
CISC Developments

Over Twenty Years

RJS 2/3/97

Overview

¥ Classic CISC design: Digital VAX
¥ VAXÕs RISC successor: PRISM/Alpha

¥ IntelÕs ubiquitous 80x86 architecture
Ð 8086 through the Pentium Pro (P6)

CISC Designs

¥ Philosophy
Ð Reduce code size
Ð Machine language should match the semantics

of high level language constructs

¥ Results
Ð Complicated instructions which could take

many cycles to execute

RISC Designs

¥ Philosophy
Ð Simple, quick instructions.

¥ Results
Ð Instruction dependencies can be easily

determined.
Ð Instructions can be sub-divided and pipelined.
Ð High instruction throughput.

Digital VAX

¥ Mid-70Õs design
Ð 32-bit architecture
Ð Basically a general-purpose register machine

¥ CISC philosophy
Ð Numerous addressing modes
Ð Rich instruction suite

VAX: Addressing Modes

Register r4

Base (displacement) [r4 + offset]

Immediate 0xFFF0101

PC-relative [PC] + offset

Deferred (indirect) [[r3 + offset]]

Index (scaled) [r3 + r4 * 8]

VAX: AddtÕl Addressing Modes

¥ Byte, word, double word displacement
¥ Auto-increment/auto-decrement

Ð Acesses memory and then increments/
decrements address

VAX: Instruction Encoding

¥ Operations: 1 byte
¥ Each operand must be encoded to specify

the addressing mode

¥ Example:
Ð Integer add: 3-19 bytes

VAX: Instructions

¥ Push
Ð Push an item onto a stack

¥ insque
Ð Insert an item onto a queue

¥ aobleq op1 op2
Ð Add one to op1 and branch if equal to op2

¥ Special call/ret
Ð Handles argument, stack setup automatically

CISC: Side effects

¥ Instruction basically has multiple results
Ð Auto-increment

¥ combines a load/store with an addition

Ð Condition codes
¥ Negative, Zero, oVerflow, Carry
¥ Arithmetic instructions set these codes

¥ Codes are used for conditional branches

Digital: Beyond VAX

¥ PRISM/Alpha
Ð RISC processor

¥ fixed size instructions
¥ load/store architecture
¥ out-of-order execution
¥ speculation

¥ Backward Compatibility?
Ð Recompilation: VAX --> Alphas

INTEL

¥ 1978: 8086
Ð 16-bit, extended accumulator machine

¥ 1982: 80286 backward compatible
Ð 24-bit address space

¥ 1985: 80386 backward compatible
Ð 32-bit address space

¥ 1992: Pentium backward compatible
¥ 1996: P6 backward compatible

80x86: Overview

¥ Has moved closer to a general purpose
register machine

¥ Segmented address space

¥ Instructions work on bytes, words, double
words.

¥ Only four instructions added since 1989.
Ð Three multiprocessing instructions
Ð One conditional move

80x86: Segmented Addr Space

¥ Real Mode (8086)
Ð Segment register is shift to the left 4 bits and

the offet is added.

¥ Protected Mode (80286)
Ð Segment register selects an index into the

segment address table. (24 bits) Offset is added.

¥ Protected Mode (80386, 80486, Pentium)
Ð Segment descriptor is 32 bits.

80x86: Addressing Modes

Absolute [0xa0000000]

Register [r4]

Based displacement [r4 + offset]

Indexed [r3 + r4]

Based indexed [r3 + r4 + offset]

Base plus scaled index [r3 + r4 * scale]

Base scaled
displacement

[r3 + r4 * scale + offset]

80x86: Instruction Complications

¥ Instruction prefixes
Ð Override default data size, segment registers
Ð Lock the bus (i.e synchronization)

Ð Repeat instruction until register CX counts to
zero.

¥ Multiple segments complicate control-flow
statements

80x86: Instruction Usage

¥ Instructions: 1 to 17 bytes
Ð Integer programs: av=2.8
Ð Floating point programs: av=4.1

¥ Most frequent addressing modes: Based
displacement and Based scaled indexing.

Intel: Improving CISC

¥ Pentium: Leveraged RISC technology
Ð 5-stage pipeline
Ð Dual-issue

Ð No branch prediction
Ð No out-of-order execution

¥ Software basically needs recompilation

Pentium Pro (P6)

¥ A RISC processor running a CISC
instruction set.
Ð Three way issue
Ð Speculative execution

Ð out-of-order execution

¥ Superscalar pipeline
Ð Allows higher clock rate while handling CISC

P6: Pipeline Stages 1 -4

¥ Stage 1
Ð Determines next PC

¥ Stage 2-4
Ð Fetch and mark instruction

P6: Pipeline Stages 5-6

¥ Instruction is decoded into a series of
micro-ops (uops)
Ð Three decoders

¥ Two decoders handle simple instructions
¥ Third decoder handles more complex cases
¥ Falls through decoder to a special microcode area

Ð Majority translate to < 4 uops.
Ð Worst case: 204 uops

P6: Pipeline Stages 7-8

¥ Assign logical registers to physical registers
Ð 80x86 machine instructions are limited to the

basic x86 registers.

Ð x86 architecture has 16 physical registers
Ð P6 has 40 physical registers

¥ Prepared uops are passed to the reservation
station and reorder buffer

P6: Pipeline Stages 9-10

¥ Reservation station dispatches uops to one
of five parallel execution units.
Ð Two integer, one load, one store, and one FPU

¥ Reorder buffer holds the uops
Ð Status flags signal dependencies

P6: Pipeline Stage 11

¥ Execution
Ð May overlap into stage 12

P6: Pipeline Stages 12-14

¥ Instructions are retired
Ð Must wait until all uops that comprise the

instruction are complete

Ð Must handle precise exceptions

P6: Pipeline Performance

¥ 80x86 references memory more often than a
typical RISC instruction set.
Ð Floating point programs: 2-4x higher
Ð Integer programs: 1.25 higher

¥ Superpipelining and branch prediction
problems.
Ð P6 uses 4-bit branch history

P6: Completely RISC?

¥ Can a compiler directly generate uops?
Ð Bypass decoding phase
Ð Leverage static scheduling techniques

Ð Force competing chip makers to use same basic
design.

¥ Could reduce differentiating points between
competitors.

References

¥ Hennesy and Patterson, ÒComputer Organization
and Design: The Hardware/Software InterfaceÓ

¥ Hennesy and Patterson, ÒComputer Architecture:
A Quantitative ApproachÓ

¥ Bhandarkar, ÒAlpha Implementations and
ArchitectureÓ

¥ Byte, April 1995, ÒIntelÕs P6Ó

¥ http://www.intel/procs/ppro/info/isscc/index.htm

