
Creating a Computer Cop
An Integrated Approach to Recognizing Human Eating Activity

Peter Barnum, Dominic Marino, Evan Merz, Matt Pelmear, and Dasun Peramunage

Under Randall Nelson
University of Rochester

May 2003

Abstract
 Food damage causes untold
dollars of damage to computer labs
across the world. Most labs have rules
that prohibit eating, but theses rules are
difficult to enforce. A simple automated
system that is capable of detecting
violators has the ability to both cut down
on violations and to catch violators.
 In this project, we aim to
intelligently identify when people are
eating in the University of Rochester
computer lab. We created a system that
combines object recognition, gesture
detection, and sound recognition that
signals an alarm whenever someone is
found eating food in the lab.

Keywords: Computer Assisted
Surveillance, Color Histograms, Gesture
Recognition, Fast Fourier Transforms

1. Introduction

To detect suspicious behavior, a
multi-prong approach is ideal. Different
methods are better at detecting different
instances of eating. Everything in the
Vision Lab was available, which
includes several pan-tilt-zoom cameras
mounted on the ceiling and several high-
quality microphones, allowing us to
approach the problem from multiple
angles. We used these tools to create a
system that integrates object, gesture,
and sound recognition, all hooked into a
central detection server.

Certain common objects, such as
cracker boxes, can be detected easily by
their color histograms, but the object
recognizer has difficulty with objects
that have not been entered into its
database, such as a sandwich. The
sandwich can be detected by watching
hand motions. The repeated raising of
the hand to the mouth signals eating or
drinking. The gesture recognition
subsystem detects these unusual
circumstances and performs equally well
for objects that are unknown to the
object recognition database. However,
more problems arise when the culprit has
an unusual food or drink object and
consumes it in an unusual way. If both
the object detector and the gesture
recognizer fail, a sound recognition
subsystem can come in and catch sounds
such as the hiss during the opening of a
soda can. Combined together, these
three methods create a superior
recognition system.

2. Object Detection

2.1 Overview
 Many common food and drink
objects are detectable by looking at their
distinct color histograms. The amount
of each color that a scene contains can
be matched to a database that contains
several distinct items. If a food object is
found, then the system immediately
knows that there is a violator in the lab.

 1

2.2 Previous Work
The notion of using computer

vision to emulate a human’s ability to
identify objects is not new. The current
field of object detection has two major
concerns, the robust detection of items in
a scene and the retrieval of image data
from a database. The literature shows
many novel solutions to these problems.

Selinger and Nelson proposed a
system of object recognition that they
termed “A cubist approach” [2]. Their
identification scheme involves removing
certain features from a model, matching
these features in an image, and then
based on the collection of matches,
judging if the model object is in the
scene. Another approach by Vola and
Jones involves training a system, which
uses something similar to Haar Basis
functions and a cascading effect that
determines the ROI of an image [3].
They claim that their system, once
properly trained, is both quick and
accurate.

When a large number of images
need to be recognized, it is important to
have a means to retrieve the data quickly
and accurately. The ultimate goal of this
data-retrieval research is to access image
data based on the image information
rather than describe each entry with text.
Ma and Manjunath developed a
framework, termed NeTra, to retrieve
data accurately from a database using
color, texture, shape, and spatial
information [4].

The approach to object
recognition used by this project is
primarily influenced by the work of
Swain and Ballard [1]. The recognition
system they implemented involves the
use of color histograms and the
histogram intersection algorithm to
identify objects in a scene. They also
developed an image retrieval system that

employs partial histogram intersection to
recognize when an object logged in a
database appears in a scene.

2.3 Algorithm

The object recognition algorithm
works under the assumption that each
object has a unique color scheme. In a
situation such as food detection, the
objects, in this case foods, have
consistent coloration with other objects
of the same type. For example, all Coca-
Cola cans are the same shade of red and
have the same writing and graphics on
them. A method exists that extracts this
color information from an image of an
object, and so it is possible to use this
color data to detect the object in most
any environment.

There exists a method of
representing color information in a
model called a color histogram. The
purpose of a color histogram is to
maintain a count of all the occurrences
of each unique color that appears in the
image, with each distinctive color being
given its own bin. At every pixel in the
image, the color of the pixel is matched
with its corresponding bin in the
histogram, and the value in the color bin
is incremented by one. The example in
Figure 1 is the color histogram of a Coke
can image.

