CSC 252/452: Computer Organization

Overview of Logic Design

Fundamental Hardware Requirements
— Communication
« How to get values from one place to another
— Computation
— Storage
Bits are Our Friends
— Everything expressed in terms of values 0 and 1
— Communication
« Low or high voltage on wire
— Computation
« Compute Boolean functions
— Storage
« Store bits of information

10/7/2020 30

30

Combinational Circuits

Acyclic Network

1>
F:rimziry D D CP)ri{na;y
nputs utputs
D .
1>
>

» Acyclic Network of Logic Gates
— Continously responds to changes on primary inputs

— Primary outputs become (after some delay)
Boolean functions of primary inputs

31

Arithmetic Logic Unit

— Combinational logic

» Continuously responding to inputs
— Control signal selects function computed

» Corresponding to 4 arithmetic/logical operations in Y86
— Also computes values for condition codes

10/7/2020 32

31

32

Sequential Logic: Memory and Control

+ Sequential:
— Output depends on the current input values
and the previous sequence of input values.
— Are Cyclic:
» Output of a gate feeds its input at some future time.
— Memory:
* Remember results of previous operations
» Use them as inputs.
— Example of use:
* Build registers and memory units.

10/7/2020 33

33

CSC 252/452: Computer Organization

Regist

Structug IS e rS

i7~2 Q* 07

Ie T8 Q* Og

is . Q* 05

iy TR o 04 ¢}
i3 TR o 03

iz TR Qr 0,

BT e 0, c

io I o 0y

—Stores several bits of data
—Collection of edge-triggered latches (D Flip-flops)
—Loads input on rising edge of the C signal

Register Operation

State = x State =y

Input =y| | Output = x C Rises Output =y

"—"j-—*y

c Output continuously produces
y after the rising edge unless

) you cut off power.
—Stores data bits

—For most of time acts as barrier between input and output
—As C rises, loads input

—So you'd better compute the input before the C signal rises if you want
to store the input data to the register

35

34
Clock Signal
State = x State =y
C Rises Output =y
—fp r —p —Dy—>
—A special C: periodically oscillating between 0 and 1
—That’s called the clock signal. Generated by a crystal oscillator
inside your computer
cock [L LT LT LI LT
e T Toe [[[|
outlxnlxllleleXAI)(s]
36

Clock Signal

—Cycle time of a clock signal: the time duration between two rising edges.

—Frequency of a clock signal: how many rising (falling) edges in 1
second.

—1 GHz CPU means the clock frequency is 1 GHz
» The cycle time is 1/10"9 = 1 ns

Cycle time

Cock [L [LT LI LT LT

|an0IX1leIX3lX4lxsl

Outlxolxlllexslx4l"5]

37

CSC 252/452: Computer Organization

Register File Register File Read

« Aregister file consists of a set of registers that you can individual . Continuous|y read a register independent of the

read from and write to. clock sianal Read Reg ID
« To read: give a register file ID, and read the stored value out 9

« To write: give a register file ID, a new value, overwrite the old value 1 l

<
* How do we build a register file out of individual registers?? b Register 0
.) C .
Register File Register 1 Out
D 4:1
C MUX
1 5 Register 2
2 Sy 3 < 0 - Register 3
T Rising
Clock edge
38 39
Register File Write Decoder
* Only write the a specific register when the clock
rises. How?? Read Reg ID
Clock l l WO _Co
o o o [Wi
egister
] s o L P _c1
- —ClI
E’ o p a 5 Register 1 . out t P p
i o L p - :\;t « o o P _C2
§ N I Register 2
b b p J1P CO=1W1& W0 c3
—C3 = -
Register 3 Cl=1W1& WO
Data D C2=W1&!WO0
C3=W1&WO

40 41

CSC 252/452: Computer Organization

Register File Write

Read Reg ID
Clock l l
0) c
0 - Register 0
= |
g) L "~ Register 1 out
4 z4 D 41
2 1 Decoder | o —1 3 MUX
=z — — \-D Register 2
10— >+
Register 3
Data D

* This implementation can read 1 register and write
1 register at the same time: 1 read port and 1 42

42

Multi-Port Register File

* |s this correct? What if we don’t want to write

Multi-Port Register File

* What if we want to read multiple registers at the

same time? Read Reg ID
Clock l l
0) c
/ Register 0
a) 0 |
Q — 14— T
|
g 24 L " Register 1 outl
e Decod — D 4:1
[}
g 1 | or—T)+t MUX
2= — Register 2
+— D
10— <3 Recisior 3
egister
Data D 2 ead
| |RegiD2
® This register file has 2 read ports and 1 write 4:1 |out2
port. How many ports do we actually need? MUX

