
1

Pthreads: A Shared Memory 

Programming Model
• POSIX standard shared-memory 

multithreading interface

• Not just for parallel programming, but for 

general multithreaded programming

• Provides primitives for process 

management and synchronization

What does the user have to do?

• Decide how to decompose the 

computation into parallel parts

• Create (and destroy) processes to support 

that decomposition

• Add synchronization to make sure 

dependences are covered

General Thread Structure

• Typically, a thread is a concurrent 

execution of a function or a procedure

• So, your program needs to be restructured 

such that parallel parts form separate 

procedures or functions

General Program Structure

• Encapsulate parallel parts in functions.

• Use function arguments to parametrize 

what a particular thread does.

• Call pthread_create() with the function and 

arguments, save thread identifier returned.

• Call pthread_join() with that thread 

identifier.

4 5

6 7



2

Synchronization Primitives in 

Pthreads
• Mutexes

• Reader-writer locks

• Condition variables

• Semaphores

• Barriers

Sequential SOR

for some number of timesteps/iterations {

for (i=0; i<n; i++ )

for( j=1, j<n, j++ )

temp[i][j] = 0.25 *

( grid[i-1][j] + grid[i+1][j]

grid[i][j-1] + grid[i][j+1] );

for( i=0; i<n; i++ )

for( j=1; j<n; j++ )

grid[i][j] = temp[i][j];

}

Barrier Synchronization

• A wait at a barrier causes a thread to wait 

until all threads have performed a wait at 

the barrier.

• At that point, they all proceed

• Use instead of creating and destroying 

threads multiple times to achieve the same 

global synchronization with lower 

overhead

Implementing Barriers in Pthreads

• Count the number of arrivals at the barrier.

• Wait if this is not the last arrival.

• Make everyone unblock if this is the last 

arrival.

• Since the arrival count is a shared 

variable, enclose the whole operation in a 

mutex lock-unlock.

8 9

10 11



3

Implementing Barriers in Pthreads

void barrier()
{

pthread_mutex_lock(&mutex_arr);
arrived++;
if (arrived<N) {

pthread_cond_wait(&cond, &mutex_arr);
}
else {

pthread_cond_broadcast(&cond);
arrived=0; /* be prepared for next barrier */

}
pthread_mutex_unlock(&mutex_arr);

}

Monitor

• Synchronization construct that provides 

mutual exclusion and the ability to wait on 

one or more conditions

– Hoare style: signaler must leave/give up the 

monitor to the thread being woken up

• E.g., Hansen’s Concurrent Pascal

– Mesa style: thread being woken up may 

return to the monitor at a later time

• E.g., Java and C#

Implications: Parallel TSP: Condition 

Synchronization
de_queue() {

pthread_mutex_lock(&queue);
while( (q is empty) and (not done) ) {

waiting++;
if( waiting == p ) {

done = true;
pthread_cond_broadcast(&empty);

}
else {

pthread_cond_wait(&empty, &queue);
waiting--;

}
}
if( done )

return null;
else

remove and return head of the queue;
pthread_mutex_unlock(&queue);

}

Parallel SOR with Barriers (1 of 2)

void* sor (void* arg)

{

int slice = (int)arg;

int from = (slice * (n-1))/p + 1;

int to = ((slice+1) * (n-1))/p + 1;

for some number of iterations { … }

}

12 13

14 15



4

Parallel SOR with Barriers (2 of 2)

for (i=from; i<to; i++) 

for (j=1; j<n; j++)

temp[i][j] = 0.25 * (grid[i-1][j] + grid[i+1][j] 

+ grid[i][j-1] + grid[i][j+1]);

barrier();

for (i=from; i<to; i++) 

for (j=1; j<n; j++) 

grid[i][j]=temp[i][j];

barrier();

Parallel SOR with Barriers: main

int main(int argc, char *argv[])

{

pthread_t *thrd[p];

/* Initialize mutex and condition variables */

for (i=0; i<p; i++) 

pthread_create (&thrd[i], &attr, sor, (void*)i);

for (i=0; i<p; i++) 

pthread_join (thrd[i], NULL);

/* Destroy mutex and condition variables */

}

Busy Waiting

• Not an explicit part of the API

• Available in any general shared memory 

programming environment

Busy Waiting

initially: flag = 0;

P1: produce data;

flag = 1;

P2: while( !flag ) ;

consume data;

16 17

18 19



5

Use of Busy Waiting

• On the surface, simple and efficient

• In general, not a recommended practice

• Often leads to messy and unreadable 

code (blurs data/synchronization 

distinction)