Figure 1: Color Histogram of the coke can
image in Figure 2.

 2

Figure 2: 216 color Coke can image

The color histogram is internally

represented as a three dimensional
matrix, where each axis represents red,
green, or blue. A multi-dimensional
array is used to represent the histogram
because of the difficulties of
representing RGB colors in a single
dimension array.

Further inquiry into the
properties of histograms must be made
before they are deemed fit as a means of
uniquely describing an object. To be
considered worthwhile for use with an
object recognition system, a histogram
must remain invariant under certain
conditions. As described in Swain’s
thesis, a histogram is invariant to
translation and rotation on a
perpendicular axis to the image plane; it
is also highly resistant to changes in the
viewing angel of the object, occlusions,
and changes in size. In the end, it is safe
to assume that a color histogram
adequately represents a unique problem.
However, since objects are three-
dimensional it is necessary that a
histogram be produced for each different
view of the object. For example, a
proper representation of a Coke can
involves taking a picture of its front and
back, because both sides are drastically
different from each other.

A database of histograms is
prepared for each object model. The
database is implemented exactly as
Swain suggests in his thesis. There is a
pre-detection phase where the database
is initialized. Each bin in each model’s
database is given a key, which represents
the percentage of that color in the image.
The bins are then sorted in descending
order by key, at which point detection
can begin. A histogram of the scene
being viewed is created. The bins in the
histogram are sorted in ascending order
by percentage of each color in the image.
Then a particular number of large bins
are compared with the database. Only
the models with a key that is larger than
the image’s key are accepted. If another
model’s bin is found, then the model is
matched with all previous large image
bins.

The previous recognition process
uses an algorithm called partial
histogram intersection, which is a faster
form of the histogram intersection
algorithm. The equation for partial
histogram intersection is:

 ∑ ∑= =
÷

n

j

n

j
jjj MMI

1 1
),min(

where I and M are histograms of both
the image and model respectively, and
both have n buckets. The result of
utilizing this algorithm is a value
between zero and one, which indicates
the degree of similarity between the
image histogram and the models
histogram.

 3

2.4 Results
Various tests were performed on

the object detector to test how well it
functioned. The first battery of tests
checked to see if the special properties
of histograms were true. The detector
adheres to the properties of histograms
discussed earlier (Table 1). All the
properties of histograms were tested.
All together, the object detector
succeeded 88% of the time.

Further testing checked to see if
variation in lighting and the scale of the
image had a negative impact on
recognition capabilities. Our results
indicate that large changes in lighting
have a dramatic affect on recognition.
During testing, the recognition
percentages hovered around 20% when
the lights in the room were turned down.
The object detector performed
excellently when part of the object being
detected was occluded. However,
sometimes key color tags could not be
detected and the detector chose the
wrong object from the database.

The only failure to detect
occurred when there were distractions in
the background of the image. In its
current state, the detector creates a color
histogram of the entire scene, which it
later compares to the models using
histogram intersection. By considering
the whole image in the color histogram,
we introduce the possibility of false
detection. Situations may arise where,
within the scene, there is a random
dispersal of colors, which are associated
with the object. The data from the
unwanted pixels will appear in the
histogram of the image.

 This is not a problem if the
model that is intended to be detected is
found in the scene, like in the situation
where a banana is placed on a scene

containing a tabletop with a yellow-
faced rabbit on it.

Figure 3: Scene with rabbit and banana

For the purpose of this example,

the rabbit and table are not objects but
rather part of the background. Using
unadulterated histogram intersection, the
excess pixel data (i.e. Yellow from the
rabbit’s face and the white of the table”)
does not hamper detection. The results
outputted by the detector indicate a
perfect match for the banana. Note that
there are buckets in the scene’s
histogram

Figure 4: Histogram of Scene

with higher values than the
corresponding buckets in the model
histogram.

 4

Figure 5: Histogram of Banana

 The histogram intersection
function does not take into account the
larger buckets in the scene’s histogram
and uses the values in the model
histogram’s buckets instead.

