
Operating Systems 11/8/2018

CSC 256/456 1

11/8/2018 CSC 2/456 1

Protection and Security

CS 256/456

Dept. of Computer Science, University

of Rochester

11/8/2018 CSC 2/456 2

Security and Protection

• Goals:

– Data confidentiality

– Data integrity

– System availability

• Threats:

– Malicious intruders

– Accidental data loss

11/8/2018 CSC 2/456 3

Operating Systems Protection
• Operating system consists of a collection of objects, hardware or

software (e.g., files, printers)

• Protection problem - ensure that each object is accessed correctly
and only by those processes that are allowed to do so
– a specific type of security problem

• Domain = set of (object, rights) pairs
– what is a domain in traditional UNIX?
– when do process domain switches occur in traditional UNIX?

11/8/2018 CSC 2/456 4

How to Track Objects/Rights in Domains?
• View protection as a matrix (protection matrix)

– Rows represent domains

– Columns represent objects

– Access(i, j) is the set of operations that a process
executing in Domaini can invoke on Objectj

• Dynamic protection

– Operations to add, delete access rights

Operating Systems 11/8/2018

CSC 256/456 2

11/8/2018 CSC 2/456 5

Domain Structure

• Principle of protection: least privilege

• Alternatives for domain of protection:

– Unix: users, groups

– Multics (1960s): rings of

capabilities/protection

11/8/2018 CSC 2/456 6

Implementation of Protection
• The complete protection matrix consumes too much space

and is usually very sparse.
– two ways to condense it

• Each column = Access-control list for one object
Defines who can perform what operation.

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

• Each Row = Capability List for each domain

Define what operations allowed on what objects.
Object 1 – Read
Object 4 – Read, Write, Execute
Object 5 – Read, Write, Delete, Copy

• Alternative: Lock-Key Mechanism

What does traditional UNIX do?

11/8/2018 CSC 2/456 7

Access Control Lists

Use of access control lists to manage file access

R

Revocation of access rights?

11/8/2018 CSC 2/456 8

Capabilities
• Capability for a domain

– abstraction that indicates access rights to objects for
the domain

• Comparing against ACL

– may be built-in with handle to objects (more efficient
access right checking)

– efficient mechanism to pass it around

• Important concern

– a process should not be able to tamper with its
capabilities

Operating Systems 11/8/2018

CSC 256/456 3

11/8/2018 CSC 2/456 9

Implementing Capabilities
• Kernel-space capability list

– user programs use handles (e.g., file descriptors) to refer to them

• Tagged architecture

– memory words containing capabilities are tagged; user programs can
only read those words; only kernel programs can change those
words

– the protection system kernel does not need to track capabilities
and capabilities can be passed by memory sharing

11/8/2018 CSC 2/456 10

Cryptographically-protected

Capabilities
• Cryptographically-protected capability

– a random number (called “check”) is generated for each file
at creation time and maintained in secrecy

– capability is formed cryptographically

• Function f() is a one-way function such that:
– it is computationally infeasible to guess what “check” is

even when object, rights, and f(object, rights, check) is
known.

• Compared with tagged capabilities, cryptographically-protected
capability
– does not require new hardware support
– can be passed around between distributed machines

Server Object Rights f(Object, Rights, Check)

11/8/2018 CSC 2/456 11

Revocation of Access Rights
• Immediate or delayed
• Selective vs. general

– selective: revoking rights to a select group of domains (e.g., all
processes belonging to a particular user)

• Partial vs. total
– Subset or all rights to object

• Temporary vs. permanent

• Access control lists: immediate, selective or general, total or
partial, permanent or temporary

• Capabilities: distributed throughout the system; possible
solutions
– Reacquisition
– Back-pointers
– Indirection
– Keys

11/8/2018 CSC 2/456 12

Protection in UNIX

• Protection domains: users

• Access matrix for files:

– a simplified access control list

• Protection commands for files:

– each user can change protection on files it owns

– superuser can do everything

Operating Systems 11/8/2018

CSC 256/456 4

11/8/2018 CSC 2/456 13

Protection in Java

• A Java class can be loaded remotely;
therefore can be dangerous
– A class is assigned a protection

domain when it is loaded by the
JVM

– The protection domain indicates
what operations the class can
(and cannot) perform

• If a library method is invoked that
performs a privileged operation, the
stack is inspected for access right
violation

• Other techniques
– Sandboxing
– interpretation

stack
top

network
library

URL
loader

untrusted
applet

… …

11/8/2018 CSC 2/456 14

The Security Environment
We focus on OS-related security issues …

Security goals:
• Authentication
• Data confidentiality
• Data integrity
• System availability

Threats of intruders or adversaries:
• Identity hijacking
• Exposing data
• Tampering with data
• Denial of service attacks

11/8/2018 CSC 2/456 15

Trusted Systems

• Trusted Computing Base

– hardware and software for enforcing security rules

• If the TCB works according to specification, the system
security cannot be compromised

• A reference monitor-based TCB:

11/8/2018 CSC 2/456 16

Formal Models of Secure Systems

• Protection commands: operations that can change protection
matrix

• TCB must ensure that protection commands do not move the
protection matrix from an authorized state to an unauthorized
state

Operating Systems 11/8/2018

CSC 256/456 5

11/8/2018 CSC 2/456 17

Login Spoofing

• Login spoofing

– A program running by the attacker displays a login
screen (like the real one)

– After a legitimate user types in username and
password, it records those, kills itself, and a real
login screen is shown

– The user thinks she typed in a wrong password and
tries again, which works

• Countermeasure?

