict: about equally matched 
2ply: 10 wins 
3ply: 9 wins 
Ties: 1 
 
3ply vs. 4ply 
Verdict: about equally matched 
3ply: 11 wins 
4ply: 9 wins 
 
Conclusions 
It seems like altering the lookahead does not significantly affect the player’s ability to 
win the game. Perhaps it would start to make more of a difference as the lookahead 



increased. However, since we are limited to 5 seconds per turn, 4 ply is about the limit of 
how far my player can look. 
 
Comparing Minimax and Alpha-Beta 
Minimax: 9 wins 
Alpha-Beta: 10 
Ties: 1 
 
This shows that the alpha-beta pruning doesn’t affect the performance of the program, 
which is as expected, since it is supposed to be a speed improvement. To verify this 
claim, we tested the following statistics: 
 
Branching factor: 

 Minimax Alpha-Beta 
22.41176471 17.15384615 
20.63636364 26.1 

20.75 15 
17.10526316 20.77777778 
21.08333333 23.4 
21.07142857 17.22222222 
14.86956522 21.28571429 
18.53846154 14.8 
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Average 
branching 
factor per 
move over 
an entire 
game 

21.85714286 13.12121212 
 
So alpha-beta pruning does have some positive impact on the game’s average branching 
factor, although it may be slight. Per move, improvement can also be seen, as shown in 
the following chart: 
 

MINIMAX ALPHA-BETA 
Move Time Evals Avg. B.F. Move Time Evals Avg. B.F. 
0.173 13934 22.86875 0.155 5386 29.52879581 
0.09 44944 34.53502235 0.047 21639 29.07244502 
0.031 15424 18.83640553 0.032 16492 30.08787346 
0.018 8863 14.84937888 0.042 21638 24.50487541 
0.064 32111 30.13496377 0.016 8607 23.21025641 
0.013 5690 28.73913043 0.021 10727 23.88747346 
0.009 3637 7.434554974 0.019 8867 18.65940594 
0.007 3074 16.00961538 0.015 6979 16.08154506 
0.02 9620 21.01242236 0.014 6634 22.20952381 
0.019 9002 24.19487179 0.035 14678 11.92210682 
0.028 12311 17.99174691 0.049 21428 15.48785425 
0.014 6604 21.63354037 0.038 15692 13.79105691 
0.027 11969 15.48371532 0.045 19858 19.57796452 
0.025 11836 15.65679012 0.024 9713 12.49764151 



0.011 5649 13.35434783 0.022 9192 12.63556116 
0.016 7990 14.15081967 0.012 5650 14.06436782 
0.014 7325 13.68103448 0.009 4127 13.33827893 
0.006 2690 10.40484429 0.009 4037 14.82993197 
0.004 2050 12.86285714 0.003 1281 12.17948718 
0.006 2568 11.32669323 0.006 2755 9.527607362 
0.003 1705 15.1557377 0.005 1574 10.12571429 
   0 125 10.12571429 
0.02847619 10428.38095 18.11034488 0.028090909 9867.227273 17.60661279 
Avg. Move 

Time 
Avg. Evals Avg. B.Fs. Avg. Move 

Time 
Avg. Evals Avg. B.Fs. 

MINIMAX ALPHA-BETA 
 
This shows that the alpha-beta pruning does improve the amount of the graph explored. 
The number of evaluations, the average move time, and the average branching factor all 
drop. The drop is slight, but surely more improvement would be seen with a higher 
lookahead (these were all tested on a lookahead of 2). 
 
 
Future Work 
In the future, this project could be improved upon mainly by writing better evaluator 
functions. The current ones still allow the opponent to win sometimes, by failing to 
block, which could obviously use improvement. The project could also explore 
improvements to the alpha-beta pruning algorithm, to make the entire thing faster, which 
will in turn allow it to run at higher lookahead levels. 