Problems arise in scenes such as this,

Figure 6: Scene with rabbit and banana

 which is just the background from the
previous example. When the object
detector analyzes the scene, it outputs
that the scene achieves an 85% match to
banana. Obviously, the result is wrong,
and when the analyzer sends this high
percentage to the classifier, it is likely
that the classifier will ultimately signal
that there is eating in the scene.

2.5 Future Work
The current object detection

scheme is by no means flawless, but
with a few additions, it would be
possible to improve its detection rates
dramatically. Currently, the algorithm is
based on the underlying assumption that
an object has a unique color histogram.
This supposition is more than adequate
for the specific situation we had. Food
and its packaging, in most cases, vary in
color both within itself and in
comparison to other objects. Based on
this observation, it is possible to detect
most food items. Unfortunately, color
data, from locations other than the
region of interest, also has dramatic
negative effect on results.
 To avoid such a predicament,
Swain suggests using background
subtraction or some sort of segmentation
to extract the objects that are of interest.
During development, some
experimentation was done using
background subtraction to eliminate
noise from the scene before making a
histogram out of it. The basic removal
algorithm involved individually
checking each pixel of the current scene
with a previously stored image that
represents the areas that do not need to
belong in the scene histogram. To
identify the pixel as part of the
background it needs to be within a color
range threshold. This takes into account
random noise created by changes in
illumination in the environment.
Unfortunately, the crude system caused
detection rates to fall. The background
subtraction algorithm sometimes gets
confused when a pixel that belongs to
the model is within the color threshold
of the corresponding background pixel.
It ends up thinking the pixel is still part
of the background and loses that piece of
image data.

 5

Future improvements could

involve a better background subtraction
system or another object detector that
gathers information about an object
without utilizing a histogram. The
histogram detector and the other object
recognizer could run synchronously and
thus insure accurate results.

3. Gesture Recognition

3.1 Overview

Part of illegal eating detection in
the lab involves looking for people who
perform suspicious gestures, such as
raising their hand to their mouth. The
path of the hand as it travels from its
resting position to the mouth is distinct
at almost all angles; it looks like slightly
curved crescent that goes up and then
doubles back on itself to go down.

3.2 Previous Work
 Rao and Shah suggested that
gestures could be recognized at any
angle by analyzing the points of the
gesture where the hand has zero
acceleration [5]. These points are going
to be viewable at any camera angle
unless they are completely perpendicular
to the camera. Rao and Shah created a
program that learns gestures based on
these zero-acceleration points. When
untrained people performed the gestures,
their system was able to recognize the
gestures with a great deal of accuracy.
 Another approach suggested by
Moy is that simple gestures could be
considered a collection of primitives.
Lines in various angles and circular
gestures are checked for alternations in
the dx and dy of the gesture [6]. Moy
had 90-100% recognition of simple
gestures and 71-91% recognition of
complex gestures.

 Kojima, Tamura, and Fukunaga
suggested that a natural language could
be made out of gestures and then
deciphered. For several actions, they
have a correct verb-classification rate of
over 80%, meaning that they were
usually able to tell what actions were
being performed. For long periods of
different motions, the scene could be
described by using a language to
describe the simple relations between
people and other objects.

3.3 Algorithms
 Human skin color is made up of
blood, which is red, and melatin, which
is brown. Both have more red than blue,
so a quick skin filter removes any part of
the picture that has more blue than red.
This filter does not remove all of the
wood and cardboard boxes, but since
neither of them move, the motion
detection algorithm removes them. The
main purpose of this filter is to remove
objects that may move but not be skin,
such as clothes and chairs.
 For our purposes, motion
detection is a fairly simple problem,
which we detect by using image
subtraction. We provide our motion-
detection function with a current image
frame, a previous frame, and a threshold.
The algorithm loops through all the
pixels in the current frame and makes a
new image containing the pixel-by-pixel
difference between the current frame and
previous frame. A threshold is applied to
the output image so that only pixels with
a difference over the threshold are left in
the returned image. If a pixel is above
the threshold it is returned as the
maximum intensity, otherwise the pixel
is set to zero. This algorithm supplies us
with an image outlining any movement
that has occurred in the video stream,
allowing us to track moving objects