– Start each login session with a non-user-catchable
key combination “Ctrl-Alt-Delete”

11/8/2018 CSC 2/456 18

Leaking Unnecessary Information

User authentication:
(a) A successful login
(b) Login rejected after name entered
(c) Login rejected after name and password typed

11/8/2018 CSC 2/456 19

The TENEX Password

Problem• Files are accessed with passwords. At each access, the
password is checked byte-by-byte and an error is
returned as soon as a byte is mismatched.

11/8/2018 CSC 2/456 20

User Authentication

• UNIX user passwords were mapped using a one-way
function “e()”; and then stored in a globally readable file
“/etc/passwd”

– Bobbie, e(Dog)
– Tony, e(6%%TaeFF)
– … …

• Attack:

– used a precomputed common password list

• Countermeasure?

– salt
– Bobbie, 4238, e(Dog4238)
– Tony, 2918, e(6%%TaeFF2918)

Operating Systems 11/8/2018

CSC 256/456 6

11/8/2018 CSC 2/456 21

Improving Password Security

• One-time passwords

– Challenge-response authentication

• Authentication using a physical object (e.g., ATM

card)

• Authentication using biometrics

11/8/2018 CSC 2/456 22

Buffer Overflow

(a) Situation when main program is running
(b) After program A called
(c) Buffer overflow shown in gray

Countermeasures:
• boundary checks, non-executable stack/data segment, …

11/8/2018 CSC 2/456 23

The Morris Worm [1988]

• Three methods of infection

– rsh from trusted machine

– Buffer overflow attack in finger

– Bug in sendmail

• Once a machine was infected, used password

cracking for further proliferation

• If a copy of the worm already existed, 1 in 7

exited

– Downfall since it brought the Internet down

11/8/2018 CSC 2/456 24

Security Services

• Privacy (prevent others from obtaining

information)

• Authentication (verify the identity of an object

owner)

• Data integrity (make sure the data is not altered)

 Cryptography as a Security Tool

Operating Systems 11/8/2018

CSC 256/456 7

11/8/2018 CSC 2/456 25

Cryptographic Algorithms

• Encryption/decryption algorithms typically public
knowledge

• Key shared between sender and receiver is the
difference

– Secret key – symmetric – both participants share a
single key

– Public key (e.g., RSA)
• Public key publised for all to know

• Private key that is shared with no one

– Hash or message digest (e.g., MD5) – no keys
• Map a potentially large piece of data into a small fixed-length

number

• More efficient to compute than the above techniques

11/8/2018 CSC 2/456 26

Encryption Algorithm Requirement

• Assumption – only the key is kept secret or you

will have to keep re-inventing new encryption

algorithms!

• Algorithm must be safe from chosen plain-text

attacks (if the attacker knows both plaintext and

ciphertext)

– Make sure none of the structure of plaintext

remains

 Key distribution a central problem in security

11/8/2018 CSC 2/456 27

DES – Date Encryption Standard

• Secret key algorithm

• Encrypts 64-bit blocks of plaintext using a 64-bit
key

• Three distinct phases

– Permute (shuffle bits in the block)

– Perform 16 rounds of an identical operation

– Perform the inverse of the original
permutation

• Decryption – apply the same algorithm, except
that the keys are applied in reverse

11/8/2018 CSC 2/456 28

Encrypting Large Data

• Cipher block chaining (CBC) – XOR ciphertext

for block i with plaintext for block i+1 before

running it through DES

• Use initialization vector in lieu of non-existent

ciphertext for block 0

• Use Triple-DES to increase security

Operating Systems 11/8/2018

CSC 256/456 8

11/8/2018 CSC 2/456 29

RSA (Rivest, Shamir, and Adleman)

Algorithm

• Public key for encryption, private key for

decryption

• Grounded in number theory

• Encryption/decryption function requires

enormous computational power

11/8/2018 CSC 2/456 30

Key Selection

• Key length of 512 bits

• Choose two large prime numbers p and q, and

multiply them together to get n

• Choose encryption key e such that e and (p-

1)x(q-1) are relatively prime

• Compute decryption key d such that

• Public key constructed from the pair <e,n> and

private key by the pair <d,n>

11/8/2018 CSC 2/456 31

Authentication: Simple Three-Way

Handshake

• Participants already share a secret key

• Client sends encrypted (using client handshake
key) random number x along with clientId

• Server decrypts and responds with x+1, along
with random number y, both encrypted with
server handshake key

• Client validates legitimacy of server by checking
return value x+1 and returns encrypted y+1

