
1

Predicate Logic

Predicate Logic

Limitation of propositional logic – no way to talk 
about properties that apply to categories of 
objects, or relationships between those 
properties

Predicate logic – mathematical model for 
reasoning about predicates: functions that map 
variables to truth values

Predicate – boolean function whose value may be 
true or false depending on the arguments –
generalization of propositional variables

Quantifiers

• Additional operators to express truth 
values about predicates with variable 
arquments
– Existential quantifier (there exists)
– Universal quantifier (for all)

Logical Expressions in Predicate 
Logic

• Similar to propositional logic expression with the following additions
– An atomic formula is a logical expression

• A predicate with all constant arguments is a ground atomic formula
• A proposition is a predicate with no arguments and therefore is a ground 

atomic formula
• A predicate with at least on variable argument is a nonground atomic 

formula
• A literal is either an atomic formula or its negation

– If L1 and L2 are logical expressions, then L1 AND L2, L1 OR L2, NOT 
L1, L1 � L2, and L1

�
L2 are logical expressions

– If L1 is a logical expression, then (for all) L1 is a logical expression
– If L1 is a logical expression, then (there exists) L1 is a logical 

expression
• Quantifiers have the highest precedence in logical expressions

Bound and Free Variables

• Bound and free variables
– Quantifiers introduce variables into logical 

expressions (variable x is bound to the closest 
enclosing quantifier)

– Occurrence of variable not bound to a 
quantifier is free

Evaluating Predicates

• Assign a real-word interpretation to P (e.g., 
addition, subtraction, equivalence) and a domain 
for P (i.e., possible values for arguments) –
compute function P(x,y)
– Can have an unbounded number of sets of 

arguments for which the predicate is true

• Consult a relational database containing pairs of 
values for x and y and the corresponding value 
of P(x,y)
– Limited to finite domains



2

Tautologies

• A tautology in predicate logic is a 
statement that is true regardless of the 
interpretation of predicates, and 
regardless of the bindings chosen for any 
globally unbound variables

Evaluating Quantifiers
• Define

– Domain over which the quantifier varies (the set of values for the predicate’s 
arguments)

– The interpretation (meaning) of the predicate

• If the domain of P is infinite, we don’t have an algorithm that terminates to 
compute the value of P

• In many cases
– the domain is finite
– the equivalence of two expressions is required rather than whether an 

expression is true or not
• The truth of many statements with unbound variables is indeterminate
• The truth of many statements depends on the interpretation of predicates
• Some statements under some interpretations and proof systems are true 

but can’t be proven

Laws for Manipulating Quantifiers

• If a logical expression L is a tautology, all free variables 
in the tautology can be bound to universal quantifiers

• Moving NOT within a quantifier (analogous to 
DeMorgan’s law)
– NOT (forall x) L(x) 

�
(there exists x) (NOT L(x))

– NOT (there exists x) L(x) 
�

(forall x) (NOT L(x))

• Moving quantifiers through AND and OR (where x is 
NOT a free variable in expression L1)
– L1 AND (forall x) L2(x) 

�
(forall x) (L1 AND L2(x))

– L1 AND (there exists x) L2(x) 
�

(there exists x)(L1 and L2(x)
– L1 OR (forall x) L2(x) 

�
(forall x) (L1 OR L2(x))

– L1 OR (there exists x) L2(x) 
�

(there exists x)(L1 OR L2(x))

Prenex CNF Form

• Use laws for manipulating quantifiers to 
convert an expression to the form
– (Q1 x1)(Q2 x2)…(Qn xn) L where all the 

quantifiers appear outside expression L
– First, make sure all quantifiers refer to distinct 

variables (not found in other quantifiers or free 
variables)

Proofs in Predicate Logic

• Similar to propositional logic
– begin with a set of axioms (or hypotheses)
– Use rules of inference to construct a sequence of expressions 

that follow from those axioms

• Inference rules – modus ponens, DeMorgan’s law, 
substitution of equals, …

• Substitution rule – if a general fact (expression) is true, a 
specific instance is also true (variable substitution)

• Structure of a proof 
– Facts, or ground atomic formulae
– Rules – conjunction of one or more atomic formulae that imply 

another atomic formula (general principles that can be applied to 
facts to prove new facts)

Predicate Logic Proof Structure

• Assert a rule that is known to be true (i.e., 
the body of the rule implies the head of the 
rule

• Find facts that (via substitution) match the 
atomic formulae of the body of the rule

• Make consistent variable substitutions in 
the body and the head of the rule

• Assert the head (or goal) as proven



3

Implication, Entailment, and Proof

• A � B – A implies B is a logical statement that 
may be true or false

• A|=B – A entails B is a meta-statement about 
truth. B is true in all models in which A is true. 
A � B is a tautology

• A|-B – B can be proven from A. This is a weaker 
meta-statement. It says that under some given 
set of proof rules and interpretations for 
predicates, if we are given A as premise, we can 
derive B

Limits on Logic

• We have modeled computation as a “proof”, and 
proceeded from facts (axioms) and rules to prove new 
facts (i.e., compute). Are there limits on what we can 
prove (compute)?

• The following are undecidable – no computer 
whatsoever can answer them
– Goedel’s Incompleteness Theorem [Kurt Goedel, 1931]

• For number theory, there are expressions that are true but which
cannot be proved to be true

– The Halting Problem [Alan Turing, 1936]
• There is no program that takes as input an arbitrary program and its 

input, and determines whether or not the program halts on that input

Undecidability of the Halting 
Problem

• Assume halt(a,i) exists – returns TRUE if program a halts on input i, 
returns FALSE otherwise

• Create a new function trouble that returns TRUE if the input program 
does not halt on itself, and loops forever otherwise

function trouble(s)
if (halt(s,s) == FALSE)

return TRUE
else

loop forever

• If t represents the program trouble, does trouble(t) terminate?
– Assume it does, then it doesn’t (halt(t,t) returns FALSE)
– Assume it doesn’t, then it does (halt(t,t) returns TRUE)
– Contradiction! in both cases. Therefore, the initial assumption that 

halt(a,i) exists must be incorrect

Inherent Intractability

• P – class of problems solvable in polynomial time with no 
guessing

• NP – nondeterministic polynomial – if given a guess at a 
solution for some instance of size n, we can check that 
the guess is correct in polynomial time

• NP-Complete – problem in NP that can be proved to be 
as hard as any in NP
– E.g., Satisfiability – is there a truth assignment that makes 

logical expression E true?

• NP-hard – problem not known to be in NP but as hard or 
harder than any problem in NP
– E.g., the tautology problem – Is E a tautology?


