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Abstract 
 Food damage causes untold 
dollars of damage to computer labs 
across the world.  Most labs have rules 
that prohibit eating, but theses rules are 
difficult to enforce.  A simple automated 
system that is capable of detecting 
violators has the ability to both cut down 
on violations and to catch violators. 
 In this project, we aim to 
intelligently identify when people are 
eating in the University of Rochester 
computer lab.  We created a system that 
combines object recognition, gesture 
detection, and sound recognition that 
signals an alarm whenever someone is 
found eating food in the lab. 
 
Keywords: Computer Assisted 
Surveillance, Color Histograms, Gesture 
Recognition, Fast Fourier Transforms 
 
1. Introduction 

To detect suspicious behavior, a 
multi-prong approach is ideal.  Different 
methods are better at detecting different 
instances of eating.  Everything in the 
Vision Lab was available, which 
includes several pan-tilt-zoom cameras 
mounted on the ceiling and several high-
quality microphones, allowing us to 
approach the problem from multiple 
angles.  We used these tools to create a 
system that integrates object, gesture, 
and sound recognition, all hooked into a 
central detection server. 

Certain common objects, such as 
cracker boxes, can be detected easily by 
their color histograms, but the object 
recognizer has difficulty with objects 
that have not been entered into its 
database, such as a sandwich.  The 
sandwich can be detected by watching 
hand motions.  The repeated raising of 
the hand to the mouth signals eating or 
drinking.  The gesture recognition 
subsystem detects these unusual 
circumstances and performs equally well 
for objects that are unknown to the 
object recognition database.  However, 
more problems arise when the culprit has 
an unusual food or drink object and 
consumes it in an unusual way.  If both 
the object detector and the gesture 
recognizer fail, a sound recognition 
subsystem can come in and catch sounds 
such as the hiss during the opening of a 
soda can.  Combined together, these 
three methods create a superior 
recognition system.  
 
2. Object Detection 
 
2.1 Overview 
 Many common food and drink 
objects are detectable by looking at their 
distinct color histograms.  The amount 
of each color that a scene contains can 
be matched to a database that contains 
several distinct items.  If a food object is 
found, then the system immediately 
knows that there is a violator in the lab. 
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2.2 Previous Work 
The notion of using computer 

vision to emulate a human’s ability to 
identify objects is not new.  The current 
field of object detection has two major 
concerns, the robust detection of items in 
a scene and the retrieval of image data 
from a database.  The literature shows 
many novel solutions to these problems.    

Selinger and Nelson proposed a 
system of object recognition that they 
termed “A cubist approach” [2].  Their 
identification scheme involves removing 
certain features from a model, matching 
these features in an image, and then 
based on the collection of matches, 
judging if the model object is in the 
scene.  Another approach by Vola and 
Jones involves training a system, which 
uses something similar to Haar Basis 
functions and a cascading effect that 
determines the ROI of an image [3].  
They claim that their system, once 
properly trained, is both quick and 
accurate. 

When a large number of images 
need to be recognized, it is important to 
have a means to retrieve the data quickly 
and accurately.  The ultimate goal of this 
data-retrieval research is to access image 
data based on the image information 
rather than describe each entry with text.  
Ma and Manjunath developed a 
framework, termed NeTra, to retrieve 
data accurately from a database using 
color, texture, shape, and spatial 
information [4].   

The approach to object 
recognition used by this project is 
primarily influenced by the work of 
Swain and Ballard [1].  The recognition 
system they implemented involves the 
use of color histograms and the 
histogram intersection algorithm to 
identify objects in a scene.  They also 
developed an image retrieval system that 

employs partial histogram intersection to 
recognize when an object logged in a 
database appears in a scene.    
 
2.3 Algorithm 

The object recognition algorithm 
works under the assumption that each 
object has a unique color scheme.  In a 
situation such as food detection, the 
objects, in this case foods, have 
consistent coloration with other objects 
of the same type.  For example, all Coca-
Cola cans are the same shade of red and 
have the same writing and graphics on 
them.  A method exists that extracts this 
color information from an image of an 
object, and so it is possible to use this 
color data to detect the object in most 
any environment. 

There exists a method of 
representing color information in a 
model called a color histogram.  The 
purpose of a color histogram is to 
maintain a count of all the occurrences 
of each unique color that appears in the 
image, with each distinctive color being 
given its own bin.  At every pixel in the 
image, the color of the pixel is matched 
with its corresponding bin in the 
histogram, and the value in the color bin 
is incremented by one.  The example in 
Figure 1 is the color histogram of a Coke 
can image.   
 

