Pthreads: A Shared Memory
Programming Model

* POSIX standard shared-memory
multithreading interface

 Not just for parallel programming, but for
general multithreaded programming

* Provides primitives for process
management and synchronization

What does the user have to do?

» Decide how to decompose the
computation into parallel parts

» Create (and destroy) processes to support
that decomposition

» Add synchronization to make sure
dependences are covered

General Thread Structure

» Typically, a thread is a concurrent
execution of a function or a procedure

* So, your program needs to be restructured
such that parallel parts form separate
procedures or functions

General Program Structure

» Encapsulate parallel parts in functions.

 Use function arguments to parametrize
what a particular thread does.

 Call pthread_create() with the function and
arguments, save thread identifier returned.

+ Call pthread_join() with that thread
identifier.

Synchronization Primitives in
Pthreads

Mutexes
Reader-writer locks
Condition variables
Semaphores
Barriers

Sequential SOR

for some number of timesteps/iterations {
for (i=0; i<n; i++)
for(j=1, j<n, j++)
templi][j]= 0.25 *
(grid[i-1]j] + grid[i+1][j]
grid[i][i-1] + grid[i][j+1]);
for(i=0; i<n; i++)
for(j=1; j<n; j++)
grid[i][i] = temp(i][];

Barrier Synchronization

A wait at a barrier causes a thread to wait
until all threads have performed a wait at
the barrier.

At that point, they all proceed
Use instead of creating and destroying

threads multiple times to achieve the same

global synchronization with lower
overhead

Implementing Barriers in Pthreads

* Count the number of arrivals at the barrier.
» Wait if this is not the last arrival.

» Make everyone unblock if this is the last
arrival.

+ Since the arrival count is a shared
variable, enclose the whole operation in a
mutex lock-unlock.

10

11

Implementing Barriers in Pthreads

void barrier()

pthread_mutex_lock(&mutex_arr);
arrived++;
if (arrived<N) {
pthread_cond_wait(&cond, &mutex_arr);

else {
pthread_cond_broadcast(&cond);
arrived=0; /* be prepared for next barrier */

pthread_mutex_unlock(&mutex_arr);

12

Monitor

» Synchronization construct that provides
mutual exclusion and the ability to wait on
one or more conditions
— Hoare style: signaler must leave/give up the

monitor to the thread being woken up
» E.g., Hansen’s Concurrent Pascal
— Mesa style: thread being woken up may
return to the monitor at a later time
» E.g., Java and C#

Implications: Parallel TSP: Condition
Synchronization

de_queue() {
pthread_mutex_lock(&queue);
while((q is empty) and (not done)) {

waiting++;
if(waiting ==p) {
done = true;

pthread_cond_broadcast(&empty);

else {
pthread_cond_wait(&empty, &queue);
waiting--;

}

}
if(done)
return null;
else
remove and return head of the queue;
pthread_mutex_unlock(&queue);

13

14

Parallel SOR with Barriers (1 of 2)

void* sor (void* arg)

{
int slice = (int)arg;
int from = (slice * (n-1))/p + 1,
intto = ((slice+1) * (n-1))/p + 1,

for some number of iterations { ... }

}

15

Parallel SOR with Barriers (2 of 2)

for (i=from; i<to; i++)
for (j=1; j<n; j++)
templi][j] = 0.25 * (grid[i-1][j] + grid[i+1][j]
+ grid[i][j-1] + grid[i][j+1]);
barrier();
for (i=from; i<to; i++)
for (j=1; j<n; j++)
grid[i][i]=templ[i][i};
barrier();

16

Parallel SOR with Barriers: main

int main(int argc, char *argv[])
{
pthread_t *thrd[p];
[* Initialize mutex and condition variables */
for (i=0; i<p; i++)
pthread_create (&thrd[i], &attr, sor, (void*)i);
for (i=0; i<p; i++)
pthread_join (thrd[i], NULL);
/* Destroy mutex and condition variables */

}

Busy Waiting

* Not an explicit part of the API

+ Available in any general shared memory
programming environment

18

17
Busy Waiting
initially: flag = 0O;
P1: produce data;
flag = 1;
P2: while(!flag) ;
consume data;
19

Use of Busy Waiting

» On the surface, simple and efficient
* In general, not a recommended practice

» Often leads to messy and unreadable
code (blurs data/synchronization
distinction)

