
Operating Systems 9/11/2018

CSC 256/456 1

9/11/2018 CSC 2/456 1

Context Switches, IPC, and

Threads

CS 256/456

Dept. of Computer Science, University

of Rochester

9/11/2018 CSC 2/456 2

Last Class

• Processes

– Process concept

– Operations on processes

– A process’s image in a computer

• System protection and kernel mode

• System calls and the interrupt interface

• Signals

– User-level events

• Pipes

– Inter-process communication

9/11/2018 CSC 2/456 3

Today
• Inter-process communication

– Shared memory

• Context switches and the scheduling process

• Threads

– Thread concept

– Multithreading models

– Types of threads

9/11/2018 CSC 2/456 4

Interprocess Communication

• Reasons for processes to cooperate

– Information sharing (e.g., files)

– Computation speedup

– Modularity and protection

– Convenience - multitasking

Operating Systems 9/11/2018

CSC 256/456 2

9/11/2018 CSC 2/456 5

Interprocess Communication: Pipes

• Conduit allowing two processes to communicate

– Unidirectional or bidirectional

– Full-duplex or half-duplex two-way

communication

– Is parent-child relationship required?

– Is communication across a network allowed?

9/11/2018 CSC 2/456 6

Ordinary Unix Pipes
• A unidirectional data channel that can be used

for interprocess communication

• Treated as a special type of file, accessed using

read() and write()

• Cannot be accessed from outside the process

that created it unless inherited (by a child)

• Pipe ceases to exist once closed or when

process terminates

• System calls

– pipe (int fd[])

– dup2

Example

• pipe(int fd[])

– fd[0] =

read_end

– fd[1] =

write_end

int fd[2];

pid_t pid;

pipe(fd);

pid = fork();

if (pid > 0) {

/* Parent Process */

close (fd[0]);

/* Write a message to the child process */

write (fd[1], write_msg, strlen(write_msg)+1);

close (fd[1]);

} else {

/* Child Process */

close(fd[1]);

/* Read a message from the parent process */

read(fd[0], read_msg, BUFFER_SIZE);

printf(“read %s”, read_msg);

close(fd[0];

}

7

fd[1] fd[0]

dup2() System Call

• Make one file descriptor point to the same

file as another

• dup2 (old_fd, new_fd)

• Return value is -1 on error and new_fd on

success

• dup2(1,2)

8

1

2

3

terminal

pipe

Operating Systems 9/11/2018

CSC 256/456 3

Standard In, Out, and Error

• By convention, file descriptors 0, 1, and 2 are

used for:

– Standard Input

– Standard Output

– Standard Error

9 9/11/2018 CSC 2/456 10

Mechanisms for Interprocess

Communication

• Shared memory

• Message passing

– Pipes, sockets, remote procedure calls

9/11/2018 CSC 2/456 11

Shared Memory: POSIX interface

• shmget – returns the identifier of a shared memory

segment

• shmat – attaches the shared memory segment to the

address space

• shmdt – detaches the segment located at the specified

address

• shmctl – control of shared memory segments, including

deletion

• Other possibilities: mmap (file sharing with preserved

properties)

9/11/2018 CSC 2/456 12

Message Passing

• Direct or indirect communication – processes or
ports

• Fixed or variable size

• Send by copy or reference

• Automatic or explicit buffering

• Blocking or non-blocking (send or receive)

• Examples: client-server sockets, Mach ports,
Windows 2000 local procedure call (LPC),
remote procedure call (RPC, RMI)

Operating Systems 9/11/2018

CSC 256/456 4

9/11/2018 CSC 2/456 13

Process State
• As a process executes, it changes state

– new: The process is being created

– ready: The process is waiting to be assigned to a process

– running: Instructions are being executed

– waiting: The process is waiting for some event to occur

– terminated: The process has finished execution

9/11/2018 CSC 2/456 14

Queues for PCBs

• Ready queue –
set of all
processes ready
for execution.

• Device queues –
set of processes
waiting for an
I/O device.

• Process
migration
between the
various queues.

9/11/2018 CSC 2/456 15

Context Switching

• Processes are managed by a shared chunk of OS code

called the kernel

– Important: the kernel is not a separate process, but

rather runs as part of some user process

• Control flow passes from one process to another via a

context switch.

Process A

code

Process B

code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

9/11/2018 CSC 2/456 16

Scheduling: Transferring Context

Blocks

Coroutines

transfer(other)

save all callee-saves registers on stack, including ra

and fp

*current := sp

current := other

sp := *current

pop all callee-saves registers (including ra, but NOT

sp!)

return (into different coroutine!)

Operating Systems 9/11/2018

CSC 256/456 5

9/11/2018 CSC 2/456 17

Uniprocessor Scheduling

• Use Ready List to reschedule voluntarily (cooperative threading)

reschedule:

– t : cb := dequeue(ready_list)

– transfer(t)

yield:

– enqueue(ready_list, current)

– reschedule

sleep_on(q):

enqueue(q, current)

reschedule

9/11/2018 CSC 2/456 18

CPU Switch From Process to

Process
When can the
OS switch the
CPU from one
process to
another?

