
3D Tic Tac Toe
Adina Rubinoff

CSC 242
Febuary 7 2010

The goal of this project is to provide a Java program that plays a game of 3D 4x4 Tic Tac
Toe . The program uses a minimax algorithm with optional alpha-beta pruning. In
addition to specifying whether alpha-beta pruning is used or not, the user may also
choose among a few different evaluation functions, and specify the number of turns
ahead the program looks. Also provided is a python script for pitting two different
computer-controlled players against each other.

Algorithms
This program makes use of the minimax algorithm with optional alpha-beta pruning. The
board is represented as a one-dimensional array. A variety of different evaluation
functions are provided. Also included is a function for checking if the game has been
won.

Board State Representation
To represent the board, this program uses a 1x64 array of integers. The player’s pieces
are represented with 1s, the opponent’s pieces with -1s, and blank spaces with 0s. With
this representation, position x,y,z in the 3D board is located at position x+4*y+16*z.

Win Detector
To detect a win, this program simply looks at every possible row, column and diagonal to
see if any one player’s pieces occupy all 4 spaces. This is achieved using a series of
conditionals. There are 76 different possibilities for a win (16 rows in each direction, 2
diagonals per face in each direction (which makes 12 faces), and then 4 corner-to-corner
diagonals), and this algorithm checks each one in sequence.

Static Evaluators
This program provides four different static evaluators. Each one begins by looking at
every row, column, and diagonal in turn. If both players have pieces in that row, it is
ignored; if only one player has pieces in it, the evaluator counts these n pieces. At the end
of this tally, the evaluator has a list of how many 1-in-a-rows, 2-in-a-rows, 3-in-a-rows
and 4-in-a-rows each player has. Where the evaluators differ is in what they do with this
information, as described below.

Eval1
This was the initial static evaluator first used in testing. It assigns a positive value to
every n-in-a-row the player has, and a negative value to every n-in-a-row the opponent
has. An n-in-a-row is worth about an order of magnitude more than an (n-1)-in-a-row. In
addition, the opponent’s rows are worth slightly more than the player’s rows. This is to
encourage the player to block before building its own rows.

Eval2
This evaluator is almost identical to Eval1; it only differs in the values assigned to the
various n-in-a-rows. This evaluator makes sure that the value assigned to an n-in-a-row is
greater than 76 times the value assigned to an (n-1)-in-a-row. This is to ensure that no
matter how many (n-1)-in-a-rows a player (or its opponent) gets, it still considers an n-in-
a-row more important.

EvalSame
This evaluator is the same as Eval1 except it assigns the same values to the player’s and
the opponent’s n-in-a-rows. This is for testing purposes, to see if making the opponent’s
n-in-a-rows more valuable actually makes a difference.

EvalAbsolute
This evaluator is written on a different philosophy than the other three. Rather than
assigning points for each n-in-a-row, it just returns a flat value based on who has more of
the largest n-in-a-rows (positive if it’s the player, negative if it’s the opponent).

Minimax Algorithm
This is the algorithm that allows the player to look ahead to future moves and pick the
move that gives him the best options for future moves. It has two main functions, the
minmove and maxmove functions, which are mutually recursive. Given a set of potential
moves, the player considers what the opponent’s best move would be in each of those
potential states (using the minmove function), and then chooses the move that gives his
opponent the worst options. Similarly, the minmove function considers all the potential
moves from a given state, considers what the player’s best move would be from those
(using maxmove), and returns the value of his worst option. This mutual recursion
continues until the depth limit is reached, at which point the function simply evaluates all
the potential states (using one of the static evaluators).

Alpha-Beta Pruning Algorithm
This algorithm is basically a fancier version of minimax. It calls minmove and maxmove
exactly as described above, but also passes around two variables, alpha and beta. Alpha,
initially set to -650001 (one less than the value of the worst possible move, one where the
opponent wins), keeps track of the best move the opponent will let us get so far. If the
minmove function encounters a worse move than alpha, it can quit right away, since it
knows that the player can do better. Similarly, beta, initially set to 600001 (one more than
the value of a win for the player), keeps track of the worst move the opponent can make
the player take. If the maxmove function encounters something better, it can quit right
away, since it knows the opponent will never let it take that move. Together, these
variables allow the algorithm to examine many fewer nodes, thus speeding up
performance considerably.

Results and Statistics

Comparing Static Evaluators

In order to determine which evaluator had the best performance, they were pitted against
each other in the combinations documented below. Each contest consisted of twenty
games, run with a lookahead level of three.

