
Page 1

Recap of Last (Couple of) Classes

• Generally useful optimizations

– Code motion/precomputation

– Strength reduction

– Common subexpression elimination and sharing

– Removing unnecessary procedure calls

– Loop unrolling

• Optimization blockers (and how to avoid them) 

– Procedure calls

– Memory aliasing

• Modern processors and instruction-level parallelism

– Accumulators and loop unrolling: techniques for eliminating 

sequential dependency and enhancing instruction-level 

parallelism

• Locality of reference

The Memory Hierarchy

• Topics

– Locality of reference

– Caching in the memory hierarchy

– Storage technologies and trends

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds. 

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

Locality
• Principle of Locality:

– Programs tend to reuse data and instructions near those they 
have used recently, or that were recently referenced themselves.

– Temporal locality: Recently referenced items are likely to be 
referenced in the near future.

– Spatial locality: Items with nearby addresses tend to be 
referenced close together in time.

Locality Example:
• Data

–Reference array elements in succession 
(stride-1 reference pattern):

–Reference sum each iteration:

• Instructions

–Reference instructions in sequence:

–Cycle through loop repeatedly: 

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;
Spatial locality

Spatial locality

Temporal locality

Temporal locality

1 2

5 6



Page 2

Locality Example

• Claim: Being able to look at code and get a 

qualitative sense of its locality is a key skill for a 

professional programmer.

• Question: Does this function have good locality?

int sumarrayrows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum

}

Locality Example

• Question: Does this function have good locality?

int sumarraycols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum

}

Loop Interchange

• Question: Can you permute the loops so that the 
function scans the 3-d array a[] with a stride-1 

reference pattern (and thus has good spatial 

locality)?
int sumarray3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum

}

Loop Fusion

• Can you improve the temporal locality of this 

program

for (i = 0; i < 100; i++)

A[i] = C[i];

for (i = 0; i < 100; i++)

B[i] = C[i]+1;

7 8

9 10



Page 3

Memory Hierarchies

• Some fundamental and enduring properties of hardware 

and software:

– Fast storage technologies cost more per byte and 

have less capacity. 

– The gap between CPU and main memory speed is 

widening.

– Well-written programs tend to exhibit good locality.

• These fundamental properties complement each other 

beautifully.

• They suggest an approach for organizing memory and 

storage systems known as a memory hierarchy.

Example Memory 

Hierarchy
Regs

L1 cache 

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,  

slower, 

and 

cheaper 

(per byte)

storage

devices

Remote secondary storage

(e.g., Web servers)

Local disks hold files 

retrieved from disks 

on remote servers

L2 cache 

(SRAM)

L1 cache holds cache lines 

retrieved from the L2 cache.

CPU registers hold words 

retrieved from the L1 cache.

L2 cache holds cache lines

retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and 

costlier

(per byte)

storage 

devices
L3 cache 

(SRAM)
L3 cache holds cache lines

retrieved from main memory.

L6:

Main memory holds 

disk blocks retrieved 

from local disks.

Caches

• Cache: A smaller, faster storage device that acts as a staging area for 

a subset of the data in a larger, slower device.

• Fundamental idea of a memory hierarchy:

– For each k, the faster, smaller device at level k serves as a cache 

for the larger, slower device at level k+1.

• Why do memory hierarchies work?

– Because of locality, programs tend to access the data at level k

more often than they access the data at level k+1. 

– Thus, the storage at level k+1 can be slower, and thus larger and 

cheaper per bit.

• Big Idea:  The memory hierarchy creates a large pool of storage that 

costs as much as the cheap storage near the bottom, but that serves 

data to programs at the rate of the fast storage near the top.

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory

viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of

the blocks

4

4

4

10

10

10

11 12

13 14



Page 4

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:

Hit!

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:
determines which block

gets evicted (victim)

General Caching Concepts: 

Types of Cache Misses

• Cold (compulsory) miss

– Cold misses occur because the cache is empty

• Conflict miss

– Most caches limit blocks at level k+1 to a small subset (sometimes 

a singleton) of the block positions at level k

• E.g. Block i at level k+1 must be placed in block (i mod 4) at level k

– Conflict misses occur when the level k cache is large enough, but 

multiple data objects all map to the same level k block

• E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

• Capacity miss

– Occurs when the set of active cache blocks (working set) is larger 

than the cache.

Examples of Caching in the Mem. 

Hierarchy

Hardware 
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer 
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 bytes words

What is Cached?

Web proxy 
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

15 16

17 18



Page 5

Cache Memories

• Cache memories are small, fast SRAM-based memories 

managed automatically in hardware

– Hold frequently accessed blocks of main memory

• CPU looks first for data in cache

• Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache 
memory

Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified 
cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified 
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB,  8-way, 

Access: 4 cycles

L2 unified cache:
256 KB, 8-way, 

Access: 10 cycles

L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

Block size: 64 bytes for 
all caches. 

Cache Performance Metrics
• Miss Rate

– Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate

– Typical numbers (in percentages):

• 3-10% for L1

• can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time

– Time to deliver a line in the cache to the processor

• includes time to determine whether the line is in the cache

– Typical numbers:

• 4 clock cycle for L1

• 10 clock cycles for L2

• Miss Penalty

– Additional time required because of a miss

• typically 50-200 cycles for main memory (Trend: increasing!)

Let’s think about those numbers

• Huge difference between a hit and a miss
– Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
– Consider: 

cache hit time of 1 cycle

miss penalty of 100 cycles

– Average access time:

97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

• This is why “miss rate” is used instead of “hit rate”

19 20

21 22



Page 6

Writing Cache Friendly Code

• Make the common case go fast

– Focus on the inner loops of the core functions

• Minimize the misses in the inner loops

– Repeated references to variables are good (temporal 

locality)

– Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified 
through our understanding of cache memories

General Cache Organization (S, E, 

B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit

• Locate data starting
at offset

Example: Direct Mapped Cache (E 

= 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

23 24

25 26



Page 7

Example: Direct Mapped Cache (E 

= 1)Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag

Example: Direct Mapped Cache (E 

= 1)Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0

Set 1

Set 2

Set 3

E-way Set Associative Cache 

(Here: E = 2)E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

27 28

29 30



Page 8

E-way Set Associative Cache 

(Here: E = 2)E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag

E-way Set Associative Cache 

(Here: E = 2)E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here

No match: 
• One line in set is selected for eviction and replacement

• Replacement policies: random, least recently used (LRU), …

2-Way Set Associative Cache 

Simulation

M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

What about writes?

• Multiple copies of data exist:

– L1, L2, L3, Main Memory, Disk

• What to do on a write-hit?

– Write-through (write immediately to memory)

– Write-back (defer write to memory until replacement of line)

• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?

– Write-allocate (load into cache, update line in cache)

• Good if more writes to the location follow

– No-write-allocate (writes straight to memory, does not load into 

cache)

• Typical

– Write-through + No-write-allocate

– Write-back + Write-allocate

31 32

33 34



Page 9

Breakout

• Assume a direct-mapped cache of size 8 KByte

64-Byte line. A is located at 0x8000 and C is 

located at 0x9000. How many misses would you 

incur? Would this change with a 2-way set 

associative cache? Assume i is retained in a 

register and the arrays are not initially in the 

cache. 

int A[100], C[100];

for (i = 0; i < 100; i++)

A[i] = C[i];

Today

• Cache organization and operation

• Performance impact of caches

– The memory mountain

– Rearranging loops to improve spatial locality

– Using blocking to improve temporal locality

35 36


