CSC 252/452: Computer Organization

Today

e Arrays
— One-dimensional
— Multi-dimensional (nested)
— Multi-level
e Structures
— Allocation
— Access
— Alignment
e Unions
¢ Floating Point

Programming with SSE3

XMM Registers
B 16 total, each 16 bytes
B 16 single-byte integers

B 8 16-bit integers

B 4 32-bit integers

B 4 single-precision floats

B 2 double-precision floats

I
B 1 single-precision float

B 1 double-precision float

Scalar & SIMD Operations

B Scalar Operations: Single Precision addss $xmm0, $xmml

[T T T T T T T T T T T T T T 7semo
\/ X
[T 1

[TT T T T T T T T T T] ¢emm

W SIMD Operations: Single Precision addps $xmm0 , $xmml

| 1 [1 [T T T T T T T 1sxmmo
N
| [[1 N N N I

] $xmml

[[1
N ~ ~
| [1
W Scalar Operations: Double Precision _ 4.4 sxmm0 . $xmml

[T T T T T T T T T T T T T T 7semo

[T T T T T T T T T T T T T T sxmm

FP Basics

» Arguments passed in $xmm0, $xmml, ...
* Result returned in $xmm0
« All XMM registers caller-saved

float fadd(float x, float y) double dadd(double x, double y)
{ {
return x + y; return x + y;
} }
x in $xmm0, y in %$xmml # x in %$xmm0, y in $xmml
addss $xmml, $xmmO addsd Sxmml, %$xmmO
ret ret

CSC 252/452: Computer Organization

FP Memory Referencing

< Integer (and pointer) arguments passed in regular registers

* FP values passed in XMM registers

< Different mov instructions to move between XMM registers, and
between memory and XMM registers

{

double dincr (double *p, double v)

double x = *p;
*p = x + v;
return x;

Other Aspects of FP Code

* Lots of instructions

— Different operations, different formats, ...
* Floating-point comparisons

— Instructions ucomiss and ucomisd

— Set condition codes CF, ZF, and PF
» Using constant values

— Set XMMO register to 0 with instruction
xorpd %$xmmO, %xmmO

— Others loaded from memory

p in %rdi, v in $xmmO
movapd $xmm0, %$xmml # Copy Vv
movsd (%rdi), %$xmm0 # x = *p
addsd $xmm0, %$xmml #t=x+v
movsd gxmml, (%rdi) # *p =t
ret
5
Breakout

Consider the following declaration of
a two-dimensional array

int Array([n][n];
Assume n in %$rdi;
Array in %rsi;
i in %$rdx;
J in %rcx
Write the assembly code (x86-based) to
read Array[i][j] into register %eax

n X n Matrix Access

m Array Elements
= Address A + i *(C*K)+ j*K
" C=nK=4
= Must perform integer multiplication

/* Get element alil[j] */
int var_ele(size_t n, int aln][n], size_t i, size_t Jj)
{

return alil[j]7

}

n in %rdi, a in %rsi, i in %$rdx, j in %rcx
imulg Srdx, %$rdi # n*i

leaq (%rsi,%rdi,4), %rax # a + 4*n*i

movl (%$rax,%rcx,4), %eax # a + 4*n*i + 4%3
ret

CSC 252/452: Computer Organization

CSC 252:
Processor Architecture

Overview of Logic Design

* Fundamental Hardware Requirements
— Communication
* How to get values from one place to another
— Computation — combinational logic
— Storage — sequential logic
— Clock to drive the next computation
* Bits are Our Friends
— Everything expressed in terms of values 0 and 1
— Communication
» Low or high voltage on wire
— Computation
« Compute Boolean functions
— Storage
« Store bits of information

1

Instruction Set Architecture

Assembly Language View
— Processor state
* Registers, memory, ...
— Instructions
* addl, movl, leal, ...
» How instructions are encoded as

Application
Program

Compiler[OS

bytes
CPU
How do we go from a sequence of Design
instructions to actual execution? Circuit
Design
Chip
Layout

10

10

11

Digital Signals
=0 — b—1 — =0 —

Voltage

Time
— Use voltage thresholds to extract discrete values from continuous
signal

— Simplest version: 1-bit signal

« Either high range (1) or low range (0)

» With guard range between them
— Not strongly affected by noise or low quality circuit elements

» Can make circuits simple, small, and fast

12

CSC 252/452: Computer Organization

Basic Building Block: Transistors

MOS = Metal Oxide Semiconductor
* two types: n-type and p-type
n-type (NMOS) LA
» when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)
» when Gate has zero voltage,

#2
open circuit between #1 and #2
(switch open) Gate = 1
T #1
#10 |
Gate —| \ {
| Gate = 0‘ b

