
Page 1

ECF Exists at All Levels of a

System
• Exceptions

– Hardware and operating system kernel software

• Process Context Switch

– Hardware timer and kernel software

• Signals

– Kernel software and application software

• Nonlocal jumps

– Application code

Previous Lecture

This Lecture

Textbook and
supplemental slides

Today

• Shells

• Signals

• Nonlocal jumps

Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…

Note: you can view the
hierarchy using the Linux
pstree command

Shell Programs
• A shell is an application program that runs programs on

behalf of the user
– sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

– csh/tcsh BSD Unix C shell

– bash “Bourne-Again” Shell (default Linux shell)

int main()
{

char cmdline[MAXLINE]; /* command line */

while (1) {
/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))

exit(0);

/* evaluate */
eval(cmdline);

}
}

Execution is a
sequence of
read/evaluate
steps

shellex.c

94 95

96 97

Page 2

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.c

Problem with Simple Shell Example

• Our example shell correctly waits for and reaps

foreground jobs

• But what about background jobs?

– Will become zombies when they terminate

– Will never be reaped because shell (typically)

will not terminate

– Will create a memory leak that could run the

kernel out of memory

ECF to the Rescue!

• Solution: Exceptional control flow

– The kernel will interrupt regular processing to

alert us when a background process completes

– In Unix, the alert mechanism is called a signal

Today

• Shells

• Signals

• Nonlocal jumps

98 99

100 101

Page 3

Signals
• A signal is a small message that notifies a process that an event of

some type has occurred in the system

– Akin to exceptions and interrupts

– Sent from the kernel (sometimes at the request of another

process) to a process

– Signal type is identified by small integer ID’s (1-30)

– Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

Signal Concepts: Sending a Signal

• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination

process

• Kernel sends a signal for one of the following reasons:

– Kernel has detected a system event such as divide-by-

zero (SIGFPE) or the termination of a child process

(SIGCHLD)

– Another process has invoked the kill system call to

explicitly request the kernel to send a signal to the

destination process

Signal Concepts: Receiving a

Signal• A destination process receives a signal when it is forced by the kernel

to react in some way to the delivery of the signal

• Some possible ways to react:

– Ignore the signal (do nothing)

– Terminate the process (with optional core dump)

– Catch the signal by executing a user-level function called signal

handler

• Akin to a hardware exception handler being called in response to an

asynchronous interrupt:

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to

next instruction

Icurr
Inext

(1) Signal received
by process

Signal Concepts: Pending and

Blocked Signals

• A signal is pending if sent but not yet received

– There can be at most one pending signal of any particular type

– Important: Signals are not queued

• If a process has a pending signal of type k, then subsequent signals of

type k that are sent to that process are discarded

• A process can block the receipt of certain signals

– Blocked signals can be delivered, but will not be received until the

signal is unblocked

• A pending signal is received at most once

102 103

104 105

Page 4

Signal Concepts: Pending/Blocked

Bits

• Kernel maintains pending and blocked bit vectors in

the context of each process

– pending: represents the set of pending signals

• Kernel sets bit k in pending when a signal of type k is

delivered

• Kernel clears bit k in pending when a signal of type k is

received

– blocked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function

• Also referred to as the signal mask.

Sending Signals: Process

Groups
• Every process belongs to exactly one

process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp()

Return process group of current process

setpgid()

Change process group of a process (see
text for details)

Sending Signals with /bin/kill

Program
• /bin/kill program

sends arbitrary signal to

a process or process

group

• Examples

– /bin/kill –9

24818
Send SIGKILL to process 24818

– /bin/kill –9 –

24817
Send SIGKILL to every process

in process group 24817

linux> ./forks 16

Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> /bin/kill -9 -24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

Sending Signals from the Keyboard
• Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP)

to every job in the foreground process group.