 6

using our centroid-finding and tracking
routines.
 Once areas of moving flesh have
been found, it is necessary to decide
which belong to distinct hands and faces.
The motion image tends to look like a
thick line drawn around where the hand
or face was in the last frame and where it
is in the current frame. Each pixel of the
image is checked, and if it is close
enough to other pixels, they are
considered part of the same object.
Unless the hands or face get very close
to each other, then they are tagged as
distinct objects. Theoretically, any
number of hands and faces could be
classified, but practically, the system is
only able to distinguish about twenty
different objects at 320x280 resolution,
which is plenty for detecting distinct
gestures for every person in the lab.
 After being segmented, the
object blobs are passed to the centroid-
finder. The centroid-finder searches
through pixels in the image and records
the summation of the x and y values of
pixels with each color value (Red values
0-255 are used). The x and y sums are
then divided by the total number of
pixels of that color, yielding an average
x and y coordinate for each moving
object, which corresponds to the objects
centroid The set of coordinates produced
by the centroid-finder is stored in a
queue, thereby allowing us to track
locations through time, after some more
analysis:
 Once the centroids have been
detected, the program must decide where
the new object came from. It checks to
see which object was closest in the last
frame, and adds the new position to that
object's gesture path. If there are no
objects that are close enough, the
program will start a new path. Once any
path gets beyond a certain set length, it

will start shortening itself automatically.
If a gesture path has existed for a while
without lengthening, the program
assumes that the object has been lost and
deletes the path.
 To detect eating gestures, the
gesture is first smoothed out by
averaging each point with the points
three to its left and right. This removes a
lot of the noise, and gestures look like
smooth curves without sharp spikes and
little loops. Once it has been smoothed,
a whole group of statistics is calculated
for each gesture, namely average dx,
average dy, average heading, total dx,
total dy, average x, average y, maximum
x, maximum y, minimum x, minimum y,
average deviation of dx, average
deviation of dy, and average deviation
from heading. Some of them are not
currently used, but they are left in to add
support for detecting more complex
gestures in the future.
 Each path is then checked to see
if it is a known gesture. The system
recognizes lines drawn from the lower
left to the upper right,

Figure 7: Finding a line

 lines drawn from left to right, circles
drawn in either direction,

 7

Figure 8: Finding a circle

 and the curve that corresponds to the
eating motion.

Figure 9: Finding the eating motion

 It is very successful in detecting when a
gesture is present, but there are a decent
amount of false alarms.
 Gestures corresponding to eating
and drinking all have distinctive
elements. The exact values vary from
camera to camera and are optimized for
the specific angle of each camera. For
example, in one of the camera angles,
the program checks to see if the gesture
is longer on the y-axis than the x-axis, if
the average heading is between 1 and 4

radians, and if the average deviation of
heading if between .5 and 1.5 radians.
 Sometimes a person may walk by
close to a camera and cause a large
amount of random paths to be created.
To prevent excess detection during times
of extremely high activity, the system
will stop sending to the server if the
scene becomes too active, and waits a
few seconds for the scene to become
quiet. This filtering prevents many false
alarms.
 During the multiple repetitions
that occur during normally eating, the
system usually detects the gesture
several times, as long as the hand is not
too occluded. However, the system
sometimes gets a false positive on some
gestures that are not people eating. In
order to prevent these false positives, we
added a system that looks for repeated
eating gestures in the same place. The
system only sounds the alarm if it finds
the eating gesture in a similar place
several times over the course of a few
minutes. This multiple-gesture detection
scheme filters out random motions and
many gestures that could be
misclassified as eating. For the purposes
of integrating the gesture subsystem with
the other pieces, this repeated gesture
system has been toned down so it will
immediately send the results of detected
eating gestures to the main server.

3.4 Results
 To test the system, we had four
untrained subjects come in and try
various gestures. Each of the subjects
sat at several of the computer stations,
with all stations checked at least twice.
With each hand tested three times
apiece, each subject made the motions of
drinking a coke, eating a candy bar, and
putting a pen behind their ear. In
addition, each subject performed a
related action of their choosing,

 8

including smoothing hair, rubbing chin,
and rubbing nose with either or both
hands.
 There were three cameras set up
to watch the five stations. Each
camera’s successes and failures to detect
eating were counted separately. The
results of the experiment can be seen in
(Table 2). The dark red bars represent
actions that should not be detected as
eating and the light green bars are eating
gestures. Including all tests at all camera
angles, 37% of the eating gestures were
found and 14% of the non-eating
gestures were misclassified as eating.