 
Figure 1: Color Histogram of the coke can 
image in Figure 2. 
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Figure 2: 216 color Coke can image 

 
The color histogram is internally 

represented as a three dimensional 
matrix, where each axis represents red, 
green, or blue.  A multi-dimensional 
array is used to represent the histogram 
because of the difficulties of 
representing RGB colors in a single 
dimension array.   

Further inquiry into the 
properties of histograms must be made 
before they are deemed fit as a means of 
uniquely describing an object.  To be 
considered worthwhile for use with an 
object recognition system, a histogram 
must remain invariant under certain 
conditions.  As described in Swain’s 
thesis, a histogram is invariant to 
translation and rotation on a 
perpendicular axis to the image plane; it 
is also highly resistant to changes in the 
viewing angel of the object, occlusions, 
and changes in size.  In the end, it is safe 
to assume that a color histogram 
adequately represents a unique problem.  
However, since objects are three-
dimensional it is necessary that a 
histogram be produced for each different 
view of the object.  For example, a 
proper representation of a Coke can 
involves taking a picture of its front and 
back, because both sides are drastically 
different from each other.  
 

A database of histograms is 
prepared for each object model.  The 
database is implemented exactly as 
Swain suggests in his thesis.  There is a 
pre-detection phase where the database 
is initialized.  Each bin in each model’s 
database is given a key, which represents 
the percentage of that color in the image.  
The bins are then sorted in descending 
order by key, at which point detection 
can begin.  A histogram of the scene 
being viewed is created.  The bins in the 
histogram are sorted in ascending order 
by percentage of each color in the image.  
Then a particular number of large bins 
are compared with the database.  Only 
the models with a key that is larger than 
the image’s key are accepted.  If another 
model’s bin is found, then the model is 
matched with all previous large image 
bins.   

The previous recognition process 
uses an algorithm called partial 
histogram intersection, which is a faster 
form of the histogram intersection 
algorithm.  The equation for partial 
histogram intersection is: 
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where I and M are histograms of both 
the image and model respectively, and 
both have n buckets.  The result of 
utilizing this algorithm is a value 
between zero and one, which indicates 
the degree of similarity between the 
image histogram and the models 
histogram.    
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2.4 Results 
Various tests were performed on 

the object detector to test how well it 
functioned.  The first battery of tests 
checked to see if the special properties 
of histograms were true.  The detector 
adheres to the properties of histograms 
discussed earlier (Table 1).  All the 
properties of histograms were tested.  
All together, the object detector 
succeeded 88% of the time.   

Further testing checked to see if 
variation in lighting and the scale of the 
image had a negative impact on 
recognition capabilities.  Our results 
indicate that large changes in lighting 
have a dramatic affect on recognition.  
During testing, the recognition 
percentages hovered around 20% when 
the lights in the room were turned down.   
The object detector performed 
excellently when part of the object being 
detected was occluded.  However, 
sometimes key color tags could not be 
detected and the detector chose the 
wrong object from the database.    

The only failure to detect 
occurred when there were distractions in 
the background of the image.  In its 
current state, the detector creates a color 
histogram of the entire scene, which it 
later compares to the models using 
histogram intersection.  By considering 
the whole image in the color histogram, 
we introduce the possibility of false 
detection.  Situations may arise where, 
within the scene, there is a random 
dispersal of colors, which are associated 
with the object.  The data from the 
unwanted pixels will appear in the 
histogram of the image.  

 This is not a problem if the 
model that is intended to be detected is 
found in the scene, like in the situation 
where a banana is placed on a scene 

containing a tabletop with a yellow-
faced rabbit on it.  
 

 
Figure 3: Scene with rabbit and banana 

 
For the purpose of this example, 

the rabbit and table are not objects but 
rather part of the background.  Using 
unadulterated histogram intersection, the 
excess pixel data (i.e. Yellow from the 
rabbit’s face and the white of the table”) 
does not hamper detection.  The results 
outputted by the detector indicate a 
perfect match for the banana.  Note that 
there are buckets in the scene’s 
histogram  
 

 
Figure 4: Histogram of Scene 
 
with higher values than the 
corresponding buckets in the model 
histogram. 
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Figure 5: Histogram of Banana 
 
  The histogram intersection 
function does not take into account the 
larger buckets in the scene’s histogram 
and uses the values in the model 
histogram’s buckets instead.   
 
