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Basics of Parallelization

• Dependence analysis

• Synchronization

– Events

– Mutual exclusion

• Parallelism patterns

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel

iff

there are no dependences between S1 and S2

– true dependences

– anti-dependences

– output dependences

Some dependences can be removed.

Types of Dependences

• True (flow) dependence – RAW

• Anti-dependence – WAR

• Output dependence – WAW

Loop-Carried Dependence

• A loop-carried dependence is a dependence 

that is present between statements in two 

different iterations of a loop

• A loop-independent dependence is a 

dependence between two statements in the 

same loop

• Loop-carried dependences limit loop 

iteration parallelization
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Synchronization

• Used to enforce dependences

• Control the ordering of events on different 

processors

– Events – signal(x) and wait(x)

– Fork-Join or barrier synchronization (global)

– Mutual exclusion/critical sections

Eliminating Dependences

• Privatization or scalar expansion

• Reduction (common pattern)

Example: Scalar Expansion or 

Privatization

for (I = 0; I < 100; I++)

T = A[I];

A[I] = B[I];

B[I] = T;

Loop-carried anti-dependence on T

Eliminate by converting T into an array or by 

making T private to each loop iteration

Example: Scalar Expansion

for (I = 0; I < 100; I++)

T [I]= A[I];

A[I] = B[I];

B[I] = T[I];

Loop-carried anti-dependence eliminated
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Removing Dependences: 

Reduction

sum = 0.0;

for( i=0; i<100; i++ ) sum += a[i];

• Loop-carried dependence on sum.

• Cannot be parallelized, but ...

Reduction (continued)

for( i=0; i<...; i++ ) sum[i] = 0.0;

fork();

for( j=…; j<…; j++ ) sum[i] += a[j];

join();

sum = 0.0;

for( i=0; i<...; i++ ) sum += sum[i];

Common pattern often with explicit support

e.g.,  sum = reduce (+, a, 0, 100)

CAVEAT: Operator must be commutative and associative

Steps in the Parallelization

• Decomposition into tasks
– Expose concurrency

• Assignment to processes
– Balancing load and maximizing locality

• Orchestration 
– Name and access data

– Communicate (exchange) data

– synchronization among processes

• Mapping
– Assignment of processes to processors

Decomposition into Tasks

• Tasks may be 

– Identical computation

– Different computation

– Indeterminate size

• Tasks may be

– Independent

– Have non-trivial order
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Decomposition into Tasks

• Conceptualize tasks and ordering as a task dependency 
DAG (for control dependency), along with a task 
interaction DAG (for data dependency)

– Edges represent task serialization

– Critical path – longest weighted path through graph (lower bound 
on parallel execution time)

• Measures of parallel performance: speedup, efficiency

• Tradeoff between
– Degree of concurrency (number of tasks that can be processed in 

parallel)

– Task granularity

– Associated overheads

Patterns of Parallelism

• Decomposition views
– Data (static) vs. recursive (dynamic) decomposition

– Exploratory decomposition vs. speculative decomposition
• Exploratory - Parallel formulation may perform different amounts of work 

resulting in super or sub-linear speedup

• Speculative - Schedule tasks even when they may have dependencies

• Data parallelism: all processors do the same thing on different data.
– Regular 

– Irregular

• Task parallelism: processors do different tasks or dynamically pick up 
data to compute on

– Task queue

– Pipelines

Recursive Decomposition
Suitable for problems solvable using divide-and-conquer

Example: Quicksort 1. Select a pivot

2. Partition set based on pivot

3. Recursively partition each subset in parallel

(Static) Data Parallelism

• Essential idea: each processor works on a different 

part of the data (usually in one or more arrays)

– work partitioned based on “owner” computes rule, 

applied to either input, output, or intermediate data

• Regular or irregular data parallelism: using linear 

or non-linear indexing.

• Examples: MM (regular), SOR (regular), MD 

(irregular).
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Matrix Multiplication

• Multiplication of two n by n matrices A and 

B into a third n by n matrix C

Matrix Multiply

for( i=0; i<n; i++ )

for( j=0; j<n; j++ )

c[i][j] = 0.0;

for( i=0; i<n; i++ )

for( j=0; j<n; j++ )

for( k=0; k<n; k++ )

c[i][j] += a[i][k]*b[k][j];

Parallel Matrix Multiply

• No loop-carried dependences in i- or j-loop.