For the purposes of the system,
these results are promising. Eating only
has to be detected a few times for an
alarm to be sounded, and the non-eating
actions should be infrequent enough to
not trigger an alarm. Multiple camera
angles lead to an effective overall
gesture recognition subsystem.
 Certain things were attempted for
the gesture recognition subsystem that
did not work well. These parts were
implemented, but did not function in the
lab environment. Problems with skin
detection, blob segmentation, and
centroid finding all cropped up. Motion
segmenting based on blurring was
experimented with, but did not appear to
be useful and so were never fully
implemented.
 Skin detection using HSV turned
out to not work well in the lab. The
cameras tend to grab light skin as well as
the floor as white, and there is so much
floor that the image is saturated with so
called “flesh.” In addition, the wood
tables tend to look like flesh, and since
most of the gestures have the wood
tables in the background, recognition is
difficult. HSV could be made to work,
but the mostly red filter combined with
the motion filter works well enough.

 Initially, the blob segmentation
code took the first unused motion pixel
and called itself recursively on that
pixel, and kept going recursively until
the whole blob was found. This was
inefficient for samples with large
amounts of motion, so we updated the
system so that it first labels all of the
pixels within a given distance iteratively
before recursing. The new system can
work at full speed even with a screen full
of motion.
 While the centroid-finder is fairly
efficient, it does have some problems.
The most significant of these problems is
its inability to correctly track objects
when they cross past each other. For
example, the centroid-tracker is
confused when a person facing directly
toward the camera starts with their arms
outstretched, so they are standing in a 'T'
shape, and then moves their hands so
their arms cross. Such a problem is not
trivial to resolve using our current
algorithms, but with different methods of
motion detection and tracking, this
problem could be resolved and the
gesture-tracking could handle more
complex input.
 For a period of time, we
experimented with a variation on our
image subtraction routine that could
have yielded results capable of solving
this problem. Our alternate movement-
detection routine would not only
highlight areas of movement that were
above the threshold, but would also 'blur'
the edges of the movement so it could
extrapolate each part of the object's
velocity given only two frames. We
ultimately abandoned this plan in favor
of the simpler image-subtraction
algorithm that was easier to implement,
but believe it could be a useful
alternative.

 9

3.5 Future Work
 The gesture recognition system
works, but there are many things that
would be good improvements. The most
helpful part would be to make a smarter
recognition system. A system that was
able to learn what actions are correct
could be much more powerful and robust
than the current system. It would be
helpful to be able to use a more
advanced system that would use every
piece of data that the gesture is made of,
instead of just working with averages.
The current system is somewhat view-
invariant and speed-invariant, but having
it more invariant would allow more
cameras to be used together without
extra work.
 To detect flesh, it would be best
to have a lookup table of all possible
skin tones. This would catch a lot more
flesh and remove a lot of noise. This
flesh detection method would allow for
more precise detection of the interesting
objects in the scene.
 Instead of using pixel change to
calculate motion, it would be better to
use optical flow. Optical flow is a way
to calculate each pixel’s velocity vector
[8]. Instead of calculating centroids for
each frame of motion, optical flow could
allow the program to see where each
centroid is moving. If there was
confusion over the identity of a centroid,
then it could be checked by how close its
velocity matches the old version. This
estimation process could be done with a
Kalman filter, which estimates the future
position of the object and finds the new
object with the greatest velocity
similarity [9].
 It would be helpful to more
accurately detect which part of the arm
is the hand. Currently, if the subject is
wearing short sleeves, the system tends
to tag the wrist as the hand. The wrist is

fairly close to the hand, but the gesture is
subtly different, and it would be better to
have precise sampling of where the hand
really is. If the arm was fitted to an oval,
then the end of the oval that moves the
fastest should be the hand, and this
would produce a more precise gesture.
 A smarter smoothing system for
the gestures could have better results.
Anisotropic diffusion with a Gaussian
kernel could allow for smart smoothing
that would keep a lot of important
information while smoothing out
unimportant noise [5]. Rao and Shah
successfully used this method to smooth
their data for action recognition.

