Memory Systems				
Sandhya Dwarkadas				
Memory Hierarchies				
Problem: Want unlimited fast memory				
Solutions:				
 Caches - level of memory hierarchy between CPU and main memory 				
• Virtual Memory - level between disk and main memory that creates the illusion of a large address space				

Principle of locality

- Temporal locality address referenced in the past will be tend to be referenced again soon
- Spatial locality if an address is referenced, addresses close by will tend to be referenced soon

Cache Organization

Placement - where is a block placed

Location - how do you locate a block

Re-placement - which block do you replace

Write policy - what happens on a write

	Cache Placement Policy			
Ι	Direct-mapped			
S	Set-associative			
F	Fully-associative			
	Cache Re-placement Policy			
Ι	Least Recently Used			
F	FIFO - First-in, First-Out			
F	Random			

Write Policy Write through Write back

Handling Cache Misses

Instruction cache miss -

- Send the original PC value to memory
- Instruct main memory to perform a read and wait for access to complete
- \bullet Write the cache entry data, tag, and valid bit
- \bullet Restart the instruction at the fetch stage

Memory Organization

Memory interleaving -

- memory organized in banks
- full latency incurred only once
- addresses allocated in a round-robin fashion using low-order address bits

Wide memory

Page mode (e.g., EDO (Extended Data Out RAMS)) or synchronous DRAMs (SDRAMs)

Cache Performance

Qualitative Categorization of Misses:

Compulsory, Capacity, Conflict

Design Change	Effect on Miss Rate	Negative Performance Effect
Increase size	Decrease capacity misses	May increase access time
Increase associativity	Decrease conflict misses	May increase access time
Increase block size	May decrease compulsory misses	May increase miss penalty May increase capacity misses

Improving Cache Performance at the Application/Compiler Level

Merging arrays into structures if accessed in a similar manner to improve spatial locality and conflict misses

Loop interchange - to improve spatial locality and reduce capacity misses

Loop fusion - to improve temporal locality and capacity misses

Blocking - to improve temporal locality and capacity and conflict misses