
Page 1

So far: Resolving Data

Dependencies

• Software Mechanisms

– Adding NOPs: requires compiler to insert

nops, which also take memory space — not a

great idea

• Hardware mechanisms

– Stalling

– Forwarding

– Out-of-order execution

1

So far: Resolving Control

Dependencies
• Software Mechanisms

– Adding NOPs: requires compiler to insert nops,
which also take memory space — not a good
idea

– Delay slot: insert instructions that do not depend
on the effect of the preceding instruction. These
instructions will execute even if the preceding
branch is taken — old RISC approach

• Hardware mechanisms

– Stalling

– Branch Prediction

– Return Address Stack

2

Quiz 5 Variant
• What does this code do and how long will each

loop take in steady state on our 5 stage

pipeline? Assume branch is always taken.

irmovl $5, %edx

irmovl $80, %ebx

Loop:

mrmovl array_base(%ebx), %eax

addl %edx, %eax

rmmovl %eax, array_base(%ebx)

addl $-4, %ebx

jne Loop 3

Limitation of Forwarding

• Load-use dependency

– Value needed by end of

decode stage in cycle 7

– Value read from memory in

memory stage of cycle 8

1 2

3 4

Page 2

Avoiding Load/Use Hazard

– Stall using instruction for

one cycle

– Can then pick up loaded

value by forwarding from

memory stage

Detecting Load/Use Hazard

Condition Trigger

Load/Use Hazard
E_icode in { IMRMOVQ, IPOPQ } &&

E_dstM in { d_srcA, d_srcB }

Control for Load/Use Hazard

– Stall instructions in fetch and decode

stages

– Inject bubble into execute stage

0x000: irmovq $128,%rdx

1 2 3 4 5 6 7 8 9

F D E M

W

F D E M

W0x00a: irmovq $3,%rcx F D E M

W

F D E M

W

0x014: rmmovq %rcx, 0(%rdx) F D E M WF D E M W

0x01e: irmovq $10,%ebx F D E M WF D E M W

0x028: mrmovq 0(%rdx),%rax # Load %rax F D E M WF D E M W

demo-luh.ys

0x032: addq %ebx,%rax # Use %rax

0x034: halt

F D E M W

E M W

10

D D E M W

11

bubble

F D E M W

F

F

12

Condition F D E M W

Load/Use Hazard stall stall bubble normal normal

Branch Prediction

Static Prediction

• Always Taken

• Always Not-taken

Dynamic Prediction

– Dynamically predict taken/not-taken for each specific jump

instruction

If prediction is correct: pipeline moves forward without stalling

If mispredicted: kill mis-executed instructions, start from the correct

target

8

5 6

7 8

Page 3

<before>

.L1: <body>

cmpq B, A

jl .L1

<after>

cmpq %rsi,%rdi

jle .corner_case

<do_A>

.corner_case:

<do_B>

ret

Static Prediction

9

Observation: Two uses of jumps
– People use jumps to check corner cases. These branches are

mostly not taken because corner cases are rare.

– People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Strategy:
– Forward jumps (i.e., if-else): always predict not-taken

– Backward jumps (i.e., loop): always predict taken

Mostly not taken

Mostly taken

Static Prediction

10

Knowing branch prediction strategy helps us write faster code

– Any difference between the following two code snippets?

– What if you know that hardware uses the always non-
taken branch prediction?

if (cond) {

do_A()

} else {

do_B()

}

if (!cond) {

do_B()

} else {

do_A()

}

Dynamic Prediction

• Simplest idea:

– If last time taken, predict taken; if last time not-
taken, predict not-taken

– Called 1-bit branch predictor

– Works nicely for loops

11

for (i=0; i <5; i++) {…}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

Dynamic Prediction

• With 1-bit prediction, we change our mind instantly if

mispredict

• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

12

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

9 10

11 12

Page 4

10/19/2020 13

Example Branch Prediction

• Branch History

– Encode information about prior history of branch instructions

– Predict whether or not branch will be taken

• State Machine

– Each time branch taken, transition to left

– When not taken, transition to right

– Predict branch taken when in state Yes! or Yes?

T T T

Yes! Yes? No? No!

NT

T

NT NT

NT

More Advanced Dynamic

Prediction
• Look for past histories across instructions

• Branches are often correlated

– Direction of one branch determines another

14

x = 0

if (cond1) x = 3

if (cond2) y = 19

if (x <= 0) z = 13

cond1 branch not-
taken means (x

<=0) branch taken

What Happens If We Mispredict?

15

Cancel instructions when mispredicted

• Detect branch not-taken in execute stage

• On following cycle, replace instructions in execute and
decode by bubbles

• No side effects have occurred yet

13 14

15 16

Page 5

Program

Optimization

Performance Realities

• There’s more to performance than asymptotic complexity

• Constant factors matter too!