43

Rngister File

anything? Read Reg ID

Clock l l
04—1)
co
— Register 0
0 — D
Q — 1 |
4 . — Register 1 outl
i - D 41
@ Decoder | ¢
= 1 2 MUX
= — — TD Register 2
01 v+
Register 3
Data D ead
l lReg ID 2
Enable
41 Out2
MUX

gister File
x <2z || wiicepor
2 _ScA - vaw
Read ports 2 W%

dstw

44

, &8 3 2
l srcB
T Rising
Clock edge

¢ Stores multiple registers of data
- Address input specifies which register to read or write
® Register file is a form of Random-Access Memory (RAM)
® Multiple Ports: Can read and/or write multiple words in one
cycle. Each port has separate address and data input/output

®

45

CSC 252/452: Computer Organization

Breakout

* What does this circuit compute? How many 2-
input NAND gates will you need?

Ao——
LD

10/7/2020 46

46

Ripple Carry and Lookahead

Adders
* Ripple Carry Adder
—Time?
As B3 Az B2 A1 B1 Ao Bo
| O R O A
1-bit 1-bit 1-bit 1-bit

<— Full =— Full [~ Full [<— Full <~

C

-
W
1

Adder | © | Adder | €2 | Adder | €* | Adder | C°

! ! ! '

Ss3 Sz S1 So
» Carry Lookahead Adder

— Generate carries in parallel

— Logarithmic versus linear time
10/7/2020 48

48

Half and Full Adders

47

47

Multiplexer
I __out , — M
sel se\;

v Pl
‘)=
' ~J)-oureurx
‘ o>

Aside: The number of inputs of a gate (fan-in) and the number of outputs of a

gate (fan-out) will affect the gate delay 0

49

CSC 252/452: Computer Organization

Building Blocks

— Compute Boolean functions of A
inputs
— Continuously respond to input B
changes 0
— Operate on data and implement
control 1

Storage Elements wain

— Store bits N o
— Addressable memories fFﬁzg'Ster Wogstw
— Non-addressable registers s | B

— Loaded only as clock rises

Clock
10/7/2020 50

Combinational Logic fun B

50

Hardware Components of a Computer
System

* Processor
— Datapath
— Control
* Memory
 Input and Output devices

52

State Machine Example

Comb. Logic
0

—Accumulator

| Out circuit
—Load or
accumulate
on each
coek L1 &vele
Load__l F‘I
% [% | % [% | % | % |
out Xo | Xota [Xotxetto| Xg | XXy [XgtRetxs)

51

51

Sequential Architecture:
Microarchitecture Overview

Think of it as a state machine

Combinational

Every cycle, one instruction gets

logic Read wiite
executed. At the end of the oot ,

cycle, architecture states get 7 L} _memory N
L d Write
States (All updated as clock por P
riseS) <:| Register | |
X :> file i N
= PCregister [Az
= Cond. Code register 7S

= Data memory
0x014

» Register file

53

52

53

CSC 252/452:

Computer Organization

Y86-64 Processor State

RF: Program CC: Stat: Program status

registers Condition
Srax Grep %18 %r12 codes
Srox “rbp 219 PE) [zE]sE[oz] DMEM: Memory
$rdx $rsi $r10 3114 PC
$rbx $rdi $ril [| |

Program Registers

« 15 registers (omit $r15). Each 64 bits
— Condition Codes

< Single-bit flags set by arithmetic or logical instructions
— ZF:Zero SF:Negative OF: Overflow

— Program Counter

« Indicates address of next instruction
Program Status

« Indicates either normal operation or some error condition
— Memory
« Byte-addressable storage array
« Words stored in little-endian byte order

54

Y86-64 Instructions

Format
—1-10 bytes of information read from memory

» Can determine instruction length from first byte

» Not as many instruction types, and simpler
encoding than with x86-64

— Each accesses and modifies some part(s) of
the program state

Y86-64 Instruction Set #1
Byte 0 1 2 3 4 5 6 7 8
halt n

cmovXX rA, rB

9

irmovq V, B [3To]=Tw[v

rmmovq rA, D (rB) [4 ‘ 0 IrA‘ rBI D

nrmovg DB, rA [5[o[rm[m[D

opq A, B [6 [in]ral rg]

