CSC 252:
Data Representation

Bits, Bytes, and Integers

36

This Week’s Action Items

* Read Chapter 2
* Finish Quiz 1 and 2 on Blackboard
+ Start on Assignment 1
— Finish Pre-Assignment 1 on Blackboard
» Due Date: Thursday September 3 at noon

37

36

37

Recap: Bits, Bytes, and Integers

Representing information as bits

Bit-level manipulations

Integers

— Representation: unsigned and signed

— Conversion, casting

— Expanding, truncating

— Addition, negation, multiplication, shifting
— Summary

Representations in memory, pointers, strings

38

Contrast: Logic Operations in C

» Contrast to Logical Operators
- &&,|],!
* View 0 as “False”
« Anything nonzero as “True”
« Always return O or 1
« Early termination
» Examples (char data type)
— 10x41 -> 0x00

— 10x00 -> 0x01
— 110x41 -> 0x01

— 0x69 && 0x55 -> 0x01
— 0x69 || 0x55 -> 0x01

39

Contrast: Logic Operations in C

+ Contrast to Logical Operators

 and Watch out for 8& vs. & (and || vs. |)...

* Ealta common bug in C programming
* Examp

— 10x41 -> 0x00
— 10x00 -> 0x01
— 1l0x41 -> 0x01

— 0x69 && 0x55 -> 0x01
— 0x69 || 0x55 -> 0x01

40

Integer Arithmetic

* Normal base 2 2's complement addition works
on both positive and negative numbers

+ Shortcuts
—2’s complement = 1s’ complement + 1

— 2's complement representation of n digit
number as n+m digit number --- sign extend

42

Representing Positive and
Negative Integers

* Sign-Magnitude - MSB represents sign (0 for +ve, 1 for -ve)
* One's Complement of x = 2" - x — 1 (complement individual bits)

Problem: Balanced representation, but two values for 0

Solution:

» Two's Complement of x = 2" — x (radix complement; most common
representation)

— single bit pattern for 0

— ensures that $x + (-x)$ is 0

— still keeps 1 in MSB for a -ve number (sign bit)
— 100... represents the most -ve number

— E.g. 4-bit 2's complement number 1100, = -1x23 + 1x22 + 0x2! +
0x20 =-4,, 4

41

42

Today: Bits, Bytes, and Integers

* Integers

Conversion, casting

43

Mapping Between Signed &
Unsigned

Two’s Complement Unsigned
T2U

(728 {B2u}— =

Maintain Same Bit Pattern

Unsigned u2T Two’s Complement

o [T

Maintain Same Bit Pattern

* Mappings between unsigned and two’s complement
numbers:
Keep bit representations and reinterpret

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 [) 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 [0]— 5
0110 6 6
0111 7 Luet }— 7
1000 -8 8
1001 =7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 = 14
1111 -1 15

44
Mapping Signed <> Unsigned
Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 - 3
0100 1 <4+—> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +-16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

46

45
Relation between Signed &
Unsigned
Two’s Complement = Unsigned
x —»7——> ux
Maintain Same Bit Pattern
w-1 0
fad 15 1 I I 5 5
fa I NN S
Large negative weight
becomes
Large positive weight
47

+ 2's Comp. —>
Unsigned

Positive

2’s Complement
Range

— Ordering Inversion
— Negative — Big

TMax

-1
-2

TMin

Conversion Visualized

UMax
UMax -1

TMax +1
TMax

Unsigned
Range

48
Expression Evaluation
— If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
— Including comparison operations <, >, ==, <=, >=
— Examples for W=32: TMIN =-2,147,483,648, TMAX =2,147,483,647
Constant, Constant, Relation Evaluation
0 ou
-1 0 .
1 ou == unsigned
2147483647 -2147483647-1 < signed
2147483647V -2147483647-1 unsigned
-1 -2 > . d
(unsigned)-1 -2 signe
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed
> unsigned
< unsigned
> signed
50

Signed vs. Unsigned in C

» Constants
— By default are considered to be signed integers
— Unsigned if have “U” as suffix
0U, 4294967259U
» Casting

— Explicit casting between signed & unsigned same
as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

— Implicit casting also occurs via assianments and

49

Summary
Casting Signed < Unsigned: Basic

Rules
* Bit pattern is maintained

* But reinterpreted

» Can have unexpected effects: adding or
subtracting 2%

« Expression containing signed and unsigned int
- intis castto unsigned!!