– SIGINT – default action is to terminate each process

– SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

106 107

108 109

Page 5

Example of ctrl-c and ctrl-z
bluefish> ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended

bluefish> ps w

PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28107 pts/8 T 0:01 ./forks 17

28108 pts/8 T 0:01 ./forks 17

28109 pts/8 R+ 0:00 ps w

bluefish> fg

./forks 17

<types ctrl-c>

bluefish> ps w

PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Sending Signals with kill Function
void fork12()
{

pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

/* Child: Infinite Loop */
while(1)

;
}

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
} forks.c

Receiving Signals
• Suppose kernel is returning from an exception

handler and is ready to pass control to

process p
Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Receiving Signals
• Suppose kernel is returning from an exception handler and is

ready to pass control to process p

• Kernel computes pnb = pending & ~blocked

– The set of pending nonblocked signals for process p

• If (pnb == 0)

– Pass control to next instruction in the logical flow for p

• Else

– Choose least nonzero bit k in pnb and force process p to

receive signal k

– The receipt of the signal triggers some action by p

– Repeat for all nonzero k in pnb

– Pass control to next instruction in logical flow for p

110 111

112 113

Page 6

Default Actions

• Each signal type has a predefined default action,

which is one of:

– The process terminates

– The process stops until restarted by a

SIGCONT signal

– The process ignores the signal

Installing Signal Handlers
• The signal function modifies the default action associated with the

receipt of signal signum:

– handler_t *signal(int signum, handler_t *handler)

• Different values for handler:

– SIG_IGN: ignore signals of type signum

– SIG_DFL: revert to the default action on receipt of signals of type
signum

– Otherwise, handler is the address of a user-level signal handler

• Called when process receives signal of type signum

• Referred to as “installing” the handler

• Executing handler is called “catching” or “handling” the signal

• When the handler executes its return statement, control passes back to

instruction in the control flow of the process that was interrupted by

receipt of the signal

Signal Handling Example

void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main()
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return 0;
} sigint.c

Signals Handlers as Concurrent Flows

• A signal handler is a separate logical flow (not

process) that runs concurrently with the main

program

Process A

while (1)

;

Process A

handler(){

…

}

Process B

Time

114 115

116 117

Page 7

Another View of Signal Handlers as

Concurrent Flows

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Nested Signal Handlers

• Handlers can be interrupted by other handlers

(2) Control passes
to handler S

Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to

main
program

(7) Main program
resumes

Blocking and Unblocking Signals

• Implicit blocking mechanism

– Kernel blocks any pending signals of type currently being

handled

– E.g., A SIGINT handler can’t be interrupted by another SIGINT

• Explicit blocking and unblocking mechanism

– sigprocmask function

• Supporting functions

– sigemptyset – Create empty set

– sigfillset – Add every signal number to set

– sigaddset – Add signal number to set

– sigdelset – Delete signal number from set

Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

118 119

120 121

Page 8

Safe Signal Handling

• Handlers are tricky because they are concurrent with

main program and share the same global data

structures

– Shared data structures can become corrupted

• We’ll explore concurrency issues later

• For now here are some guidelines to help you avoid

trouble

Guidelines for Writing Safe

Handlers
• G0: Keep your handlers as simple as possible

– e.g., Set a global flag and return

• G1: Call only async-signal-safe functions in your handlers

– printf, sprintf, malloc, and exit are not safe!

• G2: Save and restore errno on entry and exit

– So that other handlers don’t overwrite your value of errno

• G3: Protect accesses to shared data structures by temporarily
blocking all signals.

– To prevent possible corruption

• G4: Declare global variables as volatile

– To prevent compiler from storing them in a register

• G5: Declare global flags as volatile sig_atomic_t

– flag: variable that is only read or written (e.g. flag = 1, not
flag++)

– Flag declared this way does not need to be protected like
other globals

Async-Signal-Safety

• Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or
non-interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe

– Source: “man 7 signal”

– Popular functions on the list:

•_exit, write, wait, waitpid, sleep, kill

– Popular functions that are not on the list:

•printf, sprintf, malloc, exit

• Unfortunate fact: write is the only async-signal-safe
output function

Safely Generating Formatted Output
• Use the reentrant SIO (Safe I/O library) from csapp.c in your

handlers.

– ssize_t sio_puts(char s[]) /* Put string */

– ssize_t sio_putl(long v) /* Put long */

– void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */
{

Sio_puts("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

}

sigintsafe.c

122 123

124 125

Page 9

• Pending signals are

not queued

– For each signal type, one

bit indicates whether or

not signal is pending…

– …thus at most one

pending signal of any

particular type.