XX Dest [7] Dest]
call Dest [To oest]
ret
pushq 1A [2 o [rm]F]
cera 4 Tl

55

Y86-64 Instruction Set #2
Byte 0 1 2 3 4 5 6 7 8

nop cmovl
< cmove

cmovne

cmovle

cmovXX rA, 1B

irmovqg V, 1B IB‘OIF‘rBIV

[~1[]
-] [+

2|3

cmovge
rmmovq rA, D(B) [4] o [ral 8] D

mrmovqg D (rB), rA [5 ‘ 0 IrA‘ rBI D Ve

2

HE

oPq 1A, 1B [s [in]ra] i8]

4xx Dest 7 [n] Dest

call Dest 8 ‘ 0 IDest

pushqg rA n
popg ™A [2[o] []

56

57

CSC 252/452: Computer Organization

Y86-64 Instruction Set #3

2 6

Byte

halt

cmovXX rA, rB

izmovq V, 1B [3To]=Te[v |

rmmovqg rA, D (rB) [4 ‘ 0 IrA‘ rBI D]

nrmovg DB, rA [5[o[m[[D |

OPgq A, B n B

Y86-64 Instruction Set #4
Byte 0 1 2 3 4 5 6 7 Jmp
halt jle
nop 1
cmovXX rA, 1B ’{ je
imovg v, 8 [3[o]r]V // jne
L7 1s]

716

§XX Dest [7] pest
xorq [6]3]
call Dest [8 ‘ 0 IDest
pushq 1A BEDE
—_— FTo T
58

Encoding Registers
» Each register has 4-bit ID

srax | 0 3r8 8
srcx | 1 2r9 9
srdx | 2 5110 | A
2rbx | 3 sril | B
srsp | 4 sr12 | C
srxbp | 5 5r13 | D
Srsi 6 514 | E
$rdi 7 No Register | F

— Same encoding as in x86-64
* Register ID 15 (0xF) indicates “no register”

— Will use this in our hardware design in multiple
places

rmmovq rA, D (rB) [4 ‘ 0 IrA‘ rBI D // ige
mrmovg D(1B), rA [5 [o[m[8]p / iq
opq 1A, 1B [6 [in]ral rg] /
XX Dest [7] Dest]
call Dest [8 ‘ 0 IDesl]
pusha A [=To [l =]
pops 1A Fle A=
59
SEQ Hardwareec
Structure e
- State
— Program counter register (PC) Memory
— Condition code register (CC)
— Register File
— Memories
+ Access same memory space Execute
+ Data: for reading/writing program
data

« Instruction: for reading instructions
 Instruction Flow
— Read instruction at address
specified by PC
— Process through stages
— Update program counter

Decode

icode ifun
h, 8

ValC
Instruction pC
memory increment

Fetch

60

61

CSC 252/452: Computer Organization

oc newpc
SEQ Stages -
9ES wevea Instruction Example
* Fetch + Addition Instruction
— Read instruction from instruction Memory Generic Form
memory
« Decode Encoded Representation
- Read program registers addg 1A, B [6]0]rA g |
» Execute Execute - -))
— Compute value or address — Add value in re.glster rAto that in register rB
- Memory A 4 « Store result in register rB
. » Note that Y86-64 only allows addition to be applied to register data
— Read or write data S giti des b d it
. Write Back becode — Set condi |or: col ef a§e Eon rZ.su .
— Write program registers — e.g., addg %rax, %rsi ncoding: 60 06
. pC ‘3.’c — Two-byte encoding
— Update program counter « First indicates instruction type
Fetch » Second gives source and destination registers
62 63
Arithmetic and Logical Operations Arithmetic and Logical Operations
Instruction Code Function Code i Instruction Code Function Code
Add \ / — Refer to generlca”y Add — - Refer to generically as “opq”
* ”
| addq rA, 1B [6]o]rA rB|| as OPqg addqg rA, B [6]0]alr8] - Encodings differ only by “function
— Encodings differ only code® o
Subtract (rA from rB) . ? Y Subtract (rA from rB) ~ Low-order 4 bits in first instruction
by “function code word
[eobara ® [s[]l « Low-order 4 bytes in subq A, 18 (o] Jralre] - Set condition codes as side effect
And first instruction word And
[s a B [cl2]A) — Set condition codes andg 1A, B[] 2[AlE]
as side effect
Exclusive-Or Exclusive-Or
| xorq rA, 1B | 6 ‘ 3] rA] rBlI xorq rA, B n

