CSC 252:
Data Representation

Bits, Bytes, and Integers

Last Week'’s Action Items

* Geta CSUG account

— at https:// accounts.csug.rochester.edu/

— cyclel.csug.rochester.edu (or cycle2, cycle3)

— Get familiar with using Linux and C

— Attend an office hour this week!
» Accept the Academic Honesty Policy on blackboard
* Introduce yourself: “meet your classmates” forum
» Acquire the textbook for the course

— Read Chapter 1, start reading Chapter 2

* Finish Quiz 0
8/31/2020 2

This Week’s Action Iltems

* Read Chapter 2
 Finish Quiz 1 on Blackboard
+ Start on Assignment 1

— Finish Pre-Assignment 1 on Blackboard
* Due Date: Thursday September 3 at noon

Hardware Organization of a Typical
cPy System

Register file
/iy
Systgm bus Memory bus

Bus interface < Vo ” Main
bridge memory
< HH=>
/0 bus Expansion slots for
other devices such

usB Graphics Disk as network adapters
controller adapter controller

Mouse Keyboard Display)
Disk

hello executable
stored on disk 4

Hardware Components of a Computer
System

* Processor
— Datapath
— Control
+ Memory
* Input and Output devices

The Principle of Abstraction

» Grouping principle
— Levels/layers of abstraction by which each
layer only needs to understand that
immediately above and below it

What is Computer Architecture?

« Coordination of levels of abstraction under a set
of rapidly changing forces

Application

Operating
Compiler System

Instruction Set Architecture ‘

Instr. Set Proc. I/O System l

I Digital Design ‘

Circuit Design

Topics to be covered:

+ Data representation and computer arithmetic

» Assembly-level programs and instruction-set
architectures

* Processor architectures

* Memory and storage hierarchies
» Performance optimization

» Exceptional control flow

* 1/O devices

« Concurrency

Data Representation

Memory: a large single-dimensional,
conventionally byte-addressable, untyped array

Byte ordering — big versus little endian
Possible common interpretations

— Instruction

— Integer

— Floating point

— character

Today: Bits, Bytes, and Integers

» Representing information as bits

Everything is bits

Each bitisOor 1
By encoding/interpreting sets of bits in various ways

— Computers determine what to do (instructions)

— ... and represent and manipulate numbers, sets, strings, etc...
Why bits? Electronic Implementation

— Easy to store with bistable elements

— Reliably transmitted on noisy and inaccurate wires

0 1

11v
0.9V

0.2v
0.0v

10

11

Number Representation

An n digit number can be represented in any base as
MSD LSD
n-1 0

The value of the ith digit d is d x basei, where i starts at 0
and increases from right to left

Decimal (base 10) is the natural human representation,
binary (base 2) is the natural computer representation

E.g. 1100, = 1x23 + 1x22 + 0x21 + 0x20 = 12

12

12

For example, can count in binary

* Base 2 Number Representation
— Represent 15213, as
— Represent 1.20,, as
— Represent 1.5213 X 104 as

For example, can count in binary

* Base 2 Number Representation
— Represent 15213, as 11101101101101,
— Represent 1.20,, as
1.0011001100110011[0011]...,
— Represent 1.5213 X 10* as
1.1101101101101, X 213

13

Encoding Byte Values

»

\6‘?’ &

- Byte = 8 bits 2 o
' 0 [0 [0000

— Binary 000000002 to 11111111, 2118001
— Decimal: 010 to 25510 T3 Toses
. 5 |5 [0101

— Hexadecimal 0016 to FFis 6 16 0110
. 7 |7 [0111

« Base 16 number representation 8 [8 | 1000

» Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 2 190 iggé

« Write FALD37B16 in C as RECRRID)

— OXFA1D37B bonan

— Oxfald37b F (151111

15

14
Bit-Level Operations in C
* Logical
|| && !
* Bitwise
- & M~ >> <<
— Arithmetic versus logical right shift
16

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double - - 10/16
pointer 4 8 8

Today: Bits, Bytes, and Integers

Bit-level manipulations

17

18

Boolean Algebra
» Developed by George Boole in 19th Century

— Algebraic representation of logic
* Encode “True” as 1 and “False” as 0

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 o1
0|0 O 0({0 1
1/0 1 111 1
Not Exclusive-Or (Xor)