51

Today: Bits, Bytes, and Integers

Integers

— Expanding, truncating

Sign Extension

e Task:

— Given w-bit signed integer x
— Convert it to w+k-bit integer with same value

52

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
v -15213 c4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

» Converting from smaller to larger integer data
type
« C automatically performs sign extension

* Rule:
— Make k copies of sign bit:
= X5 Xy X1 X1 s X2 5-0 Xo
k copies of MSB w
x OITr .- TTT1]
SN I I I I I I T TR N
<k w
53
Summary:
Expanding, Truncating: Basic
Rules

54

» Expanding (e.g., short int to int)
— Unsigned: zeros added
— Signed: sign extension
— Both yield expected result

» Truncating (e.g., unsigned to unsigned short)
— Unsigned/signed: bits are truncated
— Result reinterpreted
— Unsigned: mod operation
— Signed: similar to mod
— For small numbers yields expected behavior

55

Today: Bits, Bytes, and Integers

* Integers

» Representations in memory, pointers, strings

Byte-Oriented Memory
Organization

* Programs refer to data by address
— Conceptually, envision it as a very large array of bytes
« Inreality, it's not, but can think of it that way
— An address is like an index into that array
< and, a pointer variable stores an address

* Note: system provides private address spaces to each “process”
— Think of a process as a program being executed
— So, a program can clobber its own data, but not that of others

56

Machine Words

« Any given computer has a “Word Size”
— Nominal size of integer-valued data
+ and of addresses

— Until recently, most machines used 32 bits (4 bytes) as word size
« Limits addresses to 4GB (232 bytes)

— Increasingly, machines have 64-bit word size
« Potentially, could have 18 EB (exabytes) of addressable memory
+ That's 18.4 X 10'®

— Machines still support multiple data formats
< Fractions or multiples of word size
< Always integral number of bytes

57

Word-Oriented Memory
Organization ..

+ Addresses Specify Byte ~ Words words Y€
Locations nder
— Address of first byte in 0000 -
Word 00:00
— Addresses of Addr
successive words differ 000
by 4 (32-bit) or 8 (64-
bit)
0008 Addr
00:08
Addr
O(J:12

58

Addr.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

59

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double - - 10/16
pointer 4 8 8

Byte Ordering

* So, how are the bytes within a multi-byte word
ordered in memory?
» Conventions
— Big Endian: Sun, PPC Mac, Internet
* Least significant byte has highest address

— Little Endian: x86, ARM processors running
Android, iOS, and Windows
* Least significant byte has lowest address

60

61

Byte Ordering Example

+ Example
— Variable x has 4-byte value of 0x01234567
— Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
[[JorJ23JasJer] [|

Little Endian 0%100 0x101 0x102 0x103
[[Te7[as[23]or] [|

Decimal: 15213

Representlng Integers Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213; long int C = 15213;

IA32, x86-64 Sun
1A32 x86-64 Sun
6D 00
3B 00 6D 6D 00
00 3B 3B 3B 00
00 6D 00 00 3B
00 00 6D
00
int B = -15213; 00
IA32, x86-64 Sun 00
00
93 FF
c4 FF | Y
FF >< c4 \
FF 93 Two’s complement representation

62

63

Examining Data Representations

Code to Print Byte Representation of Data

— Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show_bytes (pointer start, size_t len){
size t i;
for (i = 0; i < len; i++)
printf (“$p\t0x%.2x\n", start+i, start([i]);
printf ("\n");
}

Printf directives:
%p: Print pointer

%X: Print Hexadecimal

show bytes Execution Example

int a =

printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

15213;

Result (Linux x86-64):

int a = 15213;

