
1

89

CSC 252:

Data Representation

Floating Point Representation

This Week’s Action Items

• Read Chapter 2 and start reading Chapter 3

• Finish Quiz 3 on Blackboard

• Finish Assignment 1

– Due Date: Thursday Friday September 10 11

at 11:59 pm

90

Recap: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

Carnegie Mellon

Fractional Binary Numbers:

Examples
 Value Representation

5 3/4 101.112

2 7/8 010.1112

1 7/16 001.01112

 Observations

▪ Divide by 2 by shifting right (unsigned)

▪ Multiply by 2 by shifting left

▪ Numbers of form 0.111111…2 are just below 1.0

▪ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

▪ Use notation 1.0 – ε

89 90

91 92

2

Carnegie Mellon

Representable Numbers

• Limitation #1

– Can only exactly represent numbers of the form x/2k

• Other rational numbers have repeating bit representations

– Value Representation

• 1/3 0.0101010101[01]…2

• 1/5 0.001100110011[0011]…2

• 1/10 0.0001100110011[0011]…2

• Limitation #2

– Just one setting of binary point within the w bits

• Limited range of numbers (very small values? very large?)

Carnegie Mellon

Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Summary

Carnegie Mellon

IEEE Floating Point

• IEEE Standard 754

– Established in 1985 as uniform standard for floating

point arithmetic

• Before that, many idiosyncratic formats

– Supported by all major CPUs

• Driven by numerical concerns

– Nice standards for rounding, overflow, underflow

– Hard to make fast in hardware

• Numerical analysts predominated over hardware designers in

defining standard

Carnegie Mellon

• Numerical Form:

(–1)s M 2E

– Sign bit s determines whether number is negative or positive

– Significand M normally a fractional value in range [1.0,2.0).

– Exponent E weights value by power of two

• Encoding

– MSB s is sign bit s

– exp field encodes E (but is not equal to E)

– frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac

93 94

95 96

3

Carnegie Mellon

Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

Carnegie Mellon

“Normalized” Values

• When: exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as a biased value: E = Exp – Bias

– Exp: unsigned value of exp field

– Bias = 2k-1 - 1, where k is number of exponent bits

• Single precision: 127 (Exp: 1…254, E: -126…127)

• Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: M = 1.xxx…x2

– xxx…x: bits of frac field

– Minimum when frac=000…0 (M = 1.0)

– Maximum when frac=111…1 (M = 2.0 – ε)

– Get extra leading bit for “free”

v = (–1)s M 2E

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310 = 111011011011012

= 1.11011011011012 x 213

• Significand

M = 1.11011011011012

frac= 110110110110100000000002

• Exponent

E = 13

Bias = 127

Exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000

s exp frac

v = (–1)s M 2E

E = Exp – Bias

Carnegie Mellon

Denormalized Values

• Condition: exp = 000…0

• Exponent value: E = 1 – Bias (instead of E = 0 –

Bias)

• Significand coded with implied leading 0: M =

0.xxx…x2

– xxx…x: bits of frac

• Cases

– exp = 000…0, frac = 000…0

• Represents zero value

• Note distinct values: +0 and –0 (why?)

exp = , frac ≠

v = (–1)s M 2E

E = 1 – Bias

97 98

99 100

4

Carnegie Mellon

Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0

– Represents value  (infinity)

– Operation that overflows

– Both positive and negative

– E.g., 1.0/0.0 = −1.0/−0.0 = +, 1.0/−0.0 = −

• Case: exp = 111…1, frac ≠ 000…0

– Not-a-Number (NaN)

– Represents case when no numeric value can be determined

– E.g., sqrt(–1),  − ,   0

Carnegie Mellon

Visualization: Floating Point Encodings

+−

−0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

Carnegie Mellon

Special Properties of the IEEE

Encoding

• FP Zero Same as Integer Zero

– All bits = 0

• Can (Almost) Use Unsigned Integer Comparison

– Must first compare sign bits

– Must consider −0 = 0

– NaNs problematic

• Will be greater than any other values

• What should comparison yield?

– Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity

Carnegie Mellon

Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Summary

101 102

103 104

5

Carnegie Mellon

Floating Point Operations: Basic

Idea

• x +f y = Round(x + y)

• x f y = Round(x  y)

• Basic idea

– First compute exact result

– Make it fit into desired precision

• Possibly overflow if exponent too large

• Possibly round to fit into frac

Carnegie Mellon

Rounding

• Rounding Modes (illustrate with $ rounding)

• $1.40 $1.60 $1.50 $2.50 –

$1.50

– Towards zero $1 $1 $1 $2 –$1

– Round down (−) $1 $1 $1 $2

–$2

– Round up (+) $2 $2 $2 $3 –$1

– Nearest Even (default)$1 $2 $2 $2

–$2

Carnegie Mellon

Closer Look at Round-To-Even
• Default Rounding Mode

– Hard to get any other kind without dropping into

assembly

– All others are statistically biased

• Sum of set of positive numbers will consistently be

over- or under- estimated

• Applying to Other Decimal Places / Bit Positions

– When exactly halfway between two possible

values

• Round so that least significant digit is even

– E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)

Carnegie Mellon

Rounding Binary Numbers

• Binary Fractional Numbers

– “Even” when least significant bit is 0

– “Half way” when bits to right of rounding position = 100…2

• Examples

– Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded

Value

2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (1/2—up) 3

2 5/8 10.101002 10.102 (1/2—down) 2 1/2

105 106

107 108

6

Carnegie Mellon

FP Multiplication

• (–1)s1 M1 2E1 x (–1)s2 M2 2E2

• Exact Result: (–1)s M 2E

– Sign s: s1 ^ s2

– Significand M: M1 x M2

– Exponent E: E1 + E2

• Fixing

– If M ≥ 2, shift M right, increment E

– If E out of range, overflow

– Round M to fit frac precision

Carnegie Mellon

Floating Point Addition

• (–1)s1 M1 2E1 + (-1)s2 M2 2E2

–Assume E1 > E2

• Exact Result: (–1)s M 2E

–Sign s, significand M:

• Result of signed align & add

–Exponent E: E1

• Fixing

–If M ≥ 2, shift M right, increment E

–if M < 1, shift M left k positions, decrement E by k

–Overflow if E out of range

–Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

Get binary points lined up

Carnegie Mellon

Mathematical Properties of FP Add

• Compare to those of Abelian Group

– Closed under addition?

• But may generate infinity or NaN

– Commutative?

– Associative?

• Overflow and inexactness of rounding

• (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

– 0 is additive identity?

– Every element has additive inverse?

• Yes, except for infinities & NaNs

• Monotonicity

– a ≥ b ⇒ a+c ≥ b+c?

• Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost

Carnegie Mellon

Mathematical Properties of FP Mult

• Compare to Commutative Ring

– Closed under multiplication?

• But may generate infinity or NaN

– Multiplication Commutative?

– Multiplication is Associative?

• Possibility of overflow, inexactness of rounding

• Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

– 1 is multiplicative identity?

– Multiplication distributes over addition?

• Possibility of overflow, inexactness of rounding

• 1e20*(1e20-1e20)= 0.0, 1e20*1e20 – 1e20*1e20 = NaN

• Monotonicity

– a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?

• Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost

109 110

111 112

7

Carnegie Mellon

Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Summary

Carnegie Mellon

Floating Point in C

• C Guarantees Two Levels

–float single precision

–double double precision

• Conversions/Casting

– Casting between int, float, and double changes bit

representation

– double/float → int

• Truncates fractional part

• Like rounding toward zero

• Not defined when out of range or NaN: Generally sets to TMin

– int → double

• Exact conversion, as long as int has ≤ 53 bit word size

– int → float

• Will round according to rounding mode

Carnegie Mellon

Floating Point Puzzles

• For each of the following C expressions, either:

– Argue that it is true for all argument values

– Explain why not true • x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (double)(float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

Carnegie Mellon

Summary

• IEEE Floating Point has clear mathematical

properties

• Represents numbers of form M x 2E

• One can reason about operations independent

of implementation

– As if computed with perfect precision and then

rounded

• Not the same as real arithmetic

– Violates associativity/distributivity

– Makes life difficult for compilers & serious

numerical applications programmers

113 114

115 116