• On some architectures, may be inefficient 

or may not even work as intended 

(depending on consistency model)

Private Data in Pthreads

• To make a variable private in pthreads, 

you need to make an array out of it

• Index the array by thread identifier, which 

you can get by the pthread_self() call

• An alternative is to declare the variable on 

the stack

• Not very elegant or efficient

Other Primitives in Pthreads

• Set the attributes of a thread

• Set the attributes of a mutex lock

• Set scheduling parameters

20 21

22 23



6

Thread Creation Syntax

Programming in Parallel

• Explicitly concurrent languages – e.g., 
Occam, SR, Java, Ada, UPC, C++11

• Compiler-supported extensions – e.g., 
HPF, Cilk

• Library packages outside the language 
proper – e.g., pthreads, MPI

Thread Creation Syntax

• Properly nested (can share context) 

– Co-Begin (Algol 68, Occam, SR)

– Parallel loops (HPF, Occam, Fortran90, SR)

– Launch-at-Elaboration (Ada, SR)

• Fork/Join (pthreads, Ada, Modula-3, Java, 
SR)

• Implicit Receipt (RPC systems, SR)

• Early Reply (SR)

Co-Begin (e.g., Algol 68)

par begin

p (a, b, c),

begin

d := q(e, f);

r(d, g, h)

end,

s(i, j)

end

Commas: nondeterministic or concurrent semantics

Semicolons: sequential semantics

24 25

26 27



7

Co-Begin in OpenMP

#pragma omp sections

{

#    pragma omp section

{ printf(“thread 1 here\n”);}

#    pragma omp section

{ printf(“thread 2 here\n”);

}

Parallel Loops

• Examples:

– OpenMP: # pragma omp parallel for

– C#: Task Parallel Library 

OpenMP Parallelism in Loops (Fortran)

• FOR: sequential

• FORALL: each statement executed completely and in 

parallel; old values for current and subsequent 

statements; new values for previous statement

• DOPAR: each iteration executed in parallel; statements 

within each iteration executed sequentially; old values for 

other iterations

– DOALL: DOPAR with no conflicts

• DOACROSS: sequential loop with dependences

• DOSINGLE: each variable assigned once, new value 

always used

28 29

30 31



8

Example Loop(1) Loop i=1:4

(2)        a[i] = a[i-1]+1

(3)        b[i] = b[i+1] + a[i-1]

0 1 2 3 4 5

a 3 3 3 3 3 3

b 1 2 3 4 5 6

Initially

Final values using for, forall, dopar, dosingle?

(2) a[i-1] (3) a[i-1] (3) b[i+1]

for New New Old

forall Old New Old

dopar Old Old Old

dosingle New New New

Launch-at-Elaboration (e.g., 

Ada)
procedure P is 

task T is

…

end T;

begin – P

…

end P;

Explicit Thread Creation Syntax

• Fork/Join (pthreads, Ada, Modula-3, Java, 
SR)

• Implicit Receipt (RPC systems, SR)

• Early Reply (SR – fork a thread on a local 
procedure, reply early, and continue 
execution after returning/replying to caller)

CILK

cilk int fib (int n) { 

if (n < 2) return n; 

else { 

int x, y; 

x = spawn fib (n-1);

y = spawn fib (n-2); 

sync; 

return (x+y); 

} 

} 

32 33

34 35



9

Nested vs. General Parallelism

Sequential SOR

• for (k = 0; k < 100; k++) {

• for (j = 1; j < M-1; j++)

• for (i = 1; i < M-1; i++) 

• a[j][i] = (b[j][i-1] + b[j][i+1] + 

• b[j-1][i] + b[j+1][i])/4;

• for (j = 1; j < M-1; j++)

• for (i = 1; i < M-1; i++) 

• b[j][i] = a[j][i];

• }

Shared Memory Version

• for (k = 0; k < 100; k++) {

• for (j = begin; j < end; j++)

• for (i = 1; i < M-1; i++) 

• a[j][i] = (b[j][i-1] + b[j][i+1] + 

• b[j-1][i] + b[j+1][i])/4;

• barrier();

• for (j = begin; j < end; j++)

• for (i = 1; i < M-1; i++) 

• b[j][i] = a[j][i];

• barrier();

• }

36 37

38 39



10

Data Parallel Version of SOR 

(OpenMP)
• for (k = 0; k < 100; k++) {

• #pragma parallel shared(a, b) private(i,j)