Which one to
switch to? -
scheduling

9/11/2018 CSC 2/456 19

Preemption

• Use timer interrupts or signals to trigger involuntary
yields

• Protect scheduler data structures by disabling/reenabling
prior to/after rescheduling

yield:

disable_signals

enqueue(ready_list, current)

reschedule

re-enable_signals

9/11/2018 CSC 2/456 20

Process Termination
• Process executes last statement and gives the control

to the OS (exit)

– Notify parent if it is wait-ing

– Deallocate process’s resources

• The OS may forcefully terminate a process.

– Software exceptions

– Receiving certain signals

Operating Systems 9/11/2018

CSC 256/456 6

9/11/2018 CSC 2/456 21

Processes or Threads

• A process or thread is a potentially-active execution context

• Processes/threads can come from

– Multiple CPUs

– Kernel-level multiplexing of single physical CPU (kernel-level
threads or processes)

– Language or library-level multiplexing of kernel-level abstraction
(user-level threads)

• Threads can run

– Truly in parallel (on multiple CPUs)

– Unpredictably interleaved (on a single CPU)

– Run-until-block (coroutine-style)

9/11/2018 CSC 2/456 22

Processes and Threads
• Thread – a program in execution; without a dedicated

address space.

• OS memory protection is only applied to processes.

9/11/2018 CSC 2/456 23

Processes Vs. Threads

• Process

– Single address space

– Single thread of control for executing program

– State information
• Page tables, swap images, file descriptors, queued I/O requests, saved

registers

• Threads

– Separate notion of execution from the rest of the definition of a process

– Other parts potentially shared with other threads

– Program counter, stack of activation records, control block (e.g., saved
registers/state info for thread management)

– Kernel-level (lightweight process) handled by the system scheduler

– User-level handled in user mode

9/11/2018 CSC 2/456 24

Why Use Threads?

• Multithreading is used for parallelism/concurrency. But why
not multiple processes?

– Memory sharing.

– Efficient synchronization between threads

– Less context switch overhead

Operating Systems 9/11/2018

CSC 256/456 7

9/11/2018 CSC 2/456 25

User/Kernel Threads
• User threads

– Thread data structure is in user-mode
memory

– scheduling/switching done at user
mode

• Kernel threads

– Thread data structure is in kernel
memory

– scheduling/switching done by the OS
kernel

9/11/2018 CSC 2/456 26

User/Kernel Threads (cont.)
• Benefits of user threads

– lightweight – less context switching overhead

– more efficient synchronization??

– flexibility – allow application-controlled scheduling

• Problems of user threads

– can’t use more than one processor

– oblivious to kernel events, e.g., all threads in a process
are put to wait when only one of them does I/O

9/11/2018 CSC 2/456 27

Mixed User/Kernel Threads

• M user threads run on N kernel threads (M≥N)

– N=1: pure user threads

– M=N: pure kernel threads

– M>N>1: mixed model

user threads

kernel threads

CPU CPU

9/11/2018 CSC 2/456 28

Solaris/Linux Threads
• Solaris

– supports mixed model

• Linux

– No standard user threads on Linux
– Processes and threads treated in a similar manner

(both called tasks)
– Processes are tasks with exclusive address space
– Tasks can also share the address space, open files, …

Operating Systems 9/11/2018

CSC 256/456 8

9/11/2018 CSC 2/456 29

Pthreads
• Each OS has its own thread package with different

Application Programming Interfaces poor portability.

• Pthreads

– A POSIX standard API for thread management and
synchronization.

– API specifies behavior of the thread library, not the
implementation.

– Commonly supported in UNIX operating systems.

9/11/2018 CSC 2/456 30

Thread Creation

int pthread_create
(pthread_t *new_id,
const pthread_attr_t *attr,
void *(*func) (void *),
void *arg)

• new_id: thread’s unique identifier

• attr: ignore for now

• func: function to be run in parallel

• arg: arguments for function func

9/11/2018 CSC 2/456 31

Example of Thread Creation

void *func(void *arg) {

int *I=arg;

…..

}

void main()

{

int X; pthread_t id;

….

pthread_create(&id, NULL, func, &X);

…

}

9/11/2018 CSC 2/456 32

Pthread Termination

void pthread_exit(void *status)

• Terminates the currently running thread.

• Is implicit when the function called in

pthread_create returns.

Operating Systems 9/11/2018

CSC 256/456 9

9/11/2018 CSC 2/456 33

Thread Joining

int pthread_join(
pthread_t new_id,
void **status)

• Waits for the thread with identifier new_id to
terminate, either by returning or by calling
pthread_exit().

• Status receives the return value or the value
given as argument to pthread_exit().

