Recap of Last (Couple of) Classes

* Generally useful optimizations
— Code motion/precomputation
— Strength reduction
— Common subexpression elimination and sharing
— Removing unnecessary procedure calls
— Loop unrolling
» Optimization blockers (and how to avoid them)
— Procedure calls
— Memory aliasing
* Modern processors and instruction-level parallelism

— Accumulators and loop unrolling: techniques for eliminating
sequential dependency and enhancing instruction-level
parallelism

* Locality of reference

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0
10,000,000.0 Disk
1,000,000.0 *
SSD
100,000.0 .
= 10,000.0 —+—Disk seek time
2 —4—SSD access time
2 1,000.0 -B-DRAM access time
= 1000 DRAM -8—SRAM access time
-0-CPU cycle time
10.0 -O-Effective CPU cycle time
10
CPU
0.1
0.0

1985 1990 1995 2000 2003 2005 2010 2015
Year

Page 1

The Memory Hierarchy

* Topics
— Locality of reference
— Caching in the memory hierarchy
— Storage technologies and trends

Locality

« Principle of Locality:

— Programs tend to reuse data and instructions near those they
have used recently, or that were recently referenced themselves.

— Temporal locality: Recently referenced items are likely to be
referenced in the near future.

— Spatial locality: Items with nearby addresses tend to be
referenced close together in time.

Locality Example:
- Data

—Reference array elements in succession
(stride-1 reference pattern): Spatial locality

—Reference sum each iteration: Temporal locality

* Instructions
—Reference instructions in sequence: Spatial locality
—Cycle through loop repeatedly: Temporal locality

sum = 0;

for (1 = 0; i < n; i++)
sum += a[i];

return sum;

Locality Example
« Claim: Being able to look at code and get a

qualitative sense of its locality is a key skill for a
professional programmer.

* Question: Does this function have good locality?

int sumarrayrows (int a[M] [N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i] [j]’
return sum

Loop Interchange

* Question: Can you permute the loops so that the
function scans the 3-d array a [] with a stride-1
reference pattern (and thus has good spatial
locality)?

int sumarray3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += a[k][i][]];/
return sum

Page 2

Locality Example

* Question: Does this function have good locality?

int sumarraycols(int a[M] [N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i] [j];
return sum

Loop Fusion

+ Can you improve the temporal locality of this
program

for (i=0; i< 100; i++)
Alil = C[if;

for (i=0;i<100; i++)
B[i] = C[i]+1;

10

M i hi Example Memory
emory Hierarchies Lo/, Hierarchy
Small €gs CPU registers hold words
+ Some fundamental and enduring properties of hardware astor. L1./ L1 cache *"eved from the Lt eache:
and software: and (SRAM) L1 cache holds cache lines
. costlier L2 cache retrieved from the L2 cache.
— Fast storage technologies cost more per byte and (per byte) L2 (SRAM)
H storage L2 cache holds cache lines
have less capacity. devices retrieved from L3 cache
— The gap between CPU and main memory speed is L3 Lé;f’m?
Widening. L3 cache holds cache lines
) . 3 Larger retrieved from main memory.
— Well-written programs tend to exhibit good locality. Somer, La: R TR
« These fundamental properties complement each other Chzf;i‘)er (DRAM) Main memory holds
i disk blocks retrieved
beautlfully. (per byte) from local disks.
» They suggest an approach for organizing memory and Zteflfigest Local S(;CCC;T%?gSS)torage
storage systems known as a memory hierarchy. Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage
(e.g., Web servers)
11 12
« Cache: A smaller, faster storage device that acts as a staging area for
a subset of the data in a larger, slower device.
» Fundamental idea of a memory hierarchy: Smaller, faster, more expensive
— For each k, the faster, smaller device at level k serves as a cache Cache 1[4][o J[[20 J[[3]| memorycachesa subsetof
for the larger, slower device at level k+1. the blocks
* Why do memory hierarchies work? Datais copied in block-sized
— Because of locality, programs tend to access the data at level k transfer units
more often than they access the data at level k+1.
— Thus, the storage at level k+1 can be slower, and thus larger and Larger, slower, cheaper memory
cheaper per bit. Memory [o] 2 J[2 [3]| viewedaspartitioned into “blocks”
« Big Idea: The memory hierarchy creates a large pool of storage that La s [e J[7]
costs as much as the cheap storage near the bottom, but that serves [8][9 J[20 || 12]
data to programs at the rate of the fast storage near the top. (2 [B[4 |[5|
00 00000O0OCGOIOOIOOOIOIOIDS