0x7fffb7£71dbc 6d
0x7f£fb7£71dbd 3b
0x7fffb7£71dbe 00
0x7fffb7£f71dbf 00

64
Representing Pointers
int B = -15213;
int *P = &B;
Sun 1A32 x86-64
EF AC 3c
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program

66

65
Representing Strings
‘ char S[6] = "18213"; I
+ StringsinC
— Represented by array of characters
— Each character encoded in ASCII format 1A32 Sun
« Standard 7-bit encoding of character set 31 Y
+ Character “0” has code 0x30
— Digit i has code 0x30+i 38 38
— String should be null-terminated 22 52
« Final character = 0 31 31
« Compatibility 33 33
— Byte ordering not an issue 00 00
67

Integer C Puzzles

e x <0 O ((x*2) < 0)
e ux >= 0
* x & 7 =1 [(x<<30) < 0

¢ ux > -1

* X >y mn -x < -y
e x * x >= 0
Initialization * x>0¢y >0 00 x+vy >0

- e x >0 00 -x <=0

e 25 = Eee()) « x <=0 00 -x >= 0

int y = bar(); o (x]-x)>>31 == -1

unsigned ux = x; e ux >> 3 == ux/8

unsigned uy = y; *x >> 3 == x/8
* x & (x-1) !'=0

68 69

Today: Bits, Bytes, and Integers Unsigned Addition

u

Operands: w bits Trr .- TTT11
) ty IO~ T1T71T11
4 True Sum: w+1 bits Wty T T
* Integers Discard Carry: w bits UAdd,u,v) [TTT <-- 1111

_ » Standard Addition Function
_ — Ignores carry output

— Addition, negation, multiplication, shifting * Implements Modular
Arithmetic

s = UAdd,(u,v)=u+v
mod 2W

70 71

* Integer Addition

—4-bit integers u,
Y,

—Compute true
sum Add,(u , v)

—Values
increase
linearly with u
and v

—Forms planar
surface

Visualizing (Mathematical) Integer
Addition

Add,(u, v)

Integer Addition

72

Visualizing Unsigned Addition

* Wraps Around
— If true sum = 2%
— At most once

True Sum
sl
Overflow

Modular Sum

Overflow

\

UAdd,(u , v)

Operands: w bits

True Sum: w+1 bits

Behavior

int s, t, u, v;

Two’s Complement Addition

Discard Carry: w bits TAdd,(u ,v) [T 11

* TAdd and UAdd have Identical Bit-Level

— Signed vs. unsigned addition in C:

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
—Willgive s =«

73

74

TAdd Overflow

» Functionality

— True sum
requires w+1
bits

— Drop off MSB

— Treat
remaining bits
as 2’s comp.
integer

0111..1

0100..0

0000...0

1011..1

1000...0

True Sum
2W_1 -_
PosOver TAdd Result
w11 011..1
0T 000..0
2wl T+ 100...0

ow L1 NegOver

75

10

Visualizing 2's Complement
Addition

NegOver

* Values \

— 4-bit two’s comp. TAddy(u, v)
— Range from -8 to
+7
* Wraps Around
— If sum > 2w-1
* Becomes
negative
+ At most once
— If sum < —-2w-1
» Becomes positive

R N 4

u 6 ’ PosOver

* At most once

Exceptions

» Overflow: number too large to be represented in
n bits

» Overflow condition for O = A+B:
IMSBA.IMSBB.MSBO + MSBA.MSBB.!MSBO

» Detection of overflow language specific
—ignored in C, required in Fortran

* Memory addressing arithmetic on unsigned
numbers

* An exception/interrupt generated on overflow for
signed arithmetic

77

76

Multiplication

+ Goal: Computing Product of w-bit numbers x, y
— Either signed or unsigned
+ But, exact results can be bigger than w bits
— Unsigned: up to 2w bits
» Resultrange: 0sx*ys<(2¥—1)2 = 22w_pwil 4]
— Two’s complement min (negative): Up to 2w-1 bits
» Resultrange: x *y 2 (-2"1)*(2w1-1) = —22w-24 pw-1
— Two’s complement max (positive): Up to 2w bits, but only for
(TMin,,)?
» Result range: x *y < (=2%-1) 2 = 22w-2

* So, maintaining exact results...

