Propositional Logic

CSC 173

« Propositional logic — mathematical model (or
algebra) for reasoning about the truth of logical
expressions (propositions)

 Logical expressions — propositional variables or
logical expressions connected with logical
operators (not, and, or)

e Uses
— design of digital circuits
— Composition of logical expressions in programs
— Automatic reasoning systems

— Model of computation (programming language
Prolog)

Logical Expressions

» Propositional variables (whose value is TRUE or FALSE)
and the propositional constants TRUE and FALSE are
logical expressions

» If LE1 and LE2 are logical expressions, then LE1 AND
LE2 is a logical expression, whose value is TRUE if both
LE1 and LE2 have the value TRUE, and is FALSE
otherwise

» If LE1 and LE2 are logical expressions, then LE1 OR
LE2 is a logical expression, whose value is TRUE if
either LE1 or LE2 have the value TRUE, and is FALSE
otherwise

* If LE1 is a logical expression, then NOT LEL1 is a logical

expression, whose value is TRUE if LE1 has the value
FALSE, and is FALSE otherwise

Algebraic Laws for Logical
Expressions

AND and OR are commutative

AND and OR are associative

AND is distributive over OR; OR is distributive over AND
‘I(;IE{UE is the identity for AND; FALSE is the identity for

FALSE annihilates AND; TRUE annihilates OR

AND and OR are idempotent (p AND p=p OR p =p)
Subsumption

— (POR (p AND g)) = (p AND (p OR @)) = p

DeMorgan’s Laws:

— NOT(p AND g) = (NOT p) OR (NOT q)

— NOT(p OR g) = (NOT p) AND (NOT q)

Logic Minimization

» Essence of simplification
— Repeatedly find two-element sub-sets of true
values in which only one variable changes its
value while the other variables do not
— Apply the Unifying Theorem to eliminate the
single varying variable —
*FUNC=AB+AB

« FUNC = A. (B+B) — apply the Distributive law of
Boolean Algebra

* F = A —apply the Inverse law of Boolean Algebra

CNF and DNF

« Disjunctive normal form (DNF) — sum of
products

e Conjunctive normal form (CNF) — product
of sums

Construct logical expressions from truth
tables using either DNF or CNF




Karnaugh Maps

< A graphical representation of the truth table — boolean cube in n-
dimensional space where n is the number of input variables
< Entry for each combination of input variables specifying the value of
the output function
« Uses Gray code encoding — advancing from 1 index to the next
changes the value of only a single input variable/bit
« Multi-dimensional table with logical adjacency along a dimension
— And two adjacent elements (horizontal or vertical) are distance one
apart
— Adjacencies provide clues about whether uniting theorem can be
applied
Goal: fina a minimum cover of the 1'a using rectangles or squares
containing a power of 2 number of 1's

In esgfnce, a mechanical method to find the don't cares in the truth
table

Completeness of NAND

« p AND q = ((p NAND g) NAND TRUE)

« pOR g = ((p NAND TRUE) NAND (q
NAND TRUE)) = (NOT p) NAND (NOT q)

« (NOT p) = (p NAND TRUE) = (p NAND p)

 Laws of implication

» Reasoning with Propositional logic
— Deductive proofs
» Take as given a set of premises (or hypotheses)
that are known to be try and attempt to prove a
conclusion valid by a sequence of steps, termed
inferences
« Each inference follows from the premises or a

previous inference by application of an inference
rule

Laws of Implication

*p—=g=NOTpORQ(Q

(P—a)AND (@—p)=(p=0)
*(P=g)—>(p—0)

(p1 AND p2 AND ...pn — ) = (NOT p1
OR NOT p2 OR ... NOT pn OR q)

(p — q) — (NOT g — NOT p)
(contrapositive law)

((0— ) AND (NOTp —Qq))=q

Reasoning with Propositional Logic

» Given premises (or inferences) P1...Pn, we can infer
expression E if P1 AND P2 AND ...Pn — E is a tautology

— Whenever E is a tautology, P1 AND P2 AND ...Pn — Eis a
tautology

— Given two premises P1 and P1, we can infer P1 AND P2

— If P1 and (P1 —P2) are given or inferred, then we can infer P2
by the rule of “modus ponens” ((p AND (p —q)) — q)

— If NOT P2 and (P1 —P2) are given or inferred, then we can infer
NOT P1 by the rule of “modus tollens”

— If Pl and (P1 = P2) are given or inferred, we can infer P2
» Techniques

— Prove tautologies using inference

— Deductive proof

Proof with Resolution

« Resolution tautology - If we know p OR g and p
— r then we can deduce q OR r
— (pOR @) AND (NOTpORT) - qORT

 In order to apply resolution in a proof:

— Express hypotheses and conclusion as a product of
sums (conjunctive normal form), such as those that
appear above

— Each maxterm in the CNF of the hypothesis becomes
a clause of the proof

— Apply the resolution tautology to pairs of clauses,
producing new clauses

— Prove by producing all clauses of the conclusion OR
prove by contradiction using resolution




Circuit Design

* Gate:
— Basic electronic device.
— Computes a Boolean function.

—AND, OR, NOT, NAND:
« Easy to implement
« Conceptually any number of inputs
« Used in practice

Circuit Design

« Circuit:
— A combination of gates
» Output of some gates are the input of others.
—Has one or more inputs:
 These are inputs to the gates in the circuit.
- May have one or more outputs.

3-input NAND:
*Two 2-input AND.
*One Inverter.

