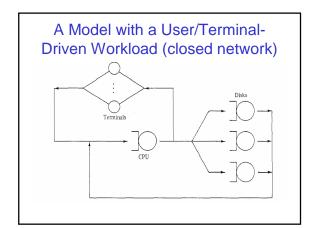
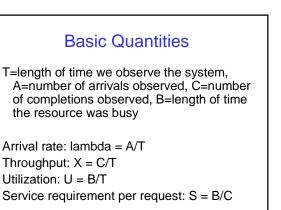
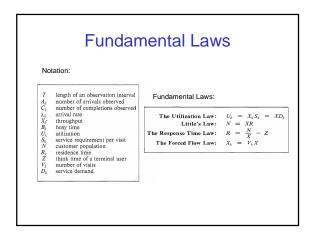
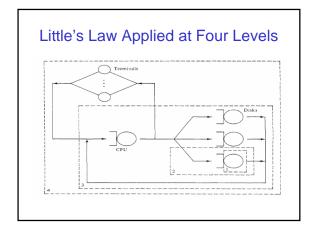

An Overview Of Queueing Network Models


Why worry about modeling?


- Understand the behavior of today's complex computer systems
 - During design and implementation
 - During sizing and acquisition
 - During evolution of the configuration and workload


What is a queueing network model?

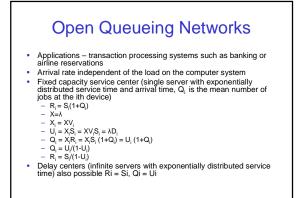

- Represent a system as a network of queues evaluated analytically
 - Service centers, which represent system resources
 - Customers, which represent users or transactions

Queuing Notation

- Arrival process: interarrival time (e.g., independent and identically distributed (IID) and exponentially distributed assumption common)
- Service time distribution
- Number of servers
- · System capacity
- Population size
- Service discipline: e.g., FCFS, LCFS, LCFS-PR

Markov Process

- Future state of a process independent of the past and dependent only on the current state
- Markov chain: discrete state Markov process
- Birth-death process: transitions are restricted to neighboring state only
- Poisson processes: IID and exponentially distributed interarrival times-> number of arrivals over a given interval has a poisson distribution


Markov model (M/M/1 queues)

- Traffic intensity, t service time/inter-arrival time (also U, utilization)
- Probability that the system is idle, $p_0 = 1-t$
- Probability of n jobs in the system, p_n = tⁿp₀
- Probability that the queue is non-empty $-1-p_1-p_0 = 1 (1-t) t(1-t) = t^2$
- Expectation of number of customers in the service center, N – sum over all states multiplied by probabilities – t/(1-t)
- Expectation of number of customers in the queue, N-1 sum over all states-1 multiplied by probabilities – t²/(1-t)

Analysis of Open Queueing Networks

Inputs:

- X = external arrival rate, system throughput
- Si = service time per visit to the ith device
- Vi = number of visits to the ith device
- M = number of devices (not including terminals)
- Outputs:
 - Qi = mean number of jobs at the ith device
 - Ri = response time of the ith device
 - R = system response time
 - Ui = utilization of the ith device
 - N = mean number of jobs in the system

Closed Networks – Mean Value Analysis (MVA)

Inputs:

- N = number of users
- Z = think time
- M = number of devices (not including terminals/users)
- Si = service time per visit to the ith device
- Vi = number of visits to the ith device
- Outputs:
 - X = system throughput
 - Qi = average number of jobs at the ith device
 - Ri response time of the ith device
 - R = system response time
 - Ui = utilization of the ith device

MVA Algorithm

Initilization:

Device throughputs: $X_i = XV_i$ Device utilizations: $U_i = XS_iV_i$