• You can’t use signals

to count events, such as

children terminating.

int ccount = 0;
void child_handler(int sig) {

int olderrno = errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");
ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");
sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;
ccount = N;
Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {

Sleep(1);
exit(0); /* Child exits */

}
}
while (ccount > 0) /* Parent spins */

;
}

forks.c

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241

Correct Signal Handling
Correct Signal Handling

• Must wait for all terminated child processes

– Put wait in a loop to reap all terminated

children
void child_handler2(int sig)
{

int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
if (errno != ECHILD)

Sio_error("wait error");
errno = olderrno;

}
whaleshark> ./forks 15
Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

Portable Signal Handling
• Ugh! Different versions of Unix can have different signal handling

semantics

– Some older systems restore action to default after catching signal

– Some interrupted system calls can return with errno == EINTR

– Some systems don’t block signals of the type being handled

• Solution: sigaction

handler_t *Signal(int signum, handler_t *handler)
{

struct sigaction action, old_action;

action.sa_handler = handler;
sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

if (sigaction(signum, &action, &old_action) < 0)
unix_error("Signal error");

return (old_action.sa_handler);
}

csapp.c

Synchronizing Flows to Avoid

Races

int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, prev_all;

Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
if ((pid = Fork()) == 0) { /* Child */

Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
exit(0);

}

• Simple shell with a subtle synchronization error because it

assumes parent runs before child.

procmask1.c

126 127

128 129

Page 10

Synchronizing Flows to Avoid

Races

void handler(int sig)
{

int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;

Sigfillset(&mask_all);
while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */

Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
if (errno != ECHILD)

Sio_error("waitpid error");
errno = olderrno;

}

• SIGCHLD handler for a simple shell

procmask1.c

Corrected Shell Program without

Race
int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, mask_one, prev_one;

Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */

Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve("/bin/date", argv, NULL);

}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */

addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

}
exit(0);

}
procmask2.c

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)
{

int olderrno = errno;
pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint_handler(int s)
{
}

• Handlers for program explicitly waiting for

SIGCHLD to arrive

waitforsignal.c

Explicitly Waiting for Signals
int main(int argc, char **argv) {

sigset_t mask, prev;
Signal(SIGCHLD, sigchld_handler);
Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);

while (1) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */

exit(0);
/* Parent */
pid = 0;
Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)

;
/* Do some work after receiving SIGCHLD */
printf(".");

}
exit(0);

} waitforsignal.c

Similar to a shell waiting
for a foreground job to

terminate.

130 131

132 133

Page 11

Explicitly Waiting for Signals

while (!pid) /* Race! */

pause();

• Program is correct, but very wasteful

• Other options:

• Solution: sigsuspend

while (!pid) /* Too slow! */
sleep(1);

Waiting for Signals with
sigsuspend

sigprocmask(SIG_BLOCK, &mask, &prev);

pause();

sigprocmask(SIG_SETMASK, &prev, NULL);

• int sigsuspend(const sigset_t *mask)

• Equivalent to atomic (uninterruptable) version of:

Waiting for Signals with
sigsuspend

int main(int argc, char **argv) {

sigset_t mask, prev;

Signal(SIGCHLD, sigchld_handler);

Signal(SIGINT, sigint_handler);

Sigemptyset(&mask);

Sigaddset(&mask, SIGCHLD);

while (1) {

Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

if (Fork() == 0) /* Child */

exit(0);

/* Wait for SIGCHLD to be received */

pid = 0;

while (!pid)

Sigsuspend(&prev);

/* Optionally unblock SIGCHLD */

Sigprocmask(SIG_SETMASK, &prev, NULL);

/* Do some work after receiving SIGCHLD */

printf(".");

}

exit(0);

} sigsuspend.c

Summary

• Signals provide process-level exception

handling

– Can generate from user programs

– Can define effect by declaring signal

handler

– Be very careful when writing signal handlers

• Nonlocal jumps provide exceptional control

flow within process

– Within constraints of stack discipline

134 135

136 137

