Predicate Logic

Predicate Logic

Limitation of propositional logic — no way to talk
about properties that apply to categories of
objects, or relationships between those
properties

Predicate logic — mathematical model for
reasoning about predicates: functions that map
variables to truth values

Predicate — boolean function whose value may be
true or false depending on the arguments —
generalization of propositional variables

Quantifiers

 Additional operators to express truth
values about predicates with variable
arquments
— Existential quantifier (there exists)
— Universal quantifier (for all)

Logical Expressions in Predicate
Logic

< Similar to propositional logic expression with the following additions
— An atomic formula is a logical expression
« A predicate with all constant arguments is a ground atomic formula
+ A proposition is a predicate with no arguments and therefore is a ground
atomic formula
« A predicate with at least on variable argument is a nonground atomic
formula
« Aliteral is either an atomic formula or its negation
— If L1 and L2 are logical expressions, then L1 AND L2, L1 OR L2, NOT
L1, L1—L2, and L1=L2 are logical expressions
— If L1is alogical expression, then (for all) L1 is a logical expression
— If L1 is alogical expression, then (there exists) L1 is a logical
expression
« Quantifiers have the highest precedence in logical expressions

Bound and Free Variables

» Bound and free variables
— Quantifiers introduce variables into logical
expressions (variable x is bound to the closest
enclosing quantifier)
— Occurrence of variable not bound to a
quantifier is free

Evaluating Predicates

* Assign a real-word interpretation to P (e.g.,
addition, subtraction, equivalence) and a domain
for P (i.e., possible values for arguments) —
compute function P(x,y)

— Can have an unbounded number of sets of
arguments for which the predicate is true

« Consult a relational database containing pairs of
values for x and y and the corresponding value
of P(x,y)

— Limited to finite domains




Tautologies

A tautology in predicate logic is a
statement that is true regardless of the
interpretation of predicates, and
regardless of the bindings chosen for any
globally unbound variables

Evaluating Quantifiers

« Define

— Domain over which the quantifier varies (the set of values for the predicate’s
arguments)
— The interpretation (meaning) of the predicate

« If the domain of P is infinite, we don't have an algorithm that terminates to

compute the value of P

* Inmany cases

— the domain is finite
— the equivalence of two expressions is required rather than whether an
expression is true or not
* The truth of many statements with unbound variables is indeterminate
* The truth of many statements depends on the interpretation of predicates
* Some statements under some interpretations and proof systems are true
but can't be proven

Laws for Manipulating Quantifiers

If a logical expression L is a tautology, all free variables
in the tautology can be bound to universal quantifiers
Moving NOT within a quantifier (analogous to
DeMorgan’s law)

— NOT (forall x) L(x) = (there exists x) (NOT L(x))

— NOT (there exists x) L(x) = (forall x) (NOT L(x))

Moving quantifiers through AND and OR (where x is
NOT a free variable in expression L1)

— L1 AND (forall x) L2(x) = (forall x) (L1 AND L2(x))

— L1 AND (there exists x) L2(x) = (there exists x)(L1 and L2(x)
— L1 OR (forall x) L2(x) = (forall x) (L1 OR L2(x))

— L1 OR (there exists x) L2(x) = (there exists x)(L1 OR L2(x))

Prenex CNF Form

» Use laws for manipulating quantifiers to
convert an expression to the form
—(Q1 x1)(Q2 x2)...(Qn xn) L where all the
quantifiers appear outside expression L

— First, make sure all quantifiers refer to distinct
variables (not found in other quantifiers or free
variables)

Proofs in Predicate Logic

Similar to propositional logic

— begin with a set of axioms (or hypotheses)

— Use rules of inference to construct a sequence of expressions
that follow from those axioms

Inference rules — modus ponens, DeMorgan’s law,

substitution of equals, ...

Substitution rule — if a general fact (expression) is true, a

specific instance is also true (variable substitution)

Structure of a proof

— Facts, or ground atomic formulae

— Rules — conjunction of one or more atomic formulae that imply
another atomic formula (general principles that can be applied to
facts to prove new facts)

Predicate Logic Proof Structure

e Assert a rule that is known to be true (i.e.,

the body of the rule implies the head of the

rule

Find facts that (via substitution) match the

atomic formulae of the body of the rule

» Make consistent variable substitutions in
the body and the head of the rule

Assert the head (or goal) as proven




Implication, Entailment, and Proof

« A—B — Aimplies B is a logical statement that
may be true or false

* A|]=B — A entails B is a meta-statement about
truth. B is true in all models in which A is true.
A—B is a tautology

* A]-B — B can be proven from A. This is a weaker
meta-statement. It says that under some given
set of proof rules and interpretations for
predicates, if we are given A as premise, we can
derive B

Limits on Logic

* We have modeled computation as a “proof”, and
proceeded from facts (axioms) and rules to prove new
facts (i.e., compute). Are there limits on what we can
prove (compute)?

« The following are undecidable — no computer
whatsoever can answer them

— Goedel's Incompleteness Theorem [Kurt Goedel, 1931]

« For number theory, there are expressions that are true but which
cannot be proved to be true

— The Halting Problem [Alan Turing, 1936]

< There is no program that takes as input an arbitrary program and its
input, and determines whether or not the program halts on that input

Undecidability of the Halting
Problem

« Assume halt(a,i) exists — returns TRUE if program a halts on input i,
returns FALSE otherwise

« Create a new function trouble that returns TRUE if the input program
does not halt on itself, and loops forever otherwise

function trouble(s)
if (halt(s,s) == FALSE)
return TRUE
else
loop forever

< If t represents the program trouble, does trouble(t) terminate?
— Assume it does, then it doesn’t (halt(t,t) returns FALSE)
— Assume it doesn't, then it does (halt(t,t) returns TRUE)

— Contradiction! in both cases. Therefore, the initial assumption that
halt(a,i) exists must be incorrect

Inherent Intractability

* P —class of problems solvable in polynomial time with no
guessing

* NP — nondeterministic polynomial — if given a guess at a
solution for some instance of size n, we can check that
the guess is correct in polynomial time

* NP-Complete — problem in NP that can be proved to be
as hard as any in NP
— E.g., Satisfiability — is there a truth assignment that makes

logical expression E true?

* NP-hard — problem not known to be in NP but as hard or
harder than any problem in NP
— E.g., the tautology problem — Is E a tautology?




