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Propositional Logic

CSC 173

• Propositional logic – mathematical model (or 
algebra) for reasoning about the truth of logical 
expressions (propositions)

• Logical expressions – propositional variables or 
logical expressions connected with logical 
operators (not, and, or)

• Uses
– design of digital circuits
– Composition of logical expressions in programs
– Automatic reasoning systems
– Model of computation (programming language 

Prolog)

Logical Expressions

• Propositional variables (whose value is TRUE or FALSE) 
and the propositional constants TRUE and FALSE are 
logical expressions

• If LE1 and LE2 are logical expressions, then LE1 AND 
LE2 is a logical expression, whose value is TRUE if both 
LE1 and LE2 have the value TRUE, and is FALSE 
otherwise

• If LE1 and LE2 are logical expressions, then LE1 OR 
LE2 is a logical expression, whose value is TRUE if 
either LE1 or LE2 have the value TRUE, and is FALSE 
otherwise

• If LE1 is a logical expression, then NOT LE1 is a logical 
expression, whose value is TRUE if LE1 has the value 
FALSE, and is FALSE otherwise

Algebraic Laws for Logical 
Expressions

• AND and OR are commutative
• AND and OR are associative
• AND is distributive over OR; OR is distributive over AND
• TRUE is the identity for AND; FALSE is the identity for 

OR
• FALSE annihilates AND; TRUE annihilates OR
• AND and OR are idempotent (p AND p 

�
p OR p 

�
p)

• Subsumption
– (p OR (p AND q)) � (p AND (p OR q)) � p

• DeMorgan’s Laws:
– NOT(p AND q) � (NOT p) OR (NOT q)
– NOT(p OR q) � (NOT p) AND (NOT q)

Logic Minimization

• Essence of simplification
– Repeatedly find two-element sub-sets of true 

values in which only one variable changes its 
value while the other variables do not

– Apply the Unifying Theorem to eliminate the 
single varying variable –

• FUNC = A.B + A.B
• FUNC = A. (B+B) – apply the Distributive law of 

Boolean Algebra
• F = A – apply the Inverse law of Boolean Algebra

_
_

_

CNF and DNF

• Disjunctive normal form (DNF) – sum of 
products

• Conjunctive normal form (CNF) – product 
of sums

Construct logical expressions from truth 
tables using either DNF or CNF
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Karnaugh Maps
• A graphical representation of the truth table – boolean cube in n-

dimensional space where n is the number of input variables
• Entry for each combination of input variables specifying the value of 

the output function
• Uses Gray code encoding – advancing from 1 index to the next 

changes the value of only a single input variable/bit
• Multi-dimensional table with logical adjacency along a dimension 

– And two adjacent elements (horizontal or vertical) are distance one 
apart

– Adjacencies provide clues about whether uniting theorem can be 
applied

Goal: fina a minimum cover of the 1’a using rectangles or squares 
containing a power of 2 number of 1’s 

In essence, a mechanical method to find the don’t cares in the truth 
table

Completeness of NAND

• p AND q 
�

((p NAND q) NAND TRUE)

• p OR q 
�

((p NAND TRUE) NAND (q 
NAND TRUE)) 

�
(NOT p) NAND (NOT q)

• (NOT p) 
�

(p NAND TRUE) 
�

(p NAND p)

• Laws of implication
• Reasoning with Propositional logic

– Deductive proofs
• Take as given a set of premises (or hypotheses) 

that are known to be try and attempt to prove a 
conclusion valid by a sequence of steps, termed 
inferences

• Each inference follows from the premises or a 
previous inference by application of an inference 
rule

Laws of Implication

• p � q 
�

NOT p OR q
• (p � q) AND (q � p) 

�
(p 

�
q)

• (p 
�

q) � (p � q) 
• (p1 AND p2 AND …pn � q) 

�
(NOT p1 

OR NOT p2 OR … NOT pn OR q)
• (p � q) � (NOT q � NOT p) 

(contrapositive law)
• ((p � q) AND (NOT p � q)) 

�
q

Reasoning with Propositional Logic

• Given premises (or inferences) P1…Pn, we can infer 
expression E if P1 AND P2 AND …Pn � E is a tautology
– Whenever E is a tautology, P1 AND P2 AND …Pn � E is a 

tautology
– Given two premises P1 and P1, we can infer P1 AND P2
– If P1 and (P1 � P2) are given or inferred, then we can infer P2 

by the rule of “modus ponens” ((p AND (p � q)) � q)
– If NOT P2 and (P1 � P2) are given or inferred, then we can infer 

NOT P1 by the rule of “modus tollens”
– If P1 and (P1 � P2) are given or inferred, we can infer P2

• Techniques
– Prove tautologies using inference
– Deductive proof

Proof with Resolution

• Resolution tautology - If we know p OR q and p 
� r then we can deduce q OR r
– (p OR q) AND (NOT p OR r) � q OR r

• In order to apply resolution in a proof:
– Express hypotheses and conclusion as a product of 

sums (conjunctive normal form), such as those that 
appear above

– Each maxterm in the CNF of the hypothesis becomes  
a clause of the proof

– Apply the resolution tautology to pairs of clauses, 
producing new clauses

– Prove by producing all clauses of the conclusion OR 
prove by contradiction using resolution
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Circuit Design

• Gate:
– Basic electronic device.
– Computes a Boolean function.

– AND, OR, NOT, NAND:
• Easy to implement
• Conceptually any number of inputs
• Used in practice

AND ORNAND NORNOT

Circuit Design

• Circuit:
– A combination of gates

• Output of some gates are the input of others.

– Has one or more inputs:
• These are inputs to the gates in the circuit.

