Price and Performance

Review

Many levels of abstraction - hardware & software

Instructions and data naturally represented in binary

Important abstraction - Instruction Set Architecture

Five components of computers -

- \bullet Processor : datapath and control
- Memory
- \bullet Input and Output devices

Technology Trends

Read

- Chapter 2 of Tanenbaum
- Chapter 1 of Hennessy & Patterson

Hardware Cost

$$DieCost = \frac{Wafer\ Cost}{Dies\ per\ Wafer\ X Die\ Yield}$$

$$Die\,Yield = Wafer\,Yield \times \{1 + \frac{Defects\,per\,unit \times Die\,area}{a}\}^{-a}$$

Typical values: Wafer Yield = 90%, Defects per unit area = 1 cm^2 , a = 2 or 3

The bigger the chip, the less likely it is to come out working correctly

Die cost goes up roughly with the cube of the area

$$IC\ Cost = \frac{Die\ Cost + Testing\ Cost + Packaging\ Cost}{Final\ Test\ Yield}$$

What is Execution Time?

- wall clock, response, or elapsed time
- CPU time system & user time
- system performance elapsed time on an unloaded machine
- CPU performance user CPU time

Metrics of Performance

Performance Metrics

Throughput

Execution time (T)

Instruction count of program (IC)

MIPS/MFLOPS (MIPS=IC/T or Clock rate (in MHz)/CPI)

Cycles per instruction (CPI)

Clock cycle time - discrete time interval that determines rate at which events take place in hardware and how fast hardware can perform basic functions (clock runs at a constant rate)

Clock rate - inverse of clock cycle time - clock cycles per second

Relating Performance Metrics

 $CPUTime = Instructions \times AverageCPI \times Cycletime$

	Instr.	Count	CPI	Clock Rate
Program				
Compiler				
Instr.Set Arch.				
Organization				
Technology				

Relating Performance Metrics

 $CPUTime = Instructions \times AverageCPI \times Cycletime$

	Instr. Count	CPI	Clock Rate
Program	X		
Compiler	X	(X)	
Instr.Set Arch.	X	X	
Organization		X	X
Technology			X

How to Evaluate Performance

Benchmarks used to

- Evaluate different systems or changes to a single system
- Represent a large class of important programs so as to provide a targe to improve performance
- \bullet Choice of benchmarks important

Programs to Evaluate Processor Performance

- Toy benchmarks 10-100 lines, e.g., matrix multiply, quicksort
- Synthetic benchmarks attempt to match average frequencies of real workloads, e.g. Whetstone, Dhrystone
- Kernels time critical excerpts of programs, e.g., Livermore loops
- Real programs e.g., gcc, spice.

How to Summarize Performance

- Arithmetic (or weighted arithmetic) mean tracks execution time: $SUM(T_i)/n$ or $SUM(W_i/T_i)$
- Harmonic mean (or weighted harmonic mean) of rates (e.g., MFLOPS) tracks execution time: $n/SUM(1/R_i)$ or $n/SUM(W_i/R_i)$
- Normalized execution time is handy for scaling performance (e.g., time on reference machine/time on measured machine)
- BUT, do not take the arithmetic mean of normalized execution time, use the geometric mean $(prod(R_i)^{1/n})$
- Geometric mean assigns equal weight to all programs regardless of actual execution time

Evolution of SPEC

Standard Performance Evaluation Corporation (SPEC) - consortium to establish standards of evaluation

Provide and emphasize

- Speedup measures
- Throughput measures
- Reproducibility of results

Constantly updated - SPEC89, SPEC92, SPEC95, SPEC2000 - includes integers, floating point, web server, JVM, ... benchmarks

Some SPEC Performance numbers

Intel Pentium II - 450 MHz, .35 micron process, 19.0 SPECint95, 15.2 SPECfp95, \$669/-

Compaq Alpha 21264 - 500 MHz, .35 micron process, 27.7 SPECint95, 58.7 SPECfp95

See http://infopad.eecs.berkeley.edu/CIC

For the SPEC benchmarks, See http://www.specbench.org

Amdahl's Law

Speedup is limited by the part of the program that is not enhanced

Suppose enhancement E accelerates a fraction F of the task by a factor S and the remainder of the task in unaffected.

ExTime(with
$$E$$
) = $((1 - F) + F/S) \times ExTime(without E)$

Speedup(with E) =
$$ExTime(withoutE)/ExTime(withE)$$

Summary - Performance

Time is the measure of computer performance!

Need for good benchmarks and performance summaries

Summarize performance using

- the arithmetic (could be weighted) mean of execution time, or
- the geometric mean of execution time ratios problem does not track execution time, rewards all relative improvements equally

Amdahl's Law: Speedup is limited by unimproved part of program