Pipelining

Sandhya Dwarkadas

A Pipelined Datapath

Multiple instructions overlapped in execution
Improve throughput, not individual instruction execution time
Exploit parallelism among instructions in a sequential stream

Balance length of each stage. Ideally -

Timebetweeninstr sy, on —pipelined
Numbero fpipestages

T'imebetweeninstrsypelined =




MIPS Advantages

e Instructions of the same length
e Few instruction formats

e Memory operands only in Id and st = can use ALU for
address computation

e Operands aligned in memory = only one access per
instruction

e Single result computed per instruction

Additional Datapath Units?

Each component used within a single pipeline stage

To pass data from earlier to later stage, must place info in
pipeline register




Hazards

Structural (e.g., instruction/data fetch)
Control (e.g., beq)

Data (e.g., add followed by sub)

Structural Hazards

Replicate datapath units




Control Hazards

Stall
Predict

Delayed instruction

Data Hazard

Forward or bypass

Delayed instruction




Instruction-Level Parallelism

Super-pipelining
Dynamic pipelining
Very Large Instruction Word (VLIW)

Super-Scalar

Super-pipelining

Increase the number of pipeline stages

Fundamentally limited by latch speed and hazards




Dynamic Pipelining

Execute instructions out-of-order

e Hide memory latency
e Avoid stalls that the compiler could not avoid

e Speculatively execute instructions while waiting for hazards to
be resolved

Types of Data Hazards

RAW - true dependence
WAR - anti dependence

WAW - Output dependence




Data Hazards: Forwarding

e The CDC 6600 Score-board architecture
e Tomasulo’s generalized forwarding algorithm in the IBM360

— used reservation stations and shared buses

Super-Scalar

Multiple instructions per pipeline stage

e in-order or out-of-order execution

e in-order or out-of-order completion




VLIW

Multiple instructions per pipeline stage
Dependences taken care of by the compiler
Availability of hardware resources assured

Need to recompile source even to run on the same ISA

Advanced Processor Design Techniques

Register Renaming - eliminate WAW, WAR hazards
Speculative execution

Branch prediction




Summary

Dynamic superscalar designs are dramatically more complex
than scalar (and even in order superscalar)

The effort thus far seems to be worth it (Dynamic 21264 2x
performance of in order 21164 (although some gains are due to a
better memory system)

Focus seems to be shifting to memory performance imbalance