— would need to keep expanding word size with each product
computed

— is done in software, if needed
» e.g., by “arbitrary precision” arithmetic packages

77

Unsigned Multiplication in C

w [T [TT11

Operands: w bits
* v [T [TT1
True Product: 2*w bits “ V[T T e TTTTTTI [TT1
UMult,(u,v) [TT] e [TT1

Discard w bits: w bits

» Standard Multiplication Function
— Ignores high order w bits

* Implements Modular Arithmetic
UMult,(u, v) = u -v mod 2%

78

79

Signed Multiplication in C

w [ITT1

Operands: w bits

*

v [I11

True Product: 2*w bits “ V[T T1

TMult,(u,v) [TT]

Discard w bits: w bits

+ Standard Multiplication Function
— Ignores high order w bits

— Some of which are different for
signed vs. unsigned
multiplication

— Lower bits are the same

80

Unsigned Power-of-2 Divide with
Shift

* Quotient of Unsigned by Power of 2
~u > kagives Lu / 2¢]

— Uses logical shift k
u [T Teee[TTeeeTT] BinaryPoint
Operands:
/2¢ [o] eee Tof1f0] e« T0[0] /
7
Division: /2% [0 sss Jolo] T T ves [(T e T T]
Result: Lu/2k] [0 see Jo[Ol T [eee 1]
Division Computed Hex Binary
X 15213 15213 3B 6D| 00111011 01101101
x> 1 7606.5 7606| 1D B6| 00011101 10110110
x > 4 950.8125 950 03 B6| 00000011 10110110
x >> 8 | 59.4257813 59 00 3B| 00000000 00111011

Power-of-2 Multiply with Shift

» Operation
- u << kgivesu * 2k
— Both signed and unsigned
Operands: w bits

k
[ITTT e« TTT]
* 2F [o] eee To[2JO] e« TOJOI

.k
True Product: w+k bits u 2[ITT eee TTTTo[+=e Jol0]

Discard k bits: w bits UMult,(u,2) [“ees T T T Jo[eee JoJ0]

TMult,(u , 2%)

+ Examples
-u << 3 = u * 8
- (u<<5) - (u<k< 3) == u * 24

— Most machines shift and add faster than multiply
» Compiler generates this code automatically

82

81
Today: Bits, Bytes, and Integers
* Integers
— Summary
83

12

Arithmetic: Basic Rules

« Addition:
— Unsigned/signed: Normal addition followed by truncate,
same operation on bit level
— Unsigned: addition mod 2%
« Mathematical addition + possible subtraction of 2%
— Signed: modified addition mod 2% (result in proper range)
« Mathematical addition + possible addition or subtraction of 2%

* Multiplication:
— Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level
— Unsigned: multiplication mod 2%
— Signed: modified multiplication mod 2" (result in proper range)

When Should | Use Unsigned?

» Don't use without understanding implications
— Easy to make mistakes

unsigned i;
for (i = cnt-2; i >= 0; i--)
al[i] += al[i+l1];

— Can be very subtle

#define DELTA sizeof (int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

84

Counting Down with Unsigned

» Proper way to use unsigned as loop index
for % enee2s 5 < onts 5o
a[i] += a[i+1];
» See Robert Seacord, Secure Coding in C and C++
— C Standard guarantees that unsigned addition will
behave like modular arithmetic
+ 0-1- UMax

* Even better
size t i;
for (i = cnt-2; i < ent; i--)
a[i] += a[i+l];
— Datatype size_t defined as unsigned value with length = word size
— Code will work even if ent = UMax
— What if ent is signed and < 0?

86

85

Why Should | Use Unsigned?

(cont.)
* Do Use When Performing Modular Arithmetic
— Multiprecision arithmetic
* Do Use When Using Bits to Represent Sets
— Logical right shift, no sign extension

87

13