Combinational & Sequential

Circuits
» Combinational:

— Output is a Boolean function of input values.
— Are Acyclic:

* No cycles between inputs of a gate and its outputs.
—No memory:

« Cannot remember previous inputs or outputs.
— Example of use:

« Decode instructions and perform arithmetic.

Combinational & Sequential
. Circuits (2)
Sequential:

— Output depends on the current input
values and the previous sequence of input
values.

— Are Cyclic:

« Output of a gate feeds its input at some future
time.

— Memory:
* Remember results of previous operations
« Use them as inputs.

— Example of use:
« Build registers and memory units.

Combinational Circuit:
Encoder for a 7-Segment

e Goal: Design a cPc!t%Play A
— With 10 inputs: i, iy, iy, ..., ig. e 8
+ Each one corresponds to the G |
decimal digits (0-9). E c
— Lights up the display D

segments A, B, C, ..., G. Number 2:
« As needed to display the digit |l nput i,==1.

specified by the input. eig, iq, iz vy ig==0.
« Total: 7 outputs. *Outputs:
A=B=D=E=G=1
C=F=0

Encoder for a 7-Segment
Display (2)

« Boolean expression for the outputs:
N T P P P
T I P P DA N N e
St tigti, +ig+ig+i, +ig+ig

oy tlgtig+ig + g A

=g 0, g + g

— ; ; ; ; ; Fi
TR D P T L

O TmTmooOw
1
=

S, gty +ig+igt+ig+ig c
e Build thecircuit with 7 OR gates:

» One for each segment of the display

c
o |




Encoder for a 7-Segment

Display (3)

iO AY

———~
i ————= A
i, e
is 11t
i Y
_ ] B
Is ]
is
iz
is andsoon...
iy

Constraints on Circuit Design

« Numerous constraints impact:
— The speed and cost of a circuit.
e Speed:
— Every gate in a circuit introduces a small
delay.

— Circuit delay depends on the number of gates
between inputs and outputs

— Depends on fan-in and fan-out of a gate

Constraints on Circuit Design

Size limitations:

— More gates lead to larger circuits.

— Large circuits are more expensive
« Higher failure rate.

— And slower.

« Signals must propagate from one end to the
other.

 Fan-in and Fan-out:
— Number of inputs and outputs of a gate.
— Large fan-in makes a gate slower.

Divide and Conquer Adder

e Already seen Ripple-Carry adder
* Need:

— Adder with a smaller delay for larger words.
 Solution:

— Use a divide and conquer strategy.

— Use two N/2-bit adders and combine
results.

— Left and right halves added in parallel.

Divide and Conquer Adder (2)

X1 Y1

l l XTZ yrlz carry Xn/z‘ﬂ Ynr2s1 Xr )l’n

| ) {

Z Znp Znj2e1 Zy
» Carry: Not known in advance:
— How can the adders operate in parallel?
— Compute to sums for the upper half.
< One assuming there is a carry.
* One assuming there is NO carry.

— Use additional circuit to select the correct sum.

Design of an N-adder

* Assume two N-bit operands: X;...Xy & Y;...Yn-

» Design N-adder that computes:

— Sum without carry-in: s,...sy.

— Sum with carry-in: t;...t.

— The carry-propagate bit, p:
« Itis 1 if there is a carry-out assuming there is carry-in.

— The carry-generate bit, g:
< Itis 1if there is a carry-out even if there is NO carry-in.
« NOTE: if g is one then p will be one too (g implies p).

 First, build an 1-bit adder.




A 1-bit Adder

Boolean Functions L ogical Expressions
X|y|s/tiplgl s=Xy+Xxy
0/0/0/1/0/0] t=xXy+xy
0/1/1/01/0 _

= X +
1/0/1/0/1]0 p_ Y
i1l1/ol1[2]1] 9°=%

A 2-bit Adder from 1-bit Adders

XT Y2 XT Y1

High Order Low Order

1-bit Adder 1-bit Adder

[ [T [ [T ]

Py On t pLgt
FIX

Pgts b s

“FIX” Circuit

 Carry-propagate bit: p= pp, +94
—If there is a carry-in p is 1 if:
« Both the low and high order part propagate a
carry (pupy)-
 Or: The high order part generates a carry (g,,).
 Carry-generate bit: g= g+ g,py
— If there is NO carry-in g is 1 if:
« If the high order part generates a carry (g,,).

« Or if there is a carry from the low part and the
high part propagate that carry (g, p,).

“FIX” Circuit (2)

 High order sum, NO carry-in:
—Itis: $ =50 +1,40,
* s, if there is no carry from low order part (~g,).
* t, if there is carry from low order part (g, ).
 High order sum, with carry-in:
—Itis: L=sP P,
« t,, if there is a carry from the low order part.
* s, otherwise.

Sequential Circuits for

Memory Elements.

* Memory element:
— A collection of gates capable of producing
its last input as output.
— They are sequential circuits.

« Their behavior depends on current and past
inputs.

* Flip-flop:
— A 1-bit memory element.
— Typical flip-flop:
» Takes two inputs (load and data-in).
* Produces one output (data-out).

Flip-Flops
e Load==0:
— The circuit produces the stored value as
output.
e Load==1:

— The circuit stores the value data-in and
— Produces it as output.




Flip-Flop Circuit

load data-out
datavi o
* Load=1=A1=0 =data-out=A2=data-in.
* Load=0 =A2=0 =data-out=Al
— Which is the previously stored value.