Problems arise in scenes such as this, 

 
Figure 6: Scene with rabbit and banana 
 
 which is just the background from the 
previous example.  When the object 
detector analyzes the scene, it outputs 
that the scene achieves an 85% match to 
banana.  Obviously, the result is wrong, 
and when the analyzer sends this high 
percentage to the classifier, it is likely 
that the classifier will ultimately signal 
that there is eating in the scene.   
 
 
 
 

2.5 Future Work 
The current object detection 

scheme is by no means flawless, but 
with a few additions, it would be 
possible to improve its detection rates 
dramatically.  Currently, the algorithm is 
based on the underlying assumption that 
an object has a unique color histogram.  
This supposition is more than adequate 
for the specific situation we had.  Food 
and its packaging, in most cases, vary in 
color both within itself and in 
comparison to other objects.  Based on 
this observation, it is possible to detect 
most food items.  Unfortunately, color 
data, from locations other than the 
region of interest, also has dramatic 
negative effect on results. 
 To avoid such a predicament, 
Swain suggests using background 
subtraction or some sort of segmentation 
to extract the objects that are of interest.  
During development, some 
experimentation was done using 
background subtraction to eliminate 
noise from the scene before making a 
histogram out of it.  The basic removal 
algorithm involved individually 
checking each pixel of the current scene 
with a previously stored image that 
represents the areas that do not need to 
belong in the scene histogram.  To 
identify the pixel as part of the 
background it needs to be within a color 
range threshold.  This takes into account 
random noise created by changes in 
illumination in the environment.  
Unfortunately, the crude system caused 
detection rates to fall.  The background 
subtraction algorithm sometimes gets 
confused when a pixel that belongs to 
the model is within the color threshold 
of the corresponding background pixel.  
It ends up thinking the pixel is still part 
of the background and loses that piece of 
image data.   
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Future improvements could 

involve a better background subtraction 
system or another object detector that 
gathers information about an object 
without utilizing a histogram.  The 
histogram detector and the other object 
recognizer could run synchronously and 
thus insure accurate results.   
 
3. Gesture Recognition 
 
3.1 Overview 

Part of illegal eating detection in 
the lab involves looking for people who 
perform suspicious gestures, such as 
raising their hand to their mouth.  The 
path of the hand as it travels from its 
resting position to the mouth is distinct 
at almost all angles; it looks like slightly 
curved crescent that goes up and then 
doubles back on itself to go down.   
 
3.2 Previous Work 
 Rao and Shah suggested that 
gestures could be recognized at any 
angle by analyzing the points of the 
gesture where the hand has zero 
acceleration [5].  These points are going 
to be viewable at any camera angle 
unless they are completely perpendicular 
to the camera.  Rao and Shah created a 
program that learns gestures based on 
these zero-acceleration points.  When 
untrained people performed the gestures, 
their system was able to recognize the 
gestures with a great deal of accuracy. 
 Another approach suggested by 
Moy is that simple gestures could be 
considered a collection of primitives.  
Lines in various angles and circular 
gestures are checked for alternations in 
the dx and dy of the gesture [6].  Moy 
had 90-100% recognition of simple 
gestures and 71-91% recognition of 
complex gestures. 

 Kojima, Tamura, and Fukunaga 
suggested that a natural language could 
be made out of gestures and then 
deciphered.  For several actions, they 
have a correct verb-classification rate of 
over 80%, meaning that they were 
usually able to tell what actions were 
being performed.  For long periods of 
different motions, the scene could be 
described by using a language to 
describe the simple relations between 
people and other objects. 
 