9/11/2018 CSC 2/456 34

Example of Thread Creation

main()

pthread_

create(func) func()

pthread_

join(id)
pthread_

exit()

9/11/2018 CSC 2/456 35

Contention Scope

• Process contention scope – thread library schedules

user threads onto light-weight processes (kernel-level

thread)

– Use priority as defined by user – no preemption of

threads with same priority

• System contention scope – compete with all tasks and

schedule kernel thread on a physical CPU

• pthreads: PTHREAD_SCOPE_PROCESS,

PTHREAD_SCOPE_SYSTEM

– pthread_attr_setscope

– pthread_attr_getscope

9/11/2018 CSC 2/456 36

Pthread Attributes

• Pthread_attr_init(pthread_attr_t *attr), destroy –

initializes attr to default value

– Scope – pthread_attr_setscope (&attr,

SCOPE)

– Stack size – pthread_attr_getstacksize,

pthread_attr_setstacksize

– Priority

– Joinable or detached

Operating Systems 9/11/2018

CSC 256/456 10

9/11/2018 CSC 2/456 37

Issues with the Threading Model

• Thread-local storage – what about globals?

• Stack management

• Interaction with fork and exec system calls

– Two versions of fork?

• Signal handling – which thread should the signal be
delivered to?

– Synchronous

– All

– Assigned thread

– Unix: could assign a specific thread to handle signals

– Windows: asynchronous procedure calls, which are
thread-specific

9/11/2018 CSC 2/456 38

Issues with the Threading Model

• Thread-local storage – what about globals?

• Stack management

• Interaction with fork and exec system calls

– Two versions of fork?

• Signal handling – which thread should the signal be
delivered to?

– Synchronous

– All

– Assigned thread

– Unix: could assign a specific thread to handle signals

– Windows: asynchronous procedure calls, which are
thread-specific

9/11/2018 CSC 2/456 39

Multiprocessor Scheduling

• Disabling signals not sufficient

• Acquire scheduler lock when accessing any scheduler
data structure, e.g.,

yield:

disable_signals

acquire(scheduler_lock) // spin lock

enqueue(ready_list, current)

reschedule

release(scheduler_lock)

re-enable_signals

9/11/2018 CSC 2/456 40

Ready List Management

• Various options are possible with varying levels
of concurrency -

– Single lock for all data structures

– Multiple locks, one per data structure

– Local freelists for control blocks and stacks (in
the case of threads), single shared locked
ready list

– Queue of idle processors with preallocated
control block and stack waiting for work

– Local ready list per processor, each with its
own lock

Operating Systems 9/11/2018

CSC 256/456 11

9/11/2018 CSC 2/456 41

Operation System Architectures

• Monolithic architecture

• Microkernel architecture

• Layered architecture

• Virtual machines

9/11/2018 CSC 2/456 42

Application

Programs
Libraries Commands

Device Driver

OS Architecture: Monolithic

Structure
Interactive User

Application

Programs

OS System Call Interface

Device Driver

Device Driver

D
ri

v
er

 I
n
te

rf
ac

e

…

Monolithic Kernel Module
•Process Management

•Memory Management

•File Management

•Device Mgmt Infrastructure

Trap Table

…

Most modern OSes fall into this category!

9/11/2018 CSC 2/456 43

Microkernel System Architecture
• Microkernel architecture:

– Moves as much from the kernel into “user” space (still
protected from normal users).

– Communication takes place between user modules using
message passing.

• What must be in the kernel and what can be in user space?

– Mechanisms determine how to do something.

– Policies decide what will be done.

• Benefits:

– More reliable (less code is running in kernel mode)

– More secure (less code is running in kernel mode)

• Disadvantage:
– More overhead in inter-domain communications

9/11/2018 CSC 2/456 44

Layered Structure
• Layered structure

– The operating system is divided into a number of layers (levels),
each built on top of lower layers.

– The bottom layer (layer 0), is the hardware.
– The highest (layer N) is the user interface.
– Decreased privileges for higher layers.

• Benefits:
– more reliable
– more secure

• Disadvantage:
– Weak integration results in performance penalty (similar to the

microkernel structure).

Operating Systems 9/11/2018

CSC 256/456 12

9/11/2018 CSC 2/456 45

Virtual Machines
• Virtual machine architecture

– Virtualization: A piece of software that provides an interface identical
to the underlying bare hardware.

• the upper-layer software has the illusion of running directly on hardware

• the virtualization software is called virtual machine monitor

– Multiplexing: It may provide several virtualized machines on top of a
single piece of hardware.

• resources of physical computer are shared among the virtual machines

• each VM has the illusion of owning a complete machine

• Trust and privilege

– the VM monitor does not trust VMs

– only the VM monitor runs in full privilege

• Compared to an operating system
– VM monitor is a resource manager, but not an extended machine

9/11/2018 CSC 2/456 46

Virtual Machine Architecture

Non-VM Native VM

hardware

OS

user
programs

hardware

VM monitor

user
programs

OS OS OS

user
programs

user
programs

Hosted VM

hardware

native OS

user
programs
on native

OS OS

user
programs

VMM

9/11/2018 CSC 2/456 47

Disclaimer

• Parts of the lecture slides contain original work from Gary
Nutt, Andrew S. Tanenbaum, Abraham Silberschatz, Peter
B. Galvin, Greg Gagne, Dave O’Hallaron, Randal Bryant, Kai
Shen, and John Criswell. The slides are intended for the
sole purpose of instruction of operating systems at the
University of Rochester. All copyrighted materials belong
to their original owner(s).

