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* What is a parallel computer?

— “A collection of processing elements that
communicate and cooperate to solve large
problems fast”

* What is a distributed system?

— “A collection of independent computers that
appear to its users as a single coherent
system”

Distributed Systems

A collection of independent (autonomous) computers that
appear as a single coherent system
— E.g., world wide web, distributed file systems

* Properties

— Transparency

» Access, location, migration, relocation, replication, concurrency, failure,
persistence

— Scalability

+ Size (users and resources), geographic extent, administrative extent
Availability
— Reliability
Serviceability (manageability)
— Safety
 Issues: communication, synchronization, consistency,
fault tolerance

Time: Physical Clocks

A precisely machined quartz crystal that
oscillates at a well-defined frequency
when kept under tension
— Timer: add a counter and a holding register;

decrement counter at each oscillation; when

0, generate interrupt and reload counter from
holding register

— Each interrupt called one clock tick
* Problem: clock skew




Clock Drift

Maximum drift rate p such that 1-p<= dC/dt <= 1+p

Fast clock

w clock

Clock time, C

Time (Reference, e.g., UTC, Universal Coordinated Tim4

Physical Clock Synchronization
Algorithms

* Issues
— Time should not run backward
— Must account for communication delays
» Possible algorithms
— Cristian’s algorithm — request time from server

— Berkeley algorithm — server requests time,
determines an average taking roundtrip into
account, sends back clock adjustment

— Averaging algorithm — distributed algorithm,
uses broadcast/multicast

NTP: Network Time Protocol

Internet-based time distribution

Network of time servers organized in a hierarchy
(primary, secondary, ...)

Can use one of several modes (multicast,
procedure call (similar to Cristian’s), symmetric)
Phase lock loop model based on observation of
drift rate

Accuracy — 10s of msecs over the Internet, 1
msec on LAN

Usage of Synchronized Clocks

» Examples — at-most-once delivery, cache consistency,
authentication, atomic transaction commit
* At-most-once-delivery [Liskov’'93]
— Timestamp every message along with connection id
— Record most recent timestamp seen for each connection in a table
— Periodically purge table to remove timestamps <= CurrentTime —
MaxLifetime — MaxClockSkew; maintain G, the newest such timestamp
— Periodically (every AT) save P=CurrentTime+AT on disk
— To avoid duplicate message receipt
« Discard messages w/ timestamps <= the most recent for a connection id in table
« Discard messages w/ timestamps older than G from connection ids not in table
« Delay (or discard) messages with timestamp > P

— On reboot, initialize G to disk value
— Discard messages older than G




Logical Clocks:
Lamport Timestamps

Agreement on ordering of events rather than what time it is
is what matters

« Lamport Timestamps: partial order
— “happened-before” relation “>”, causal ordering, or potential
causal ordering
+ Transitive relation
— Assign every event a time value C(a) such that if a = b then
C(a) < C(b) — can be captured numerically through a
monotonically increasing software counter
— Lamport’s solution for message ordering
» Each message carries sending time

+ Receiver's clock is set to the greater of its own clock or the sender’s
clock and then incremented by 1
» Between every two events, the clock must tick at least once

Example Application: Totally
Ordered Multicast

* Use Lamport’s solution to advance each
processor’s logical clock

* Send each message to each processor

* Acknowledge each message and send ack
to each processor in the multicast group
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Totally-Ordered Multicast

* Assumptions:
— Messages from the same sender received in order
— No messages are lost
— No two messages will have the same timestamp
— Place messages in local queue in timestamp order

1
PO 23 4
P1 ><><
1 23 4
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Vector Timestamps

* Lamport timestamps do not imply causality

+ Solution: vector timestamps: captures the
notion of causality in addition to
concurrency

— Maintain a vector clock with n integers for n
processes
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Vector Timestamps

* Pi maintains a vector Vi such that the following
two properties are maintained:

— Vi[i] is the number of events that have occurred so far
at Pi

— If Vi[j] = a then Pi know that a events have occurred at
Pj
* When Pi receives a timestamp t on a message,
Vi[j] is set to max(Vi[j],t[j]) for all j =1
— V<=V iff V[j] <= V[j] for all ]
— V=V iff V[j] = V[j] for all j
-V<ViffV<=V and VI=V
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Causally Ordered Multicast Using
Vector Timestamps

* Maintained by
— Incrementing Vi[i] on every message sent
— Piggy-backing Vi on every message
* In order to maintain causal order, message r
from Process Pj delivered only if the following
conditions are met:
— vtj(N[j] = VK[j]+1 - r is the next message expected
from Pj
— vtj(nN[i]<=VK[i] for all i# — Pk has seen all messages
seen by Pj

Lamport vs. Vector Timestamps
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Enforcing Causal
Communication
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Time

* Physical clocks

— Synchronization challenges
* Logical clocks

— Lamport timestamps

— Vector timestamps

Mutual Exclusion

» Centralized
 Distributed
* Token-based

Performance measured in terms of

— Bandwidth (proportional to number of
messages)

— Delay at each entry and exit
— Throughput
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Centralized Algorithm
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From: Distributed System: Van Steen and Tanenbaum
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Distributed Algorithm

» Uses a version of Lamport’s totally
ordered multicast
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Figure 6.16: (a) Two processes want to access a shared resource at the same
moment. (b) Pg has the lowest timestamp, so it wins. (¢) When process Py is
done, it sends an OK also, so Py can now go ahead.

From: Distributed System: Van Steen and Tanenbaum
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Token Ring Algorithm
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From: Distributed System: Van Steen and Tanenbaum

Comparison of Mutual Exclusion

Algorithms
Algorithm | Messages | Delay before | Problems
per entry (in
entry/exit | message
times)
Centralized |3 2 Coordinator

crash

Distributed |2(n-1) 2(n-1) Crash of any

process

Lost token,
process crash

Tokenring |1to Oton-1
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Election Algorithms

» Election of a leader or coordinator
— Bully algorithm
— Ring algorithm
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Bully Algorithm

» Each process has a unique id (know all ids

but not which one are operational)

— P sends an ELECTION message to all
processes with higher numbers

— If no one responds, P wins the election and
becomes the coordinator

— If a higher id responds, it takes over and holds
an election

— Highest id succeeds and lets all processes
know it is the new coordinator
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Ring Algorithm

« On detecting a coordinator failure

— Build an ELECTION message with your own
id and send to successor in ring

— Each node adds its own id to the message
before sending it along

—When message is returned, replace with
COORDINATOR message sent around the
ring

Snapshots or Global State

« State in which a distributed system might
have been
— Local state of each process + messages in
transit
— A distributed snapshot [Chandy and Lamport
1985]

» Consistent global state (consistent cut) implying
messages received have been sent

— Useful for deadlock or termination detection,
debugging, garbage collection, ...
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Global State Determination

« Example uses: deadlock or termination
detection

 Solution: distributed snapshot (Chandy
and Lamport 1985)
— Important property: consistent global state/cut

— Termination detection: snapshot in which all
channels are empty
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Generating a Distributed
Snapshot

Record global state (initiate, or when
receiving a marker on an incoming
channel)

Send markers on outgoing channels

Record incoming messages on each
channel until marker is received

Finish recording when markers are
received on all incoming channels
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