• {

• #pragma omp parallel for

• for (j = 1; j < M-1; j++)

• for (i = 1; i < M-1; i++) 

• a[j][i] = (b[j][i-1] + b[j][i+1] + 

• b[j-1][i] + b[j+1][i])/4;

• }

• #pragma parallel shared(a, b) private(i, j)

• {

• #pragma omp parallel for

• for (j = 1; j < M-1; j++)

• for (i = 1; i < M-1; i++) 

• b[j][i] = a[j][i];

• }

• }

SOR in HPF (Fortran D)

real a (1000, 1000), b(1000, 1000)

C    decomposition d(1000, 1000)

C    align a, b with d

C    distribute d(:, block)

do k = 1, 1000

do j = 2, 999

do I = 2, 999

a(i,j) = F(b(i-1,j),b(i+1,j),b(i,j-1),b(I,j+1))

enddo

enddo

second loop (b(i,j) = a(i,j)

enddo

Data distribution: block, 

cyclic, or block-cyclic

Compiler applies owner-computes

rule

Thread Implementation

40 41

42 43



11

Processes or Threads

• A process or thread is a potentially-active execution 
context

• Processes/threads can come from
– Multiple CPUs

– Kernel-level multiplexing of single physical CPU (kernel-level 
threads or processes)

– Language or library-level multiplexing of kernel-level abstraction 
(user-level threads)

• Threads can run 
– Truly in parallel (on multiple CPUs)

– Unpredictably interleaved (on a single CPU)

– Run-until-block (coroutine-style)

Processes Vs. Threads

• Process 
– Single address space

– Single thread of control for executing program

– State information 
• Page tables, swap images, file descriptors, queued I/O requests, saved 

registers

• Threads 
– Separate notion of execution from the rest of the definition of a process

– Other parts potentially shared with other threads

– Program counter, stack of activation records, control block (e.g., saved 
registers/state info for thread management)

– Kernel-level (lightweight process) handled by the system scheduler

– User-level handled in user mode

Thread Implementation 

Requirements
• Data structures

– Program counter

– Stack

– Control block (state for thread management)

– Run queue

Thread Scheduling: Transferring 

Context Blocks

Coroutines

transfer(other) 

save all callee-saves registers on stack, including ra 

and fp 

*current := sp 

current := other 

sp := *current 

pop all callee-saves registers (including ra, but NOT 

sp!) 

return (into different coroutine!) 

44 45

46 47



12

Uniprocessor Scheduling

• Use Ready List to reschedule voluntarily (cooperative 
threading)

reschedule: 
– t : cb := dequeue(ready_list) 

– transfer(t) 

yield: 
– enqueue(ready_list, current) 

– reschedule 

sleep_on(q): 
enqueue(q, current)

reschedule 

Preemption

• Use timer interrupts or signals to trigger 
involuntary yields

• Protect scheduler data structures by 
disabling/reenabling prior to/after rescheduling

yield: 
disable_signals 

enqueue(ready_list, current) 

reschedule 

re-enable_signals 

Multiprocessor Scheduling

• Disabling signals not sufficient

• Acquire scheduler lock when accessing any 
scheduler data structure, e.g., 

yield: 
disable_signals 

acquire(scheduler_lock) // spin lock 

enqueue(ready_list, current) 

reschedule 

release(scheduler_lock) 

re-enable_signals 

Thread Management

• Creation

• Startup

• Block

• Signal

• Resume

• Finish

48 49

50 51



13

Performance Measures

• Latency

– Cost of thread management under the best 

case assumption of no contention for locks

• Throughput 

– Rate at which threads can be created, started, 

and finished when there is contention

Thread Management Data 

Structures?
• Control blocks

• Stacks

• Ready queue

Anderson et al.

• Raises issues of 

– Locality (per-processor data structures)

– Granularity of scheduling tasks

– Lock overhead

– Tradeoff between throughput and latency

• Large critical sections are good for best-case 

latency (low locking overhead) but bad for 

throughput (low parallelism)

Optimizations

• Allocate stacks lazily

• Store deallocated control blocks and 

stacks in free lists

• Create per-processor ready lists

• Create local free lists for locality

• Queue of idle processors (in addition to 

queue of waiting threads)

52 53

54 55



14

Ready List Management

• Single lock for all data structures

• Multiple locks, one per data structure

• Local freelists for control blocks and 
stacks, single shared locked ready list

• Queue of idle processors with preallocated 
control block and stack waiting for work

• Local ready list per processor, each with 
its own lock

56