64 65

CSC 252/452: Computer Organization

Executing an ADD instruction

—How does the processor execute addg %rax, $rsi

—The binary encoding is 60 06 Instruction Code Function Code

Add

addg rA, 1B nn

Clock

Memory
(Later...)
newData What
Logic?
i - Select
Write
- © E Reo. 1D . Reg 1 Data Al
s1 ﬂ ReadReg. _,| Register L
i u D 1 . Reg 2 Data
Read Reg N File y
s3 ’
E ID2
T t—. Flags

Executing an ADD instruction

— How does the processor execute addg %rax, $rsi

— The binary encoding is 60 06 Instruction Code Function Code

Add

addg rA, 1B nn

Enable Clock @

66

Executing an ADD instruction
— Logic 1: if (sO == 6) select = s1;
—Logic 2: if (sO == 6) Enable = 1, else Enable =
0;
— Logic 3: if (s0 == 6) nPC = oPC + 2;
How ahout | gic 4?

How do these logics get
implemented?

addqg rA, 1B

[6 10]mlr8]
Memory

(Later...)
newData
Logic 1

" Select
Write l
Reg. ID — Reg 1 Data
Read Reg. A

— Register L
D1 . Reg 2 Data
File u °
Read Reg. Logic 4
D2

Logic 2 | EnaTbIe CIoTck Rising Foos
o 2][s][o]],

ge

67

68

(Later...)
newData
Logic 1

Executing an ADD instruction

— When the rising edge of the clock arrives, the RF/PC/Flags will be written.
— So the following has to be ready: newData, nPC, which means Logicl, Logic2,
Logic3, and Logic4 has to finish.

[6 [0]ra]re]

addg rA, 1B

Memory

: Select
Wwrite — Reg 1 Data l
Reg. ID
Read Reg. &

— Register L
D1 File Reg 2 Data U
Read Reg. Logic 4
! D2
. |
M,—Enarble Clock [Rising
d

eage

69

CSC 252/452: Computer Organization

— Let's say the binary encoding for is
— What are the logics now?

Executing a JLE instruction

| jleDest [7]1]

Dest

Memory
newData
Logic 1
o Select
Write
Rg D Reg 1 Data Al
ReadReg. _,| Register L
D1) Reg 2 Data
File U
Read Reg.) Logic 4
D2
T t i
Logic 2 Enable Clock [Rising et
[

Executing a JLE instruction

— Logic 1: if (sO == 6) select = s1;
— Logic 2: if (sO == 6) Enable = 1; else Enable = 0;
Memory
newData
Logic 1
" Select
Write
Reg. ID — Reg 1 Data Al
ReadReg. __,| Register L
D1 File Reg 2 Data U
Read Reg. Logic 4
D2
Logic 2 1 Clock t—» Flags
Enable @

Dest

| jleDest [7]1]

Executing a JLE instruction

Clock 1

— Logic 3?? if (s0 == 6) nPC = oPC + 2;
else if (s0 == 7) {
if(s1==1){
if (Z|| (S” O)) nPC = Dest;
else nPC = oPC + 9;
Memory Yelseif (s1=="..){...}
newData
Logic 1
Write lSEleCt
Reel D Reg 1 Data A
ReadReg. __,| Register L
D1 - Reg 2 Data
File U
Read Reg. _,J Logic4
ID2

Flags

— Logic 4? Does JLE write flags?
— Need another piece of logic.

Executing a JLE instruction

— f
\%Enable _ e 2[5l

— Logic 5: if (sO == 7) EnableF = 0; else if (sO == 6) EnableF = 1;
Memory
newData
Logic 1
: Select

Write

Reg. ID Reg 1 Data Al
ReadReg. __,| Register L
D1 File Reg2Data | ;
Read Reg. _,J Logic4
ID2

Clock L———

Logic 5 EnableF

CSC 252/452: Computer Organization

Clock

74

Microarchitecture (So far)

|

| }

PC | Memory

Cur.
PC

Register
File

Flags

(2] —

o]

New
PC

Current
Reg
Values

|

New
Rd/wr Reg.
Reg. IDs | | valus

Enable?

Enable?

Cur. Flag
Values

Combinational Logic

Logic for generating ALU
select signal

Logic for generating new
flag value

Logic for generating new
PC value

Logic for deciding all the
enable signal values

Read current_states;

next_states = f(current_states);
When clock rises, current_states = next_states;

74

12