3.3 Algorithms 
 Human skin color is made up of 
blood, which is red, and melatin, which 
is brown.  Both have more red than blue, 
so a quick skin filter removes any part of 
the picture that has more blue than red.  
This filter does not remove all of the 
wood and cardboard boxes, but since 
neither of them move, the motion 
detection algorithm removes them.  The 
main purpose of this filter is to remove 
objects that may move but not be skin, 
such as clothes and chairs. 
 For our purposes, motion 
detection is a fairly simple problem, 
which we detect by using image 
subtraction. We provide our motion-
detection function with a current image 
frame, a previous frame, and a threshold. 
The algorithm loops through all the 
pixels in the current frame and makes a 
new image containing the pixel-by-pixel 
difference between the current frame and 
previous frame. A threshold is applied to 
the output image so that only pixels with 
a difference over the threshold are left in 
the returned image. If a pixel is above 
the threshold it is returned as the 
maximum intensity, otherwise the pixel 
is set to zero. This algorithm supplies us 
with an image outlining any movement 
that has occurred in the video stream, 
allowing us to track moving objects 
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using our centroid-finding and tracking 
routines. 
 Once areas of moving flesh have 
been found, it is necessary to decide 
which belong to distinct hands and faces.  
The motion image tends to look like a 
thick line drawn around where the hand 
or face was in the last frame and where it 
is in the current frame.  Each pixel of the 
image is checked, and if it is close 
enough to other pixels, they are 
considered part of the same object.  
Unless the hands or face get very close 
to each other, then they are tagged as 
distinct objects.  Theoretically, any 
number of hands and faces could be 
classified, but practically, the system is 
only able to distinguish about twenty 
different objects at 320x280 resolution, 
which is plenty for detecting distinct 
gestures for every person in the lab. 
 After being segmented, the 
object blobs are passed to the centroid-
finder. The centroid-finder searches 
through pixels in the image and records 
the summation of the x and y values of 
pixels with each color value (Red values 
0-255 are used). The x and y sums are 
then divided by the total number of 
pixels of that color, yielding an average 
x and y coordinate for each moving 
object, which corresponds to the objects 
centroid The set of coordinates produced 
by the centroid-finder is stored in a 
queue, thereby allowing us to track 
locations through time, after some more 
analysis: 
 Once the centroids have been 
detected, the program must decide where 
the new object came from.  It checks to 
see which object was closest in the last 
frame, and adds the new position to that 
object's gesture path.  If there are no 
objects that are close enough, the 
program will start a new path.  Once any 
path gets beyond a certain set length, it 

will start shortening itself automatically.  
If a gesture path has existed for a while 
without lengthening, the program 
assumes that the object has been lost and 
deletes the path. 
 To detect eating gestures, the 
gesture is first smoothed out by 
averaging each point with the points 
three to its left and right.  This removes a 
lot of the noise, and gestures look like 
smooth curves without sharp spikes and 
little loops.  Once it has been smoothed, 
a whole group of statistics is calculated 
for each gesture, namely average dx, 
average dy, average heading, total dx, 
total dy, average x, average y, maximum 
x, maximum y, minimum x, minimum y, 
average deviation of dx, average 
deviation of dy, and average deviation 
from heading.  Some of them are not 
currently used, but they are left in to add 
support for detecting more complex 
gestures in the future. 
 Each path is then checked to see 
if it is a known gesture.  The system 
recognizes lines drawn from the lower 
left to the upper right, 
 

 
Figure 7: Finding a line 
 
 lines drawn from left to right, circles 
drawn in either direction, 
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Figure 8: Finding a circle 
 
 and the curve that corresponds to the 
eating motion. 
 

 
Figure 9: Finding the eating motion 
 
  It is very successful in detecting when a 
gesture is present, but there are a decent 
amount of false alarms. 
 Gestures corresponding to eating 
and drinking all have distinctive 
elements.  The exact values vary from 
camera to camera and are optimized for 
the specific angle of each camera.  For 
example, in one of the camera angles, 
the program checks to see if the gesture 
is longer on the y-axis than the x-axis, if 
the average heading is between 1 and 4 

radians, and if the average deviation of 
heading if between .5 and 1.5 radians.   
 Sometimes a person may walk by 
close to a camera and cause a large 
amount of random paths to be created.  
To prevent excess detection during times 
of extremely high activity, the system 
will stop sending to the server if the 
scene becomes too active, and waits a 
few seconds for the scene to become 
quiet.  This filtering prevents many false 
alarms. 
 During the multiple repetitions 
that occur during normally eating, the 
system usually detects the gesture 
several times, as long as the hand is not 
too occluded.  However, the system 
sometimes gets a false positive on some 
gestures that are not people eating.  In 
order to prevent these false positives, we 
added a system that looks for repeated 
eating gestures in the same place.  The 
system only sounds the alarm if it finds 
the eating gesture in a similar place 
several times over the course of a few 
minutes.  This multiple-gesture detection 
scheme filters out random motions and 
many gestures that could be 
misclassified as eating.  For the purposes 
of integrating the gesture subsystem with 
the other pieces, this repeated gesture 
system has been toned down so it will 
immediately send the results of detected 
eating gestures to the main server. 
 