* On some architectures, may be inefficient
or may not even work as intended
(depending on consistency model)

20

Other Primitives in Pthreads

» Set the attributes of a thread
» Set the attributes of a mutex lock
+ Set scheduling parameters

Private Data in Pthreads

» To make a variable private in pthreads,
you need to make an array out of it

* Index the array by thread identifier, which
you can get by the pthread_self() call

* An alternative is to declare the variable on
the stack

» Not very elegant or efficient

21

22

23

Thread Creation Syntax

Programming in Parallel

 Explicitly concurrent languages — e.g.,
Occam, SR, Java, Ada, UPC, C++11

» Compiler-supported extensions — e.g.,
HPF, Cilk

« Library packages outside the language
proper — e.g., pthreads, MPI

24

25

Thread Creation Syntax

* Properly nested (can share context)

— Co-Begin (Algol 68, Occam, SR)

— Parallel loops (HPF, Occam, Fortran90, SR)
— Launch-at-Elaboration (Ada, SR)

Fork/Join (pthreads, Ada, Modula-3, Java,
SR)

Implicit Receipt (RPC systems, SR)

Early Reply (SR)

Co-Begin (e.g., Algol 68)

par begin Commas: nondeterministic or concurrent semantics
emicolons: sequential semantics

p (@, b, oJ;

begin
d:=q(e,f);
r(d, g, h)

end,

s(i, J)

end

26

27

Co-Begin in OpenMP

#pragma omp sections
{
pragma omp section
{ printf(“thread 1 here\n”);}
pragma omp section
{ printf(“thread 2 here\n”);

Parallel Loops

Examples:
— OpenMP: # pragma omp parallel for
— C#: Task Parallel Library

28

29

OpenMP

For-loop parallelized using
an OpenMP pragma

#ipragma omp parallel for
for (int i=0; i<n; i++)
cl[i]l] = alil + blil:

cc -Xopenmp sSource.c
setenv OMP NUM THREADS 5
a.out

d° of o

30

Parallelism in Loops (Fortran)

FOR: sequential

FORALL: each statement executed completely and in
parallel; old values for current and subsequent
statements; new values for previous statement

DOPAR: each iteration executed in parallel; statements
within each iteration executed sequentially; old values for
other iterations

— DOALL: DOPAR with no conflicts

DOACROSS: sequential loop with dependences

DOSINGLE: each variable assigned once, new value
always used

31

Initially

B8 B8 B8 B8 B8
b 1 2 3 4 5
(1) Loopi=1:4 Example Loop

(2) afi] = afi-1]+1
(3) b[i] = b[i+1] + a[i-1]

for New New Old
forall Old New (o][s}
dopar Old Old Old
dosingle New New New

Final values using for, forall, dopar, dosingle?

Launch-at-Elaboration (e.g.,

32

Explicit Thread Creation Syntax

* Fork/Join (pthreads, Ada, Modula-3, Java,
SR)

* Implicit Receipt (RPC systems, SR)

* Early Reply (SR — fork a thread on a local
procedure, reply early, and continue
execution after returning/replying to caller)

Ada)
procedure P is
task T is
end T,
begin - P
end P;
33
CILK

34

cilk int fib (int n) {

if (n <2) return n;

else {
intx,y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

35

Nested vs. General Parallelism

,,.71

S N
~
P,
(.
(a) \AS)

36

Sequential SOR

« for (k=0; k < 100; k++) {

for (j = 1; j < M-1; j++)
for (i=1;i < M-1; i++)
afilfi] = (bfli-1] + b[][i+1] +
b[j-1][i] + bj+1]{i])/4;

for(j=1;j<M-1; j++)
for(i=1;i<M-1; i++)
b[]0] = af]il;

37

38

<}

Shared Memory Version

» for (k=0; k < 100; k++) {

for (j = begin; j < end; j++)
for (i=1;i<M-1; i++)
afjlfil = (b[jIli-1] + b{[i+1] +
b[j-11[i] + b[j+1][i])/4;
barrier();

for (j = begin; j < end; j++)
for (i=1;i< M-1; i++)
b{ijIlil = aflli;

barrier();

39

Data Parallel Version of SOR
(OpenMP)

for (k = 0; k < 100; k++) {
#pragma parallel shared(a, b) private(i,j)