4. Audio Classification and Detection

4.1 Overview

Audio classification has been a
problem for computer systems for a
significant amount of time, several
algorithms have emerged that work with
upwards of ninety percent accuracy.
Using combinations of features such as
the zero crossing reference, the nearest
feature line and various other Content
Based audio retrieval systems,
algorithms have been developed that
accurately detect and archive sounds.
For our purposes, we solely wish to
match an input sound to certain sounds
in a pre-created database. We use
several methods to match the input
sound to a database sound as will be
described here.

4.2 Algorithms

A sound is entered in the
database in the following manner. A
sound is first recorded into a .WAV file
to be stored temporarily in the computer.
By performing certain operations on the
sample, we can extract certain features
that are noise robust. What this means is
that these features will generally not be

 10

affected by background noise. In vision,
this terminology is used to describe a
feature that is robust against unwanted
background images. In audio, noise
literally means noise. It is the goal of a
noise robust feature to eliminate data
that is not beneficial and just takes up
space. The features we chose to extract
were the zero crossing rate, the
frequency domain and the short time
energy. These are identical to the ones
used by Srinivisan et al [10].

To do any sort of processing, we
must divide the sample into smaller
parts; we cannot just take an entire day
worth of audio and classify it all. At
first glance, choosing a large interval
seems good, but in order to save space
and actually increase accuracy, a small
interval is needed. We are tentatively
using an interval of 400 milliseconds.
At this point, one must further divide the
sample into N separate intervals. The
variable n is used to denote the separate
intervals in N. W(n) is the particular
interval we have chosen, based on the
current n. The variable m denotes the
starting time index. The function x(n) is
used to denote the discrete time.

The Zero Crossing Rate of an
audio sample is a measure of how many
times the amplitude of a sound sample
passes through the zero line on a graph,
for example, when it is a value of zero.
The sound of speech has a high ZCR
because of the way that humans speak.
A noise such as that of a soda can
opening does not have a very high zero
crossing rate. The sounds we used in
our database all have relatively low
ZCR. This works to our advantage, as
can be seen later. The ZCR of a sound is
not a very good feature for complete
classification, but it serves to describe
the sound in a simple way. The way to

extract the ZCR at starting sample m is
by use of this formula [11]:

)(|)]1([)]([|2/1 mnWnxsignnxsignZm
m

−−−= ∑

The sign function returns 1 for all values
of x(n) greater than or equal to zero and
zero for all other values.

A Fast Fourier Transform is
performed on the audio signal to give us
the frequency domain of the sound. The
transform leaves us with a histogram of
frequencies that depend on the size of
the signal. The histogram contains the
frequencies, spaced by an amount
dependent on the quality of the audio
and the size of the intervals, and the
corresponding average amplitudes for
each frequency. This domain is used in
finding the Spectral Energy of an audio
sample.

Figure 10: Frequencies of music

 11

Figure 11: Fourier Transform of same music

The short time energy of an audio
sample is given by the following
equation, using the same variables as
described above.

 [12] ∑ −=
m

mnWnxEm 2)()((

This equation is used in later processing,
as we will see.
 We recorded several sounds to be
in our database. The sound of a bottle of
carbonated beverage was our prime
model, simply because it cannot be
easily mistaken for anything else to the
human ear. We assumed that if this
sound appears distinct to human ears,
then it must have some fairly unique
features. Other sounds included the
sound of a can opening, which has a
distinctive early part as opposed to a
bottle, and the sound of a bag of potato
chips being handled. A database of
these sounds was created and the
features were extracted using the
program that was written. These
features became variables in the data
structure created for the sound. The data
structure consists of the ZCR, a
histogram describing the frequency
domain, and the Short Time Energy.
Most algorithms of this type have been
developed to classify speech vs. music
[12]. Very few papers have dealt with
the classification that we are dealing
with. Therefore, a new algorithm had to
be developed.
 The algorithm consists of a set of
comparisons between the features.
Certain measures extracted from the
various features are compared to each
other within certain thresholds to
determine if a sound may be the sound
we are looking for. The ZCR of a sound
can be used by itself as a measure. If the