– May have one or more outputs.

3-input NAND: 
•Two 2-input AND.
•One Inverter.

Combinational & Sequential
Circuits

• Combinational:
– Output is a Boolean function of input values.
– Are Acyclic:

• No cycles between inputs of a gate and its outputs.

– No memory:
• Cannot remember previous inputs or outputs.

– Example of use:
• Decode instructions and perform arithmetic.

Combinational & Sequential
Circuits (2)

• Sequential:
– Output depends on the current input 

values and the previous sequence of input 
values.

– Are Cyclic:
• Output of a gate feeds its input at some future 

time.

– Memory:
• Remember results of previous operations
• Use them as inputs.

– Example of use:
• Build registers and memory units.

Combinational Circuit:
Encoder for a 7-Segment 

Display
• Goal: Design a circuit…

– With 10 inputs: i0, i1, i2, …, i9.
• Each one corresponds to the 

decimal digits (0-9).

– Lights up the display 
segments A, B, C, …, G.

• As needed to display the digit 
specified by the input.

• Total: 7 outputs.

A

B

C

G

D
E

F

Number  2:
•Input i2==1.
•i0, i1, i3, …, i9 == 0.
•Outputs:
•A=B=D=E=G=1
•C=F=0

Encoder for a 7-Segment 
Display (2)

• Boolean expression for the outputs:

9865432

986540

8620

865320

987654310

98743210

9875320

iiiiiiiG

iiiiiiF

iiiiE

iiiiiiD

iiiiiiiiiC

iiiiiiiiB

iiiiiiiA

++++++=
+++++=

+++=
+++++=

++++++++=
+++++++=

++++++=

� Build the circuit with 7 OR gates:
� One for each segment of the display

A

B

C

G

D
E

F
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Encoder for a 7-Segment 
Display (3)

i0

i1

i2

i3

i4

i6

i5

i7

i9

i8

A

B

and so on…

Constraints on Circuit Design

• Numerous constraints impact: 
– The speed and cost of a circuit.

• Speed:
– Every gate in a circuit introduces a small 

delay.
– Circuit delay depends on the number of gates 

between inputs and outputs
– Depends on fan-in and fan-out of a gate

Constraints on Circuit Design

• Size limitations:
– More gates lead to larger circuits.
– Large circuits are more expensive

• Higher failure rate.

– And slower.
• Signals must propagate from one end to the 

other.

• Fan-in and Fan-out:
– Number of inputs and outputs of a gate.
– Large fan-in makes a gate slower.

Divide and Conquer Adder

• Already seen Ripple-Carry adder
• Need:

– Adder with a smaller delay for larger words.

• Solution:
– Use a divide and conquer strategy.
– Use two N/2-bit adders and combine 

results.
– Left and right halves added in parallel.

Divide and Conquer Adder (2)

• Carry: Not known in advance:
– How can the adders operate in parallel?
– Compute to sums for the upper half.

• One assuming there is a carry. 

• One assuming there is NO carry.

– Use additional circuit to select the correct sum.

x1 y1 xn/2 yn/2
carry

xn/2+1 yn/2+1 xn yn

z1 zn/2 zn/2+1 zn

Design of an N-adder

• Assume two N-bit operands: x1…xN & y1…yN.
• Design N-adder that computes:

– Sum without carry-in: s1…sN.
– Sum with carry-in: t1…tN.
– The carry-propagate bit, p: 

• It is 1 if there is a carry-out assuming there is carry-in.

– The carry-generate bit, g:
• It is 1 if there is a carry-out even if there is NO carry-in.

• NOTE: if g is one then p will be one too (g implies p).

• First, build an 1-bit adder.
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A 1-bit Adder

 
 

 

x y s t p g 
0 0 0 1 0 0 
0 1 1 0 1 0 
1 0 1 0 1 0 
1 1 0 1 1 1 xyg

yxp

xyyxt

yxyxs

=
+=
+=
+=

Boolean Functions Logical Expressions

A 2-bit Adder from 1-bit Adders

High Order
1-bit Adder

sHtHgHpH

Low Order
1-bit Adder

sLtLgLpL

FIX

s1t1s2t2gp

x2 y2 x1 y1

``FIX’’ Circuit

• Carry-propagate bit: p= pHpL +gH
– If there is a carry-in p is 1 if:

• Both the low and high order part propagate a 
carry (pHpL).

• Or: The high order part generates a carry (gH).

• Carry-generate bit: g= gH+ gLpH
– If there is NO carry-in g is 1 if:

• If the high order part generates a carry (gH).
• Or if there is a carry from the low part and the 

high part propagate that carry (gLpH).

``FIX’’ Circuit (2)

• High order sum, NO carry-in:
– It is:

• sH if there is no carry from low order part (~gL).
• tH if there is carry from low order part (gL).

• High order sum, with carry-in:
– It is:

• tH if there is a carry from the low order part.
• sH otherwise.

LHLH gtgss +=2

LHLH ptpst +=2

Sequential Circuits for 
Memory Elements.

• Memory element:
– A collection of gates capable of producing 

its last input as output.
– They are sequential circuits.

• Their behavior depends on current and past 
inputs.

• Flip-flop:
– A 1-bit memory element.
– Typical flip-flop: 

• Takes two inputs (load and data-in).
• Produces one output (data-out).

Flip-Flops

• Load==0:
– The circuit produces the stored value as 

output.

• Load==1: 
– The circuit stores the value data-in and
– Produces it as output.
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Flip-Flop Circuit

• Load=1�A1=0 �data-out=A2=data-in.
• Load=0 �A2=0 �data-out=A1

– Which is the previously stored value.

load

data-in

data-outA1

A2