• Loop-carried dependence on k-loop.

• All i- and j-iterations can be run in parallel.

Parallel Matrix Multiply (contd.)

• If we have P processors, we can give n/P 

rows or columns to each processor.

• Or, we can divide the matrix in P squares, 

and give each processor one square.
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SOR

• SOR implements a mathematical model for 

many natural phenomena, e.g., heat 

dissipation in a metal sheet

• Model is a partial differential equation

• Focus is on algorithm, not on derivation

• Discretized problem

Relaxation Algorithm

• For some number of iterations

for each internal grid point

compute average of its four neighbors

• Termination condition:

values at grid points change very little

(we will ignore this part in our example)

Discretized Problem Statement

/* Initialization */

for( i=0; i<n+1; i++ ) grid[i][0] = 0.0;

for( i=0; i<n+1; i++ ) grid[i][n+1] = 0.0;

for( j=0; j<n+1; j++ ) grid[0][j] = 1.0;

for( j=0; j<n+1; j++ ) grid[n+1][j] = 0.0;

for( i=1; i<n; i++ )

for( j=1; j<n; j++ )

grid[i][j] = 0.0;

Discretized Problem Statement

for some number of timesteps/iterations {

for (i=1; i<n; i++ )

for( j=1, j<n, j++ )

temp[i][j] = 0.25 *

( grid[i-1][j] + grid[i+1][j]

grid[i][j-1] + grid[i][j+1] );

for( i=1; i<n; i++ )

for( j=1; j<n; j++ )

grid[i][j] = temp[i][j];

}
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Parallel SOR

• No dependences between iterations of first 
(i,j) loop nest.

• No dependences between iterations of 
second (i,j) loop nest.

• Anti-dependence between first and second 
loop nest in the same timestep.

• True dependence between second loop nest 
and first loop nest of next timestep.

Parallel SOR Dependences

• First (i,j) loop nest can be parallelized.

• Second (i,j) loop nest can be parallelized.

• We must make processors wait at the end of 

each (i,j) loop nest.

• Natural synchronization: fork-join.

Parallel SOR Decomposition

• If we have P processors, we can give n/P 

rows or columns to each processor.

• Or, we can divide the array in P squares, 

and give each processor a square to 

compute.

Molecular Dynamics (MD)

• Simulation of a set of bodies under the 

influence of physical laws.

• Atoms, molecules, celestial bodies, ...

• Have same basic structure.
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Molecular Dynamics (Skeleton) 

for some number of timesteps {

for all molecules i

for all other molecules j

force[i] += f( loc[i], loc[j] );

for all molecules i

loc[i] = g( loc[i], force[i] );

}

Molecular Dynamics (continued)

• To reduce amount of computation, account 

for interaction only with nearby molecules.

Molecular Dynamics (continued) 

for some number of timesteps {

for all molecules i

for all nearby molecules j

force[i] += f( loc[i], loc[j] );

for all molecules i

loc[i] = g( loc[i], force[i] );

}

Molecular Dynamics (continued)

for each molecule i

number of nearby molecules count[i]

array of indices of nearby molecules index[j]

( 0 <= j < count[i])
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Molecular Dynamics (continued) 

for some number of timesteps {

for( i=0; i<num_mol; i++ )

for( j=0; j<count[i]; j++ )

force[i] += f(loc[i],loc[index[j]]);

for( i=0; i<num_mol; i++ )

loc[i] = g( loc[i], force[i] );

}

Molecular Dynamics (continued)

• No loop-carried dependence in first i-loop.

• Loop-carried dependence (reduction) in j-

loop.

• No loop-carried dependence in second i-

loop.

• True dependence between first and second 

i-loop.

Molecular Dynamics (continued)

• First i-loop can be parallelized.

• Second i-loop can be parallelized.

• Must make processors wait between loops.

• Natural synchronization: fork-join.