– Easily see 10:1 performance range depending on how code is written

– Must optimize at multiple levels:

• algorithm, data representations, procedures, and loops

• Must understand system to optimize performance

– How programs are compiled and executed

– How modern processors + memory systems operate

– How to measure program performance and identify bottlenecks

– How to improve performance without destroying code modularity and

generality

Generally Useful Optimizations

(Machine-Independent)
• Optimizations that you or the compiler should do regardless of

processor / compiler

• Code Motion

– Reduce frequency with which computation performed

• If it will always produce same result

• Especially moving code out of loop

long j;

int ni = n*i;

for (j = 0; j < n; j++)

a[ni+j] = b[j];

void set_row(double *a, double *b,

long i, long n)

{

long j;

for (j = 0; j < n; j++)

a[n*i+j] = b[j];

}

Compiler-Generated Code Motion (-O1)

set_row:

testq %rcx, %rcx # Test n

jle .L1 # If 0, goto done

imulq %rcx, %rdx # ni = n*i

leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8

movl $0, %eax # j = 0

.L3: # loop:

movsd (%rsi,%rax,8), %xmm0 # t = b[j]

movsd %xmm0, (%rdx,%rax,8) # M[A+ni*8 + j*8] = t

addq $1, %rax # j++

cmpq %rcx, %rax # j:n

jne .L3 # if !=, goto loop

.L1: # done:

rep ; ret

long j;

long ni = n*i;

double *rowp = a+ni;

for (j = 0; j < n; j++)

*rowp++ = b[j];

void set_row(double *a, double *b,

long i, long n)

{

long j;

for (j = 0; j < n; j++)

a[n*i+j] = b[j];

}

17 19

20 21

Page 6

Share Common Subexpressions

(Machine-Independent)
– Reuse portions of expressions

– GCC will do this with –O1

/* Sum neighbors of i,j */

up = val[(i-1)*n + j];

down = val[(i+1)*n + j];

left = val[i*n + j-1];

right = val[i*n + j+1];

sum = up + down + left + right;

long inj = i*n + j;

up = val[inj - n];

down = val[inj + n];

left = val[inj - 1];

right = val[inj + 1];

sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1

leaq -1(%rsi), %r8 # i-1

imulq %rcx, %rsi # i*n

imulq %rcx, %rax # (i+1)*n

imulq %rcx, %r8 # (i-1)*n

addq %rdx, %rsi # i*n+j

addq %rdx, %rax # (i+1)*n+j

addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n

addq %rdx, %rsi # i*n+j

movq %rsi, %rax # i*n+j

subq %rcx, %rax # i*n+j-n

leaq (%rsi,%rcx), %rcx # i*n+j+n

Reduction in Strength

– Replace costly operation with simpler one

– Shift, add instead of multiply or divide
16*x --> x << 4

• Utility machine dependent

• Depends on cost of multiply or divide instruction

– On Intel Nehalem, integer multiply requires 3 CPU cycles

– Recognize sequence of products

for (i = 0; i < n; i++) {

int ni = n*i;

for (j = 0; j < n; j++)

a[ni + j] = b[j];

}

int ni = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)

a[ni + j] = b[j];

ni += n;

}

Make Use of Registers

– Reading and writing registers much faster

than reading/writing memory

• Limitation

– Compiler not always able to determine

whether variable can be held in register

– Possibility of Aliasing

– See example later

Time Scales

• Absolute Time

– Typically use nanoseconds

• 10–9 seconds

– Time scale of computer instructions

• Clock Cycles

– Most computers controlled by high frequency clock signal

– Typical Range

• 100 MHz

– 108 cycles per second

– Clock period = 10ns

• 2 GHz

– 2 X 109 cycles per second

– Clock period = 0.5ns

22 23

24 25

Page 7

Optimizing Compilers
• Provide efficient mapping of program to machine

– register allocation

– code selection and ordering (scheduling)

– dead code elimination

– eliminating minor inefficiencies

• Don’t (usually) improve asymptotic efficiency

– up to programmer to select best overall algorithm

– big-O savings are (often) more important than constant

factors

• but constant factors also matter

• Have difficulty overcoming “optimization blockers”

– potential memory aliasing

– potential procedure side-effects

Limitations of Optimizing Compilers
• Operate under fundamental constraint

– Must not cause any change in program behavior

• Except, possibly when program making use of nonstandard

language features

– Often prevents it from making optimizations that would only affect

behavior under pathological conditions.

• Behavior that may be obvious to the programmer can be obfuscated

by languages and coding styles

– e.g., Data ranges may be more limited than variable types suggest

• Most analysis is performed only within procedures

– Whole-program analysis is too expensive in most cases

– Newer versions of GCC do interprocedural analysis within individual files

• But, not between code in different files

• Most analysis is based only on static information

– Compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must be conservative

26 27