ZCR is relatively high, we can dismiss
the sound as speech or noise. This
filtering acts as a good short circuit that
allows us to avoid running through a
large database of data to extract more
information.
 Should the sound not fall into
this category, we next use the short time
energy to determine if the sound is just
background noise. If the Energy is
below a certain level, then it can be
dismissed as background noise, such as a
keyboard or a mouse click.
 Finally, if the subsystem fails to
distinguish the sound with these features,
it has to do a comparison of the feature
domain. This is a tedious process, which
involves searching through a hash table
containing the histogram. A regular
hashing function is used to run through
the different frequencies to compare
each one. If a number of the frequencies
are relatively close to each other, we can
classify the sound as what we are
looking for. Since the database of
sounds is relatively small, this algorithm
is feasible. Should it be expanded later,
the algorithm will need to be changed,
but it is fine for our purposes.

4.3 Results

This system was the last one we
developed, and is in fact still under
development. Due to lack of
bookkeeping by our department, the
sound card we needed was not found
until last week. This has prevented us
from developing along the entire course
of the project. Unfortunately, time
constraints, and work on the other
subsystems of the project inhibited the
finalization of this system.

4.4 Future Work

The field of audio detection and
classification is rapidly expanding. In a

 12

way, this subsystem could have been a
project by itself. The implementation of
a more efficient database would greatly
improve speed and enable the user to
input many more sounds. In addition,
there are several other techniques for
deriving noise robust features from
sound, included in the literature
referenced below. Applications range
from security and surveillance to
archiving and reference. Overall, this is
an exciting field with much new research
to be done.

5. Miscellaneous

5.1 Learning
 For detecting when people are
eating, we tested two learning
algorithms. The first algorithm is an
attempt to learn histograms for object
detection, and the second is a simple
trainable neural net that decides when
the act of eating in the lab is occurring.
 The histogram learning program
provides a way for a user to help the
agent build accurate models of objects,
to be used in the object recognizer. The
goal was to create a single histogram of
an object that is view invariant and
background invariant and which could
locate the object in varied scenes and
orientations. To accomplish this we
wrote code that takes a frame from a
camera and, with input from the user,
locates the object in the scene. For each
frame as long as the user is willing to
train the agent, the agent averages the
histogram of the object in the current
frame with the average histogram of the
object over the previous frames.

Figure 12: Learning a histogram

 This strategy for defining object
histograms seemed logical at the start,
but in tests against multiple single-view
histograms, the learned histograms did
not locate the object as well.

Figure 13: Recognition using learned
histograms

Figure 14: Recognition using multiple single-
view histograms

 13

 Although this result was
bewildering at first, the explanation is
quite intuitive. Although we did create a
view-invariant histogram, the process
weakened the distinct features of each
view of the object. Storing many
histograms of the different views will
naturally perform better than averaging
all these histograms into one, especially
since we are using a histogram
intersection, which is only partly view-
invariant.
 The other way learning was used
was in making the final decision as to
when eating occurs. We wanted to
assign individual weights to the
probabilities being returned by the object
detector, gesture recognizer, and sound
recognizer, however we did not want
these weights to be arbitrarily assigned.
To solve this dilemma, we programmed
a simple perceptron, which takes the
several probabilities as input. To learn
the weights of each probability, we used
the perceptron learning algorithm as
discussed in “Artificial Intelligence: A
Modern Approach” [8]:

function NEURAL-NETWORK-

LEARNING(examples) return network
network <- a network with randomly assigned weights
repeat
 for each e in examples do
 O <-NEURAL-NET-OUTPUT(network, e)
 T<-the observed output values from e
 Update the weights in network based on e,O,,T
 end
until all examples correctly predicted
return network

 In test runs, this algorithm
performed fairly well, but the algorithm
made the wrong decision in a few
ambiguous cases. Assuming that the
weights are reasonably accurate, the
mistakes could occur because the space
of positives is not linearly separable
from the space of negatives. In other

words, though locating a coke can may
indicate eating far more often than
seeing a hand move up to a face does,
there can be situations where the
opposite is true. A perceptron cannot
handle these ambiguities. In the future,
a larger neural net or a Bayesian Net
could be created to perform such a task.