13 14

Page 3

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
cache | [5][o JLaa][s] o
Memory 1| o [1 || 2 |[3 |
[a Il s Il s [7|
[8 J[9 J[20] 1]
[[(12 | 13][14 |[15]
900 0000O0OCOGCOOIOSNOSNOSNOIOS

15

General Caching Concepts:
Types of Cache Misses

« Cold (compulsory) miss
— Cold misses occur because the cache is empty
« Conflict miss
— Most caches limit blocks at level k+1 to a small subset (sometimes
a singleton) of the block positions at level k
« E.g. Block i at level k+1 must be placed in block (i mod 4) at level k
— Conflict misses occur when the level k cache is large enough, but
multiple data objects all map to the same level k block
» E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
« Capacity miss
— Occurs when the set of active cache blocks (working set) is larger
than the cache.

17

Page 4

General Cache Concepts: Miss

Request: 12 Data in block b is needed

Block b is not in cache:

cache | [Jaa][18][3 | oot
III Request: 12 Block b is fetched from
memory
Block b is stored in cache
Memory | 0 ” 1 ” 2 ” 3 | * Placement policy:

| 4 ” 5 ” 6 ” 7 | determines where b goes

* Replacement policy:

| 8 ” E ” 10 ” 1 | determines which block
22 J[13 J[1a][15 | gets evicted (victim)
900 0000O0OCOGCOOIOSNOSNOSNOIOS

16

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 bytes words CPU core 0 Compiler

TLB Address translations On-Chip TLB 0 Hardware

MMU

L1 cache 64-byte blocks On-Chip L1 4 Hardware

L2 cache 64-byte blocks On-Chip L2 10 Hardware
Virtual Memory 4-KB pages Main memory 100 | Hardware + OS

Buffer cache Parts of files Main memory 100 oS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware
Network buffer Parts of files Local disk 10,000,000 NFS client
cache
Browser cache Web pages Local disk 10,000,000 | Web browser
Web cache Web pages Remote server disks 1,000,000,000 Web proxy
server

18

Cache Memories

+ Cache memories are small, fast SRAM-based memories
managed automatically in hardware
— Hold frequently accessed blocks of main memory

» CPU looks first for data in cache

» Typical system structure:

CPU chip

Register file

Cache -
1L I
I —

System bus Memory bus

o ” Main
bridge memory|

19
Cache Performance Metrics
* Miss Rate
— Fraction of memory references not found in cache (misses / accesses)
=1- hitrate
— Typical numbers (in percentages):
* 3-10% for L1
« can be quite small (e.g., < 1%) for L2, depending on size, etc.
* HitTime
— Time to deliver a line in the cache to the processor
« includes time to determine whether the line is in the cache
— Typical numbers:
« 4 clock cycle for L1
« 10 clock cycles for L2
* Miss Penalty
— Additional time required because of a miss
« typically 50-200 cycles for main memory (Trend: increasing!)
21

Page 5

Processor package

Intel Core i7 Cache Hierarchy

L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

! Block size: 64 bytes for
‘ : all caches.

’ L3 unified cache

(shared by all cores)

Main memory ‘

20

Let’s think about those numbers

* Huge difference between a hit and a miss
— Could be 100x, if just L1 and main memory

* Would you believe 99% hits is twice as good as 97%7?

— Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

— Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

» This is why “miss rate” is used instead of “hit rate”

22

Writing Cache Friendly Code

» Make the common case go fast
— Focus on the inner loops of the core functions

* Minimize the misses in the inner loops

— Repeated references to variables are good (temporal
locality)

— Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

General Cache Organization (S, E,
B)

E = 2¢ lines per set
A

I ” I""I line

S =25 sets < [[Joooef |

\

Cache size:
C =S xE x Bdata bytes

|m| tag ||o]1|2] [B.lll
l

23
* Locate set
CaChe Read * Check if any line in set
has matching tag
E = 2¢ lines per set * Yes + line valid: hit
A * Locate data starting
p - N at offset
I If fooodf |
Address of word:
[If [o oo | [thits [sbits [bbits |
§=2sets < I ” I' b 'I I tag set block
index offset
90000000 OGOOOIOIOIOOIOIOIOOOIOIOITPOIDS
L | |+ -+ |Q
data begins at this offset
|[] G l:[o[-—To1]|
valid bt

B = 2" bytes per cache block (the data)

valid bit B = 2° bytes per cache block (the data)
24
Example: Direct Mapped Cache (E
Direct mapped: One line per set = 1)

Assume: cache block size 8 bytes

Address of int:

]
\LJ Coe JOLEELGT0) bt o6 [am)
L Cees ||ol1|z|sl4lsle|7||—‘ﬁndset

S =2%sets

25

\ [G CLLELEG]
000000 OOOOOIOIOEPOIPOIOIOIDS
(L] G LLELG|
26

Example: Direct Mapped Cache (E

Direct mapped: One line per set - 1)
Assume: cache block size 8 bytes

. . Address of int:
valid? + match: assume yes = hit
t bits 100

|
[
|[] Cees] LG5]6]7]
:
|

block offset

27

Direct-Mapped Cache Simulation

t=1 s=2 b=1

M=16 bytes (4-bit addresses), B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block
Set0 | 1 0 MI[0-1]
Set 1
Set 2

set3| 1 | o M[6-7]

Example: Direct Mapped Cache (E

Direct mapped: One line per set - 1)
Assume: cache block size 8 bytes

. . Address of int:
valid? + match: assume yes = hit -
| thit 100

|
[
|[] Cees] LGl [600]
:
[

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced

28

E-way Set Associative Cache
E=2:Two|inespers(Here: E = 2)

Assume: cache block size 8 bytes

Address of short int:

[[] Cres] [o[i2[3[[sTe[7]| [Cee] LIEGLL 16 7]

find set

[[1] Croe] [o[2 5 Tel7]| [Tz] IGLLs 16 17])|

|[] Ceeg] [oL:l2I[T5 7] |[] Creg] [e:l2[3 5 6 7]

] Cres] [o[i[2[[[sTe[7]| {[o] Cee] TILeLs 6 7]

29

30

E-way Set Associative Cache
E=2:Two|inesperse(Here: E = 2)

Assume: cache block size 8 bytes Address of short int:

compare both

valid? + [match: yes = hit

|[] Ceeg] [o[:l2l[eT5 s 7| |[] Cieg | [e:l2[3[I5 s 7]

block offset

E-way Set Associative Cache
E=2:Two|inesperse(Here: E = 2)

Assume: cache block size 8 bytes Address of short int:

compare both

valid? + | match: yes = hit

|[] Cee] [o[:[23[e[sTe 7] {[+] Ciee | [el:2I[e[5]617]|
I

block offset
short int (2 Bytes) is here
No match:

* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

31

2-Way Set Associative Cache
Simulation

t=2 s=1 =1
M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

] [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
(] [0000,] hit
v Tag Block

seto| 1 | 00 M[0-1]
1] 10 M[8-9]

Set1 (1) 01 M[6-7]

33

32

What about writes?

* Multiple copies of data exist:
— L1, L2, L3, Main Memory, Disk
* What to do on a write-hit?
— Write-through (write immediately to memory)
— Write-back (defer write to memory until replacement of line)
» Need a dirty bit (line different from memory or not)
* What to do on a write-miss?
— Write-allocate (load into cache, update line in cache)
» Good if more writes to the location follow
— No-write-allocate (writes straight to memory, does not load into
cache)
* Typical
— Write-through + No-write-allocate
— Write-back + Write-allocate

34

Breakout

* Assume a direct-mapped cache of size 8 KByte
64-Byte line. Ais located at 0x8000 and C is
located at 0x9000. How many misses would you
incur? Would this change with a 2-way set
associative cache? Assume i is retained in a
register and the arrays are not initially in the
cache.
int A[100], C[100];
for (i=0;i<100; i++)

Ali] = C[i;

35

Page 9

Today

» Performance impact of caches
— The memory mountain

36