3.4 Results 
 To test the system, we had four 
untrained subjects come in and try 
various gestures.  Each of the subjects 
sat at several of the computer stations, 
with all stations checked at least twice.  
With each hand tested three times 
apiece, each subject made the motions of 
drinking a coke, eating a candy bar, and 
putting a pen behind their ear.  In 
addition, each subject performed a 
related action of their choosing, 
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including smoothing hair, rubbing chin, 
and rubbing nose with either or both 
hands. 
 There were three cameras set up 
to watch the five stations.  Each 
camera’s successes and failures to detect 
eating were counted separately.  The 
results of the experiment can be seen in 
(Table 2).  The dark red bars represent 
actions that should not be detected as 
eating and the light green bars are eating 
gestures.  Including all tests at all camera 
angles, 37% of the eating gestures were 
found and 14% of the non-eating 
gestures were misclassified as eating.   

For the purposes of the system, 
these results are promising.  Eating only 
has to be detected a few times for an 
alarm to be sounded, and the non-eating 
actions should be infrequent enough to 
not trigger an alarm.  Multiple camera 
angles lead to an effective overall 
gesture recognition subsystem. 
 Certain things were attempted for 
the gesture recognition subsystem that 
did not work well.  These parts were 
implemented, but did not function in the 
lab environment.  Problems with skin 
detection, blob segmentation, and 
centroid finding all cropped up.  Motion 
segmenting based on blurring was 
experimented with, but did not appear to 
be useful and so were never fully 
implemented. 
 Skin detection using HSV turned 
out to not work well in the lab.  The 
cameras tend to grab light skin as well as 
the floor as white, and there is so much 
floor that the image is saturated with so 
called “flesh.”  In addition, the wood 
tables tend to look like flesh, and since 
most of the gestures have the wood 
tables in the background, recognition is 
difficult.  HSV could be made to work, 
but the mostly red filter combined with 
the motion filter works well enough. 

 Initially, the blob segmentation 
code took the first unused motion pixel 
and called itself recursively on that 
pixel, and kept going recursively until 
the whole blob was found.  This was 
inefficient for samples with large 
amounts of motion, so we updated the 
system so that it first labels all of the 
pixels within a given distance iteratively 
before recursing.  The new system can 
work at full speed even with a screen full 
of motion. 
 While the centroid-finder is fairly 
efficient, it does have some problems. 
The most significant of these problems is 
its inability to correctly track objects 
when they cross past each other. For 
example, the centroid-tracker is 
confused when a person facing directly 
toward the camera starts with their arms 
outstretched, so they are standing in a 'T' 
shape, and then moves their hands so 
their arms cross. Such a problem is not 
trivial to resolve using our current 
algorithms, but with different methods of 
motion detection and tracking, this 
problem could be resolved and the 
gesture-tracking could handle more 
complex input. 
 For a period of time, we 
experimented with a variation on our 
image subtraction routine that could 
have yielded results capable of solving 
this problem. Our alternate movement-
detection routine would not only 
highlight areas of movement that were 
above the threshold, but would also 'blur' 
the edges of the movement so it could 
extrapolate each part of the object's 
velocity given only two frames. We 
ultimately abandoned this plan in favor 
of the simpler image-subtraction 
algorithm that was easier to implement, 
but believe it could be a useful 
alternative.  
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3.5 Future Work 
 The gesture recognition system 
works, but there are many things that 
would be good improvements.  The most 
helpful part would be to make a smarter 
recognition system.  A system that was 
able to learn what actions are correct 
could be much more powerful and robust 
than the current system.  It would be 
helpful to be able to use a more 
advanced system that would use every 
piece of data that the gesture is made of, 
instead of just working with averages.  
The current system is somewhat view-
invariant and speed-invariant, but having 
it more invariant would allow more 
cameras to be used together without 
extra work. 
 To detect flesh, it would be best 
to have a lookup table of all possible 
skin tones.  This would catch a lot more 
flesh and remove a lot of noise.  This 
flesh detection method would allow for 
more precise detection of the interesting 
objects in the scene. 
 Instead of using pixel change to 
calculate motion, it would be better to 
use optical flow.  Optical flow is a way 
to calculate each pixel’s velocity vector 
[8].  Instead of calculating centroids for 
each frame of motion, optical flow could 
allow the program to see where each 
centroid is moving.  If there was 
confusion over the identity of a centroid, 
then it could be checked by how close its 
velocity matches the old version.  This 
estimation process could be done with a 
Kalman filter, which estimates the future 
position of the object and finds the new 
object with the greatest velocity 
similarity [9].  
 It would be helpful to more 
accurately detect which part of the arm 
is the hand.  Currently, if the subject is 
wearing short sleeves, the system tends 
to tag the wrist as the hand.  The wrist is 