5.2 Networking
 In the integration of the three
respective pieces of our detection system
into the final probability we use TCP/IP
network communication as our method
of data-transport. This allows each
individual component of the analysis to
be run on its own computer, eliminating
the complexities of condensing all
portions of the code into one process that
accesses the video digitizer and another
that accesses the audio digitizer. We
have found the simplicity of this
approach is a great advantage as our
algorithms can be implemented from
multiple camera views and can be
located just about anywhere.
 All network connections are
made from the individual components to
one central 'server' when the system is
booted. This machine runs a simple
server that accepts the connections and
then listens for a continuous stream of
integers representing the probabilities
produced by each algorithm. Upon
receiving these probabilities, the server
feeds them to our perceptron for analysis
and final output.

5.3 GUI
 During the development process,
it became necessary to have real-time
control of constraints in our algorithms.
As the command prompt was used for
debugging printouts, we created a simple
control window using slider bars that we
could link to specific constraints at

 14

compile-time. This allowed us to see
immediate results from different data
ranges and significantly improved our
development time of the gesture-
recognition algorithm. We most
commonly used the controls to adjust
detection threshold constraints, as these
played a major role in tuning the
algorithm to work from different camera
angles.

6. Conclusion
 By using a varied system of
detection schemes, we were successfully
able to detect when people are eating in
the lab. We integrated object detection,
gesture recognition, and sound detection
to form a cohesive whole. Although the
problem is far from being truly solved,
the solution presented here is usable in
real situations. In theory, this solution
could be easily adapted to a task
involving recognizing other human
activities, such as recognizing when
people are studying in the library,
recognizing when a worker on an
assembly line is doing their job
improperly, or even recognizing when
people are playing baseball on the
baseball field. The solution is relatively
robust, and can lead the way for more
experiments into human activity
recognition.

References
[1] Swain, Ballard. “Color Indexing”(thesis) ,
University of Rochester.
[2] Selinger, Nelson. “A Cubist Approach to
Object Recognition”,
University of Rochester.
[3] Vola, Jones. “Robust Real-time Object
Detection”, Mitsubishi Electric Research Labs,
Compaq CRL.
[4] Ma, Wei-Ying and Manjunath, B.S. “NeTra:
A toolbox for navigating large image databases”,
Hewlett-Packard Laboratories, University of
California, Santa Barbra.
[5] Rao, Cen and Mubarak Shah, “View-
Invariance in Action Recognition” University of
Central Florida
[6] Moy, Milyn C, “Gesture-Based Interaction
with a Pet Robot” MIT Artificial Intelligence
Lab / Oracle Corporation
[7] Kojima, Atsuhiro, Takeshi Tamure, and
Kunio Fukunaga, “Natural Language Description
of Human Activities from Video Images Based
on Concept Hierarchy of Actions” Osaka
Prefecture University
[8] Russell, Stuart and Peter Norvig, “AI, A
Modern Approach”, Prentice Hall, 1995
[9] Simon, Dan “Kalman Filtering” Innovatia
Software, 1998-2001
[10]Srinivasan, Savitha et al “Towads Robust
Features for Classifying Audio in the CueVideo
System” IEE database
[11] Lu, Guojun & Hankinson, Templar “A
Technique Towards Automatic Audio
Classification and Retrieval” ICSP Proceedings,
1998; IEEE database
[12]Zhang, Tong & Kuo, Jay C. C. “Heirarchal
Classifcation of Audio Data For Archiving and
Retrieving” IEEE database

 15

 Coke Oreo Pa
Coke 4 0
Oreo 0 3

Pay-Day 0 0
Snack wells 0 0

Sprite 0 0
Wheat Thins 0 0

Pretzels 0 0

Table 1: The detector was tested agai

Table 2: Empirical test results

Conflict Matrix
y-Day Snack wells Sprite Wheat Thins Pretzels
0 0 0 0 1
0 0 2 0 0
5 0 0 0 0
0 4 1 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

nst partial occlusion, rotation, size variance, and change in angle.
16

	University of Rochester
	Keywords: Computer Assisted Surveillance, Color Histograms, Gesture Recognition, Fast Fourier Transforms
	2. Object Detection

	4.1 Overview
	4.3 Results
	4.4 Future Work
	5. Miscellaneous

	5.1 Learning
	
	6. Conclusion

	References