= ~A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both

~ Mo 1
E olo 1
1]o 1010

Algebraic Laws for Logical Expressions

AND and OR are commutative
» AND and OR are associative
« AND is distributive over OR; OR is distributive over AND
* TRUE is the identity for AND; FALSE is the identity for OR
¢ FALSE annihilates AND; TRUE annihilates OR
» AND and OR are idempotent (p AND p=p OR p =p)
Subsumption
- (POR (P AND q)) = (p AND (p OR q)) = p
» DeMorgan’s Laws:
— NOT(p AND q) = (NOT p) OR (NOT q)
— NOT(p OR q) = (NOT p) AND (NOT q)

20

19

20

General Boolean Algebras

» Operate on Bit Vectors

— Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

 All of the Properties of Boolean Algebra Apply

Example: Representing &
Manipulating Sets

{0,6}
{0,2,3,4,5,6}
{2,3,4,5}
{1,3,57}

Representation
— Width w bit vector represents subsets of {0, ..., w—1}
- a=1ifj €A

+ 01101001 {0,3,5,6}

« 76543210

+ 01010101 {0,2,4,6}

« 76543210
Operations
— & Intersection 01000001
— | Union 01111101
— N Symmetric difference 00111100
— ~ Complement 10101010

21

Bit-Level Operations in C

e Operations &, |, ~, *Available in C
— Apply to any “integral” data type

o long, int, short, char, unsigned
— View arguments as bit vectors
— Operations applied bit-wise

* Examples (Char data type)

— ~0x41 ->OxBE
* ~01000001; ->101111102
— ~0x00 -> OxFF
* ~00000000; ->11111111>
— 0x69 & 0x55 -> 0x41
* 011010012 & 01010101 -> 010000012
— 0x69 | 0x55 -> 0x7D

¢ 01101001 | 01010101, -> 01111101

22

» Contrast to Logical Operators
- &&,|],!
* View 0 as “False”
« Anything nonzero as “True”
« Always return O or 1
« Early termination
» Examples (char data type)
— 10x41 -> 0x00

— 10x00 -> 0x01
— 110x41 -> 0x01

— 0x69 && 0x55 -> 0x01
— 0x69 || 0x55 -> 0x01

Contrast: Logic Operations in C

23

24

Contrast: Logic Operations in C

+ Contrast to Logical Operators

 and Watch out for 8& vs. & (and || vs. |)...

* Ealta common bug in C programming
* Examp

— 10x41 -> 0x00
— 10x00 -> 0x01
— 1l0x41 -> 0x01

— 0x69 && 0x55 -> 0x01
— 0x69 || 0x55 -> 0x01

Shift Operations

+ Left Shift: x << y
— Shift bit-vector x left y positions
— Throw away extra bits on left
* Fill with o’s on right
+ Right Shift: X >> vy Arith. >> 2 | 00011000
— Shift bit-vector x right y positions
» Throw away extra bits on right

Argumentx | 01100010

<< 3 00010000

Log.>> 2 | 00011000

Argumentx | 10100010

— Logica| shift << 3 00010000
* Fill with o’s on left Log.>> 2 | 00101000
— Arithmetic shift Arith. >> 2 | 11101000

* Replicate most significant bit on left
» Undefined Behavior
— Shift amount < 0 or = word size

26

25
Today: Bits, Bytes, and Integers
* Integers
— Representation: unsigned and signed
27

Representing Positive and
Negative Integers

» Sign-Magnitude - MSB represents sign (0 for +ve, 1 for -ve)
* One's Complement of x = 2" - x — 1 (complement individual bits)

Problem: Balanced representation, but two values for 0

Solution:

* Two's Complement of x = 2" — x (radix complement; most common
representation)

— single bit pattern for 0

— ensures that $x + (-x)$ is 0

— still keeps 1 in MSB for a -ve number (sign bit)
— 100... represents the most -ve number

— E.g. 4-bit 2's complement number 1100, = -1x23 + 1x22 + 0x2! +
0x20 = -4,, 28

28

Integer Arithmetic

* Normal base 2 2's complement addition works
on both positive and negative numbers

» Shortcuts
—2's complement = 1s’ complement + 1

— 2's complement representation of n digit
number as n+m digit number --- sign extend

29

Encoding Integers

Unsigned Two’s Complement
w=l . w=2 .
BUX) = Y.x-2' BT(X) = —x,2" " + Y x-2
i=0 i=0
short int x 15213; \

short int y -15213; Sign
Bit
* C short 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y -15213| €4 93| 11000100 10010011