#pragma omp parallel for
for (j=1;j<M-1; j++)
for (i=1;i <M-1; i++)
afj](i] = (bf0i-1] + b{j[i+1] +
b[j-1][i] + b[i+1][)/4;
}
#pragma parallel shared(a, b) private(i, j)

#pragma omp parallel for
for j=1;)< M-1; j++)
for (i=1;i<M-1; i++)
b[i][i] = afilil;

40

42

SOR in HPF (Fortran D)

real a (1000, 1000), b(1000, 1000)

C decomposition d(1000, 1000)
C align a, b with d
c Z'stlr(' t;mf fgég lock) Data} distribution: blc_)ck,
doj=2, 999 cyclic, or block-cyclic
do1=2,999
a(i.j) = F(b(i-1,),b(i+1,j),b(i.j-1),b(1,j+1))
enddo
enddo
second loop (b(i,j) = a(i,j) Compiler applies owner-computes
enddo rule
41
Thread Implementation
43

10

Processes or Threads

« A process or thread is a potentially-active execution
context

* Processes/threads can come from
— Multiple CPUs

— Kernel-level multiplexing of single physical CPU (kernel-level
threads or processes)

— Language or library-level multiplexing of kernel-level abstraction
(user-level threads)

» Threads can run
— Truly in parallel (on multiple CPUs)
— Unpredictably interleaved (on a single CPU)
— Run-until-block (coroutine-style)

44

Thread Implementation
Requirements

e Data structures
— Program counter
— Stack

— Control block (state for thread management)
— Run queue

46

Processes Vs. Threads

* Process
— Single address space
— Single thread of control for executing program
— State information

+ Page tables, swap images, file descriptors, queued I/O requests, saved
registers

* Threads
— Separate notion of execution from the rest of the definition of a process
— Other parts potentially shared with other threads

— Program counter, stack of activation records, control block (e.g., saved
registers/state info for thread management)

— Kernel-level (lightweight process) handled by the system scheduler
— User-level handled in user mode

45
Thread Scheduling: Transferring
Context Blocks
Coroutines
transfer(other)
save all callee-saves registers on stack, including ra
and fp
*current ;= sp
current := other
Sp := *current
pop all callee-saves registers (including ra, but NOT
sp!)
return (into different coroutine!)
47

11

Uniprocessor Scheduling

* Use Ready List to reschedule voluntarily (cooperative
threading)

reschedule:
— t:cb:=dequeue(ready_list)
— transfer(t)

yield:
— engueue(ready_list, current)
— reschedule

sleep_on(q):
engueue(q, current)
reschedule

48

Multiprocessor Scheduling

+ Disabling signals not sufficient

« Acquire scheduler lock when accessing any
scheduler data structure, e.g.,
yield:
disable_signals
acquire(scheduler_lock) // spin lock
enqueue(ready_list, current)
reschedule
release(scheduler_lock)
re-enable_signals

Preemption

« Use timer interrupts or signals to trigger
involuntary yields
» Protect scheduler data structures by
disabling/reenabling prior to/after rescheduling
yield:
disable_signals
enqueue(ready_list, current)
reschedule
re-enable_signals

49

50

Thread Management

» Creation
 Startup
* Block

+ Signal

* Resume
* Finish

51

12

Performance Measures

« Latency

— Cost of thread management under the best
case assumption of no contention for locks

» Throughput

— Rate at which threads can be created, started,
and finished when there is contention

52

Anderson et al.

* Raises issues of

— Locality (per-processor data structures)
— Granularity of scheduling tasks
— Lock overhead

— Tradeoff between throughput and latency

* Large critical sections are good for best-case
latency (low locking overhead) but bad for
throughput (low parallelism)

Thread Management Data
Structures?

» Control blocks
» Stacks
* Ready queue

53

Optimizations

Allocate stacks lazily

Store deallocated control blocks and
stacks in free lists

Create per-processor ready lists
Create local free lists for locality

Queue of idle processors (in addition to
gueue of waiting threads)

54

55

13

Ready List Management

Single lock for all data structures
Multiple locks, one per data structure

Local freelists for control blocks and
stacks, single shared locked ready list
Queue of idle processors with preallocated
control block and stack waiting for work

Local ready list per processor, each with
its own lock

56

14