fairly close to the hand, but the gesture is 
subtly different, and it would be better to 
have precise sampling of where the hand 
really is.  If the arm was fitted to an oval, 
then the end of the oval that moves the 
fastest should be the hand, and this 
would produce a more precise gesture. 
 A smarter smoothing system for 
the gestures could have better results.  
Anisotropic diffusion with a Gaussian 
kernel could allow for smart smoothing 
that would keep a lot of important 
information while smoothing out 
unimportant noise [5].  Rao and Shah 
successfully used this method to smooth 
their data for action recognition. 
 
4. Audio Classification and Detection 
 
4.1 Overview 

Audio classification has been a 
problem for computer systems for a 
significant amount of time, several 
algorithms have emerged that work with 
upwards of ninety percent accuracy.  
Using combinations of features such as 
the zero crossing reference, the nearest 
feature line and various other Content 
Based audio retrieval systems, 
algorithms have been developed that 
accurately detect and archive sounds.  
For our purposes, we solely wish to 
match an input sound to certain sounds 
in a pre-created database.  We use 
several methods to match the input 
sound to a database sound as will be 
described here. 
 
4.2 Algorithms 

A sound is entered in the 
database in the following manner.  A 
sound is first recorded into a .WAV file 
to be stored temporarily in the computer.  
By performing certain operations on the 
sample, we can extract certain features 
that are noise robust.  What this means is 
that these features will generally not be 
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affected by background noise.  In vision, 
this terminology is used to describe a 
feature that is robust against unwanted 
background images.  In audio, noise 
literally means noise.  It is the goal of a 
noise robust feature to eliminate data 
that is not beneficial and just takes up 
space.  The features we chose to extract 
were the zero crossing rate, the 
frequency domain and the short time 
energy. These are identical to the ones 
used by Srinivisan et al [10]. 

To do any sort of processing, we 
must divide the sample into smaller 
parts; we cannot just take an entire day 
worth of audio and classify it all.  At 
first glance, choosing a large interval 
seems good, but in order to save space 
and actually increase accuracy, a small 
interval is needed.  We are tentatively 
using an interval of 400 milliseconds.  
At this point, one must further divide the 
sample into N separate intervals.  The 
variable n is used to denote the separate 
intervals in N.  W(n) is the particular 
interval we have chosen, based on the 
current n.  The variable m denotes the 
starting time index.  The function x(n) is 
used to denote the discrete time. 

The Zero Crossing Rate of an 
audio sample is a measure of how many 
times the amplitude of a sound sample 
passes through the zero line on a graph, 
for example, when it is a value of zero.  
The sound of speech has a high ZCR 
because of the way that humans speak.  
A noise such as that of a soda can 
opening does not have a very high zero 
crossing rate.  The sounds we used in 
our database all have relatively low 
ZCR.  This works to our advantage, as 
can be seen later.  The ZCR of a sound is 
not a very good feature for complete 
classification, but it serves to describe 
the sound in a simple way.  The way to 

extract the ZCR at starting sample m is 
by use of this formula [11]: 
    

)(|)]1([)]([|2/1 mnWnxsignnxsignZm
m

−−−= ∑
 
The sign function returns 1 for all values 
of x(n) greater than or equal to zero and 
zero for all other values.   

A Fast Fourier Transform is 
performed on the audio signal to give us 
the frequency domain of the sound.  The 
transform leaves us with a histogram of 
frequencies that depend on the size of 
the signal.  The histogram contains the 
frequencies, spaced by an amount 
dependent on the quality of the audio 
and the size of the intervals, and the 
corresponding average amplitudes for 
each frequency.  This domain is used in 
finding the Spectral Energy of an audio 
sample. 