Terminal #2 must be GND
connected to GND (0V). S

13

CMOS: Complementary MOS
* Use both n-type and p-type

Inverter (NOT Gate) Hay

prubstrate

Your text hereT "% | p-type
In:0<|: Out=1
;i N-type
+0.0V

- {_iPtype
m out In:1<|: Out=0
o o 0 o | 1 | N-type

+0.0V

15

Basic Building Block: Transistors

p-type is complementary to n-type (PMOS)
* when Gate has positive voltage,
open circuit between #1 and #2 #1
(switch open) l
* when Gate has zero valtage, [(|
short circuit between #1 and #2 \ /
(switch closed)
#2

N

‘Gate =1 |
: SHN
Hav' /%
S _°| Gate = 0 ?
\#2
Terminal #1 must be

connected to +1.2V

14
14
CMOS: NOR and NAND Gates
NAND Gate (NOT + AND)
NOR Gate (NOT + OR) s
AT—d L
B_ Out
A B| C A‘I
oo]
16

15

16

CSC 252/452: Computer Organization

Computing with Logic Gates

And Or Not
a — a
b out DD out a_‘>o.out
out=as&s&b out=al|lb out='a
—Outputs are Boolean functions of inputs

—Respond continuously to changes in inputs

» With some, small delay
Rising Delay

Falling Delay
as&hb

Voltage

17

17

Combinational Circuits

Acyclic Network

1>
F:rimziry D D CP)ri{na;y
nputs utputs
D .
1>
>

Acyclic Network of Logic Gates
— Continously responds to changes on primary inputs

— Primary outputs become (after some delay)
Boolean functions of primary inputs

18

— Combinational logic

« Continuously responding to inputs
— Control signal selects function computed

« Corresponding to 4 arithmetic/logical operations in Y86
— Also computes values for condition codes

19

18

19

Sequential Logic: Memory and Control

+ Sequential:
— Output depends on the current input values and
the previous sequence of input values.
— Are Cyclic:
» Output of a gate feeds its input at some future time.
— Memory:
* Remember results of previous operations
» Use them as inputs.
— Example of use:
+ Build registers and memory units.

20

20

CSC 252/452: Computer Organization

Clocks

» Signal used to synchronize activity in a
processor

« Every operation must be completed in the time
between two clock pulses (or rising edges) ---
the cycle time

* Maximum clock rate (frequency) determined by
the slowest logic path in the circuit (the critical
path)

Clock |

21

21

«Registers

7 e Q* 07

fo e Q Og

is e Q Os

I e @ 0, I o
ia S o O3

f2 c Rl 0,

iy > o o, Clock

fo c @ O

Clock

— Stores word of data
« Different from program registers seen in assembly code
— Collection of edge-triggered latches

— Loads input on rising edge of clock 23

Edge-Triggered Latch

b R
Data Q"‘
g S -
C S
Clock T_
Trigger
c—,—\— — Only in latching mode for
brief period
T « Rising clock edge
D — Value latched depends on
data as clock rises
Q+—'_ — Output remains stable at
Time all other times
22
22
Register Operation
State = x State =y
Rising
Input =y Output = x |:> clock |:> Output =y

23

—Dly—>

DX j

—Stores data bits

—For most of time acts as barrier between input
and output

—As clock rises, loads input

24

24

CSC 252/452: Computer Organization

State Machine Example

Comb. Logic
0

—Accumulator

Random-Access Memory

A
_sreA) vaw
Register

file

Read ports st Write port

valB

sicB.

Clock

— Stores multiple words of memory
« Address input specifies which word to read or write
— Register file
« Holds values of program registers
* %eax, $esp, etc.
« Register identifier serves as address
— ID 8 implies no read or write performed
— Multiple Ports
« Can read and/or write multiple words in one cycle
— Each has separate address and data input/output

| Out circuit
—Load or
accumulate
on each
cycle
Clock_[1_ [T LI LI LT LT
Load © | 71
W% o T Tm [%]
Out Xo XotX; [Xg+X X, X3 Xg+Xy X3+XA+XSI
25
25
Register File Timing
» Reading
— Like combinational logic
ERSLES — Output data generated based on
input address
+ After some delay
* Writing
— Like register
— Update only as clock rises
L)) . 2]

Register J y Rising ResisE v
file i} |:> clock |:> efg?;:e Wl
! T

Clock
Clock 27

27

26
26
Building Blocks
» Combinational Logic fun
— Compute Boolean functions of A
inputs
— Continuously respond to input B
changes 0
— Operate on data and implement MUX
control 1
» Storage Elements m
— Store bits | A -
. Regist —
— Addressable memories s ef?f: €W L
— Non-addressable registers o | B | Clock
— Loaded only as clock rises Clock
28
28