Eval1 vs. Eval2
Verdict: about equally matched
Eval1: 11 wins
Eval2: 9 wins

Eval2 vs. EvalSame
Verdict: about equally matched
Eval2: 11 wins
EvalSame: 9 wins

Eval2 vs. EvalAbsolute
Verdict: Eval2 is much better
Eval2: 20 wins
EvalAbsolute: 0 wins

Comparing Lookahead Levels
In order to determine the effect of lookahead levels on performance, players with
different levels of lookahead were pitted against each other. The evaluator Eval2 was
used for all players. As above, each contest consisted of 20 games. The results are as
follows:

1ply vs. 2ply
Verdict: about equally matched
1ply: 11 wins
2ply: 9 wins

2ply vs. 3ply
Verdict: about equally matched
2ply: 10 wins
3ply: 9 wins
Ties: 1

3ply vs. 4ply
Verdict: about equally matched
3ply: 11 wins
4ply: 9 wins

Conclusions
It seems like altering the lookahead does not significantly affect the player’s ability to
win the game. Perhaps it would start to make more of a difference as the lookahead

increased. However, since we are limited to 5 seconds per turn, 4 ply is about the limit of
how far my player can look.

Comparing Minimax and Alpha-Beta
Minimax: 9 wins
Alpha-Beta: 10
Ties: 1

This shows that the alpha-beta pruning doesn’t affect the performance of the program,
which is as expected, since it is supposed to be a speed improvement. To verify this
claim, we tested the following statistics:

Branching factor:

 Minimax Alpha-Beta
22.41176471 17.15384615
20.63636364 26.1

20.75 15
17.10526316 20.77777778
21.08333333 23.4
21.07142857 17.22222222
14.86956522 21.28571429
18.53846154 14.8

18 20.1875

Average
branching
factor per
move over
an entire
game

21.85714286 13.12121212

So alpha-beta pruning does have some positive impact on the game’s average branching
factor, although it may be slight. Per move, improvement can also be seen, as shown in
the following chart:

MINIMAX ALPHA-BETA
Move Time Evals Avg. B.F. Move Time Evals Avg. B.F.
0.173 13934 22.86875 0.155 5386 29.52879581
0.09 44944 34.53502235 0.047 21639 29.07244502
0.031 15424 18.83640553 0.032 16492 30.08787346
0.018 8863 14.84937888 0.042 21638 24.50487541
0.064 32111 30.13496377 0.016 8607 23.21025641
0.013 5690 28.73913043 0.021 10727 23.88747346
0.009 3637 7.434554974 0.019 8867 18.65940594
0.007 3074 16.00961538 0.015 6979 16.08154506
0.02 9620 21.01242236 0.014 6634 22.20952381
0.019 9002 24.19487179 0.035 14678 11.92210682
0.028 12311 17.99174691 0.049 21428 15.48785425
0.014 6604 21.63354037 0.038 15692 13.79105691
0.027 11969 15.48371532 0.045 19858 19.57796452
0.025 11836 15.65679012 0.024 9713 12.49764151

0.011 5649 13.35434783 0.022 9192 12.63556116
0.016 7990 14.15081967 0.012 5650 14.06436782
0.014 7325 13.68103448 0.009 4127 13.33827893
0.006 2690 10.40484429 0.009 4037 14.82993197
0.004 2050 12.86285714 0.003 1281 12.17948718
0.006 2568 11.32669323 0.006 2755 9.527607362
0.003 1705 15.1557377 0.005 1574 10.12571429
 0 125 10.12571429
0.02847619 10428.38095 18.11034488 0.028090909 9867.227273 17.60661279
Avg. Move

Time
Avg. Evals Avg. B.Fs. Avg. Move

Time
Avg. Evals Avg. B.Fs.

MINIMAX ALPHA-BETA

This shows that the alpha-beta pruning does improve the amount of the graph explored.
The number of evaluations, the average move time, and the average branching factor all
drop. The drop is slight, but surely more improvement would be seen with a higher
lookahead (these were all tested on a lookahead of 2).

Future Work
In the future, this project could be improved upon mainly by writing better evaluator
functions. The current ones still allow the opponent to win sometimes, by failing to
block, which could obviously use improvement. The project could also explore
improvements to the alpha-beta pruning algorithm, to make the entire thing faster, which
will in turn allow it to run at higher lookahead levels.