 
Figure 10: Frequencies of music 
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Figure 11: Fourier Transform of same music 
 
 

The short time energy of an audio 
sample is given by the following 
equation, using the same variables as 
described above. 
 

 [12] ∑ −=
m

mnWnxEm 2)()((

This equation is used in later processing, 
as we will see. 
 We recorded several sounds to be 
in our database.  The sound of a bottle of 
carbonated beverage was our prime 
model, simply because it cannot be 
easily mistaken for anything else to the 
human ear.  We assumed that if this 
sound appears distinct to human ears, 
then it must have some fairly unique 
features.  Other sounds included the 
sound of a can opening, which has a 
distinctive early part as opposed to a 
bottle, and the sound of a bag of potato 
chips being handled.  A database of 
these sounds was created and the 
features were extracted using the 
program that was written.  These 
features became variables in the data 
structure created for the sound.  The data 
structure consists of the ZCR, a 
histogram describing the frequency 
domain, and the Short Time Energy.   
Most algorithms of this type have been 
developed to classify speech vs. music 
[12].  Very few papers have dealt with 
the classification that we are dealing 
with.  Therefore, a new algorithm had to 
be developed.   
 The algorithm consists of a set of 
comparisons between the features.  
Certain measures extracted from the 
various features are compared to each 
other within certain thresholds to 
determine if a sound may be the sound 
we are looking for.  The ZCR of a sound 
can be used by itself as a measure.  If the 

ZCR is relatively high, we can dismiss 
the sound as speech or noise.  This 
filtering acts as a good short circuit that 
allows us to avoid running through a 
large database of data to extract more 
information. 
 Should the sound not fall into 
this category, we next use the short time 
energy to determine if the sound is just 
background noise.  If the Energy is 
below a certain level, then it can be 
dismissed as background noise, such as a 
keyboard or a mouse click.   
 Finally, if the subsystem fails to 
distinguish the sound with these features, 
it has to do a comparison of the feature 
domain.  This is a tedious process, which 
involves searching through a hash table 
containing the histogram.  A regular 
hashing function is used to run through 
the different frequencies to compare 
each one.  If a number of the frequencies 
are relatively close to each other, we can 
classify the sound as what we are 
looking for.  Since the database of 
sounds is relatively small, this algorithm 
is feasible.  Should it be expanded later, 
the algorithm will need to be changed, 
but it is fine for our purposes.   
 
4.3 Results 

This system was the last one we 
developed, and is in fact still under 
development.  Due to lack of 
bookkeeping by our department, the 
sound card we needed was not found 
until last week.  This has prevented us 
from developing along the entire course 
of the project.  Unfortunately, time 
constraints, and work on the other 
subsystems of the project inhibited the 
finalization of this system.   
 
4.4 Future Work 

The field of audio detection and 
classification is rapidly expanding.  In a 
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way, this subsystem could have been a 
project by itself.  The implementation of 
a more efficient database would greatly 
improve speed and enable the user to 
input many more sounds.  In addition, 
there are several other techniques for 
deriving noise robust features from 
sound, included in the literature 
referenced below.  Applications range 
from security and surveillance to 
archiving and reference.  Overall, this is 
an exciting field with much new research 
to be done. 
 
5. Miscellaneous 
 
5.1 Learning 
 For detecting when people are 
eating, we tested two learning 
algorithms.  The first algorithm is an 
attempt to learn histograms for object 
detection, and the second is a simple 
trainable neural net that decides when 
the act of eating in the lab is occurring. 
 The histogram learning program 
provides a way for a user to help the 
agent build accurate models of objects, 
to be used in the object recognizer.  The 
goal was to create a single histogram of 
an object that is view invariant and 
background invariant and which could 
locate the object in varied scenes and 
orientations.  To accomplish this we 
wrote code that takes a frame from a 
camera and, with input from the user, 
locates the object in the scene.  For each 
frame as long as the user is willing to 
train the agent, the agent averages the 
histogram of the object in the current 
frame with the average histogram of the 
object over the previous frames. 
 

 
Figure 12: Learning a histogram 
 
 This strategy for defining object 
histograms seemed logical at the start, 
but in tests against multiple single-view 
histograms, the learned histograms did 
not locate the object as well. 
 