• Server validates legitimacy of client based on
response and then sends encrypted session key

11/8/2018 CSC 2/456 32

Authentication: Trusted Third Party

(e.g., Kerberos)

• The authentication server S is trusted and shares a

secret key with A and B, KA and KB respectively

• A identifies A and B to S

• S sends back a two-part message, encoding session key

K and a timestamp T, using KA and KB

• A decodes first part of message and forwards second

part to B along with timestamp encoded using K

• B decodes second part to recover K and T and uses K to

decode second part and compare

• B replies with T+1 encoded using K

Operating Systems 11/8/2018

CSC 256/456 9

11/8/2018 CSC 2/456 33

PGP – Pretty Good Privacy

• Provides privacy, authentication, integrity,

compression

– Hash message using MD5

– Encrypt hash using private RSA key

– Compress using ZIP

– Use random key to encrypt message using

IDEA (similar to DES)

– Encrypt random key using receiver’s public

key

11/8/2018 CSC 2/456 34

Covert Channels:

Information leaking

Client, server, and

collaborator processes
Encapsulated server can still leak to

collaborator via covert channels

• Covert channels

– Modulating CPU usage
– Locking/unlocking files

11/8/2018 CSC 2/456 35

Information Leaking Through

Side Channels
• Side channels

– performance observations

– program execution signals (e.g., cache usage, memory
bus usage)

• Side channel attack on hyper-threading processors [Percival
2005]

– OpenSSH running DES encryption on one hyper-thread

– attacker running on the other hyper-thread

– attacker and OpenSSH share hardware cache, so
attacker can monitor its own cache miss pattern to
infer the execution of OpenSSH (and its DES
encryption key)

11/8/2018 CSC 2/456 36

Denial-of-Service Attack
• Attacker attempts to consume all available resources at the

host so no resources are left to serve legitimate users

– attacks often come from network and they are
distributed

• TCP flooding:

– attackers establish many bogus TCP connections
– host allocates buffer space for each connection
– host memory is exhausted eventually

• Countermeasure?

– discard flooded requests: throws out good and bad ones
– trace back to source of floods

• sources are most likely an innocent, compromised machines

– delayed processing/resource allocation
• stateless TCP [Shieh et al., NSDI2005]

Operating Systems 11/8/2018

CSC 256/456 10

11/8/2018 CSC 2/456 37

Virus
• Virus (fragment of code embedded in a legitimate program)

– program can reproduce itself
• e.g., when invoked, traverse the file system and

attach it to randomly selected executables
– additionally, do harm

• steal your data
• temporarily crash the system
• permanently damage data or hardware
• denial of service by using all available system

resources
“Good” virus

– quickly spreading virus
– difficult to detect
– hard to get rid of

11/8/2018 CSC 2/456 38

Infecting An Executable (Trojan

Horses)

(a) An executable program
(b) With a virus at the front
(c) With the virus at the end
(d) With a virus spread over free space within program

11/8/2018 CSC 2/456 39

Memory Resident Viruses

• Virus resides in memory; intercepting
system calls

• Where in memory to put the virus?

– known unused memory in OS
kernel

– make the OS believe the memory
that virus uses is “legitimately
used”

• How to load virus there in the first
place?

– boot sector viruses
– device driver viruses

Operating
system

Virus

Syscall trap

11/8/2018 CSC 2/456 40

How Viruses Spread

• Try to infect programs on

– networks: exploiting buffer overflow errors in
network server daemons

– floppy drives

• Attach to innocent looking email

– when it runs, use mailing list to replicate

Operating Systems 11/8/2018

CSC 256/456 11

11/8/2018 CSC 2/456 41

Antivirus Techniques

• Size checkers

– keep a record of the size of disk files and scan them
periodically for any size changes

– apply on read-only executables

• Signature scanning

– maintain a database of patterns of common viruses
– scan disk files for these patterns

11/8/2018 CSC 2/456 42

Anti-Antivirus Techniques

(a) A program
(b) Infected program
(c) Compressed infected program
(d) Encrypted virus
(e) Compressed virus with encrypted compression code

11/8/2018 CSC 2/456 43

More Antivirus Techniques

• Integrity checkers

– similar to size checkers, but this time we compute a
checksum for file and store them somewhere; we
periodically check all files to see whether the
checksum still matches

• Behavioral checkers (memory-resident anti-virus program)

– intercept system calls and detect suspicious activities:
overwriting executables, …

11/8/2018 CSC 2/456 44

Disclaimer

• Parts of the lecture slides contain original work by
Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Andrew
S. Tanenbaum, and Gary Nutt. The slides are intended for
the sole purpose of instruction of operating systems at the
University of Rochester. All copyrighted materials belong
to their original owner(s).

Operating Systems 11/8/2018

CSC 256/456 12

11/8/2018 CSC 2/456 45

So far …

• Login and password security

• Exploiting system weaknesses and worms

– Login spoofing

– Buffer overflow attack

– Tenex password problem

• Today

– Cryptography as a security tool

– Viruses