+ Sign Bit
— For 2’s complement, most significant bit
indicates sign
« 0 for nonnegative

o 1 for neaative

30

29
Two-complement Encoding Example
(Cnant)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2] 0 0 2]
4 1 4 0 0
8 1 8 0 0
16] 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048] 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768) 0 0 1 -32768
Sum 15213 -15213

31

Numeric Ranges

* Unsigned Values * Two’s Complement Values

- U(';’(')'g . =0 - TMin = 2w
100...0
—_ = w
U:\:?X1 2-1 ~ TMax = 2wi-1
011...1
* Other Values
— Minus 1
111..1
Values for W= 16
Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768] 80 00| 10000000 00000000
-1 -1| FF FF| 11111111 11111111
0 0| 00 00| 00000000 00000000

32

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

* Observations
—|TMin| = TMax +
1
* Asymmetric range
—UMax= 2 * TMax +

m C Programming
= #include <limits.h>
= Declares constants, e.g.,
= ULONG_MAX
= LONG_MAX
= LONG_MIN

® Values platform specific

Unsigned & Signed Numeric Values

< Equivalence

X B2U(X) | B2T(X)
0000 0 0 — Same encodings for
0001 1 1 nonnegative values
0010 2 2 » Uniqueness
0011 3 3 — Every bit pattern represents
0100 e d unique integer value
0101 5 5 .
0110 7 z — Each representable integer has
0111 = = unique bit encleng
1000 8) * = Can Invert Mappings
1001 9 -7 — U2B(x) = B2U(x)
1010 10 -6 « Bit pattern for unsigned integer
1011 11 -5 — TZB(X) = BZT‘l(X)
1100 12 —4 * Bit pattern for two’s comp
1101 13 -3 integer
1110 14 -2
1111 15 -1
34
Byte-Oriented Memory
R Organization
& &

1
33
Today: Bits, Bytes, and Integers
* Integers
» Representations in memory, pointers, strings
56

Programs refer to data by address
— Conceptually, envision it as a very large array of bytes
« Inreality, it's not, but can think of it that way
— An address is like an index into that array
» and, a pointer variable stores an address

Note: system provides private address spaces to each “process”
— Think of a process as a program being executed
— So, a program can clobber its own data, but not that of others

57

Machine Words

Any given computer has a “Word Size”
— Nominal size of integer-valued data
« and of addresses

— Until recently, most machines used 32 bits (4 bytes) as word size
« Limits addresses to 4GB (232 bytes)

— Increasingly, machines have 64-bit word size
< Potentially, could have 18 EB (exabytes) of addressable memory
« That's 18.4 X 1018

— Machines still support multiple data formats
« Fractions or multiples of word size
« Always integral number of bytes

Word-Oriented Memory
Organization o

. Byt Addr.

+ Addresses Specify Byte ~ Words Wwords "% 0
Locations Addr gggi
— Address of first byte in 0000 0002
word e 0003
— Addresses of Addr o 8882
successive words differ 000 gggj
by 4 (32-bit) or 8 (64- 0008
bit) Addr 0009
0008 Addr 0010

= 0011

0008 0012

Addr 0013

0012 0014

0015

59

58
Example Data Representations

char 1 1 1
short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double = = 10/16
pointer 4 8 8

60

Byte Ordering

* So, how are the bytes within a multi-byte word
ordered in memory?

+ Conventions
— Big Endian: Sun, PPC Mac, Internet
* Least significant byte has highest address

— Little Endian: x86, ARM processors running
Android, iOS, and Windows

* Least significant byte has lowest address

61

10

Byte Ordering Example

+ Example
— Variable x has 4-byte value of 0x01234567
— Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103

[[Joaf=2sJasfer] [|

Little Endian 0x100 0x101 0x102 0x103
[[Te7JasJ23Jor] [|

int A = 15213;

Decimal: 15213

Representlng Integers Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

long int C = 15213;

62

1A32, x86-64 Sun
1A32 x86-64 Sun
6D 00
3B 00 6D 6D 00
00 3B 3B 3B 00
00 6D 00 00 3B
00 00 6D
00
int B = -15213; 00
1A32, x86-64 Sun 00
00
93 FF
c4 FF
FF >< c4 \
FF 93 Two’s complement representation
63

11