 
Figure 13: Recognition using learned 
histograms 
 
 
 

 
Figure 14: Recognition using multiple single-
view histograms 
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 Although this result was 
bewildering at first, the explanation is 
quite intuitive.  Although we did create a 
view-invariant histogram, the process 
weakened the distinct features of each 
view of the object.  Storing many 
histograms of the different views will 
naturally perform better than averaging 
all these histograms into one, especially 
since we are using a histogram 
intersection, which is only partly view-
invariant. 
 The other way learning was used 
was in making the final decision as to 
when eating occurs.  We wanted to 
assign individual weights to the 
probabilities being returned by the object 
detector, gesture recognizer, and sound 
recognizer, however we did not want 
these weights to be arbitrarily assigned. 
To solve this dilemma, we programmed 
a simple perceptron, which takes the 
several probabilities as input.  To learn 
the weights of each probability, we used 
the perceptron learning algorithm as 
discussed in “Artificial Intelligence: A 
Modern Approach” [8]: 
 
function NEURAL-NETWORK- 

LEARNING(examples) return network 
network <- a network with randomly assigned weights 
repeat 
     for each e in examples do 
        O <-NEURAL-NET-OUTPUT(network, e) 
      T<-the observed output values from e 
          Update the weights in network based on e,O,,T 
       end 
until all examples correctly predicted  
return network  
 
 
  In test runs, this algorithm 
performed fairly well, but the algorithm 
made the wrong decision in a few 
ambiguous cases.  Assuming that the 
weights are reasonably accurate, the 
mistakes could occur because the space 
of positives is not linearly separable 
from the space of negatives.  In other 

words, though locating a coke can may 
indicate eating far more often than 
seeing a hand move up to a face does, 
there can be situations where the 
opposite is true.  A perceptron cannot 
handle these ambiguities.  In the future, 
a larger neural net or a Bayesian Net 
could be created to perform such a task. 
 
5.2 Networking 
 In the integration of the three 
respective pieces of our detection system 
into the final probability we use TCP/IP 
network communication as our method 
of data-transport. This allows each 
individual component of the analysis to 
be run on its own computer, eliminating 
the complexities of condensing all 
portions of the code into one process that 
accesses the video digitizer and another 
that accesses the audio digitizer. We 
have found the simplicity of this 
approach is a great advantage as our 
algorithms can be implemented from 
multiple camera views and can be 
located just about anywhere. 
 All network connections are 
made from the individual components to 
one central 'server' when the system is 
booted. This machine runs a simple 
server that accepts the connections and 
then listens for a continuous stream of 
integers representing the probabilities 
produced by each algorithm. Upon 
receiving these probabilities, the server 
feeds them to our perceptron for analysis 
and final output. 
 
5.3 GUI 
 During the development process, 
it became necessary to have real-time 
control of constraints in our algorithms. 
As the command prompt was used for 
debugging printouts, we created a simple 
control window using slider bars that we 
could link to specific constraints at 
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compile-time. This allowed us to see 
immediate results from different data 
ranges and significantly improved our 
development time of the gesture-
recognition algorithm. We most 
commonly used the controls to adjust 
detection threshold constraints, as these 
played a major role in tuning the 
algorithm to work from different camera 
angles. 
 
6. Conclusion 
 By using a varied system of 
detection schemes, we were successfully 
able to detect when people are eating in 
the lab.  We integrated object detection, 
gesture recognition, and sound detection 
to form a cohesive whole.  Although the 
problem is far from being truly solved, 
the solution presented here is usable in 
real situations.  In theory, this solution 
could be easily adapted to a task 
involving recognizing other human 
activities, such as recognizing when 
people are studying in the library, 
recognizing when a worker on an 
assembly line is doing their job 
improperly, or even recognizing when 
people are playing baseball on the 
baseball field.  The solution is relatively 
robust, and can lead the way for more 
experiments into human activity 
recognition. 
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 Coke Oreo Pa
Coke 4 0 
Oreo 0 3 

Pay-Day 0 0 
Snack wells 0 0 

Sprite 0 0 
Wheat Thins 0 0 

Pretzels 0 0 

Table 1: The detector was tested agai  

 

Table 2: Empirical test results  

 

Conflict Matrix 
y-Day Snack wells Sprite Wheat Thins Pretzels
0 0 0 0 1 
0 0 2 0 0 
5 0 0 0 0 
0 4 1 0 0 
0 0 5 0 0 
0 0 0 5 0 
0 0 0 0 5 

 
nst partial occlusion, rotation, size variance, and change in angle.
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