Molecular Dynamics (continued) 

for some number of timesteps {

for( i=0; i<num_mol; i++ )

for( j=0; j<count[i]; j++ )

force[i] += f(loc[i],loc[index[j]]);

for( i=0; i<num_mol; i++ )

loc[i] = g( loc[i], force[i] );

}
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Irregular vs. regular data parallel

• In SOR, all arrays are accessed through 

linear expressions of the loop indices, 

known at compile time [regular].

• In MD, some arrays are accessed through 

non-linear expressions of the loop indices, 

some known only at runtime [irregular].

Irregular vs. regular data parallel

• No real differences in terms of 

parallelization (based on dependences)

• Will lead to fundamental differences in 

expressions of parallelism:

– irregular difficult for parallelism based on data 

distribution

– not difficult for parallelism based on iteration 

distribution.

Molecular Dynamics 

Decomposition

• Parallelization of first loop:

– has a load balancing issue

– some molecules have few/many neighbors

– more sophisticated loop partitioning necessary
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Patterns of Parallelism

• Decomposition views
– Data (static) vs. recursive (dynamic) decomposition

– Exploratory decomposition vs. speculative decomposition
• Exploratory - Parallel formulation may perform different amounts of work 

resulting in super or sub-linear speedup

• Speculative - Schedule tasks even when they may have dependencies

• Data parallelism: all processors do the same thing on different data.
– Regular 

– Irregular

• Task parallelism: processors do different tasks or dynamically pick up 
data to compute on

– Task queue

– Pipelines

Task Parallelism

• Each process performs a different task.

• Two principal flavors:

– pipelines

– task queues

• Program Examples: PIPE (pipeline), TSP 

(task queue).

Pipeline

• Often occurs with image processing 

applications, where a number of images 

undergo a sequence of transformations.

• E.g., rendering, clipping, compression, etc.

Sequential Program

for( i=0; i<num_pic, read(in_pic[i]); i++ ) {

int_pic_1[i] = trans1( in_pic[i] );

int_pic_2[i] = trans2( int_pic_1[i]);

int_pic_3[i] = trans3( int_pic_2[i]);

out_pic[i] = trans4( int_pic_3[i]);

}
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Parallelizing a Pipeline

• For simplicity, assume we have 4 

processors (i.e., equal to the number of 

transformations).

• Furthermore, assume we have a very large 

number of pictures (>> 4).

Sequential vs. Parallel Execution

• Sequential

• Parallel

(Color -- picture; horizontal line -- processor).

Parallelizing a Pipeline (part 1)

Processor 1:

for( i=0; i<num_pics, read(in_pic[i]); i++ ) {

int_pic_1[i] = trans1( in_pic[i] );

signal(event_1_2[i]);

} 

Parallelizing a Pipeline (part 2)

Processor 2:

for( i=0; i<num_pics; i++ ) {

wait( event_1_2[i] );

int_pic_2[i] = trans2( int_pic_1[i] );

signal(event_2_3[i] );

} 

Same for processor 3
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Parallelizing a Pipeline (part 3)

Processor 4:

for( i=0; i<num_pics; i++ ) {

wait( event_3_4[i] );

out_pic[i] = trans4( int_pic_3[i] );

} 

Another Sequential Program

for( i=0; i<num_pic, read(in_pic); i++ ) {

int_pic_1 = trans1( in_pic );

int_pic_2 = trans2( int_pic_1);

int_pic_3 = trans3( int_pic_2);

out_pic = trans4( int_pic_3);

}

Can we use same parallelization?

Processor 2:

for( i=0; i<num_pics; i++ ) {

wait( event_1_2[i] );

int_pic_2 = trans1( int_pic_1 );

signal(event_2_3[i] );

} 

Same for processor 3

Can we use same parallelization?

• No, because of anti-dependence between 

stages, there is no parallelism

• Another example of privatization

• Costly in terms of memory
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In-between Solution

• Use n>1 buffers between stages.

• Block when buffers are full or empty

Perfect Pipeline

• Sequential

• Parallel

(Color -- picture; horizontal line -- processor).

Things are often not that perfect

• One stage takes more time than others

• Stages take a variable amount of time

• Extra buffers can provide some cushion 

against variability
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