Distributed Systems:
Time and Global State

Sandhya Dwarkadas
CSC 2/458
Parallel and Distributed Systems
University of Rochester

* What is a parallel computer?

— “A collection of processing elements that
communicate and cooperate to solve large
problems fast”

* What is a distributed system?

— “A collection of independent computers that
appear to its users as a single coherent
system”

Distributed Systems

A collection of independent (autonomous) computers that
appear as a single coherent system
— E.g., world wide web, distributed file systems

* Properties

— Transparency

» Access, location, migration, relocation, replication, concurrency, failure,
persistence

— Scalability

+ Size (users and resources), geographic extent, administrative extent
Availability
— Reliability
Serviceability (manageability)
— Safety
 Issues: communication, synchronization, consistency,
fault tolerance

Time: Physical Clocks

A precisely machined quartz crystal that
oscillates at a well-defined frequency
when kept under tension
— Timer: add a counter and a holding register;

decrement counter at each oscillation; when

0, generate interrupt and reload counter from
holding register

— Each interrupt called one clock tick
* Problem: clock skew

Clock Drift

Maximum drift rate p such that 1-p<= dC/dt <= 1+p

Fast clock

w clock

Clock time, C

Time (Reference, e.g., UTC, Universal Coordinated Tim4

Physical Clock Synchronization
Algorithms

* Issues
— Time should not run backward
— Must account for communication delays
» Possible algorithms
— Cristian’s algorithm — request time from server

— Berkeley algorithm — server requests time,
determines an average taking roundtrip into
account, sends back clock adjustment

— Averaging algorithm — distributed algorithm,
uses broadcast/multicast

NTP: Network Time Protocol

Internet-based time distribution

Network of time servers organized in a hierarchy
(primary, secondary, ...)

Can use one of several modes (multicast,
procedure call (similar to Cristian’s), symmetric)
Phase lock loop model based on observation of
drift rate

Accuracy — 10s of msecs over the Internet, 1
msec on LAN

Usage of Synchronized Clocks

» Examples — at-most-once delivery, cache consistency,
authentication, atomic transaction commit
* At-most-once-delivery [Liskov’'93]
— Timestamp every message along with connection id
— Record most recent timestamp seen for each connection in a table
— Periodically purge table to remove timestamps <= CurrentTime —
MaxLifetime — MaxClockSkew; maintain G, the newest such timestamp
— Periodically (every AT) save P=CurrentTime+AT on disk
— To avoid duplicate message receipt
« Discard messages w/ timestamps <= the most recent for a connection id in table
« Discard messages w/ timestamps older than G from connection ids not in table
« Delay (or discard) messages with timestamp > P

— On reboot, initialize G to disk value
— Discard messages older than G

Logical Clocks:
Lamport Timestamps

Agreement on ordering of events rather than what time it is
is what matters

« Lamport Timestamps: partial order
— “happened-before” relation “>”, causal ordering, or potential
causal ordering
+ Transitive relation
— Assign every event a time value C(a) such that if a = b then
C(a) < C(b) — can be captured numerically through a
monotonically increasing software counter
— Lamport’s solution for message ordering
» Each message carries sending time

+ Receiver's clock is set to the greater of its own clock or the sender’s
clock and then incremented by 1
» Between every two events, the clock must tick at least once

Example Application: Totally
Ordered Multicast

* Use Lamport’s solution to advance each
processor’s logical clock

* Send each message to each processor

* Acknowledge each message and send ack
to each processor in the multicast group

10

Totally-Ordered Multicast

* Assumptions:
— Messages from the same sender received in order
— No messages are lost
— No two messages will have the same timestamp
— Place messages in local queue in timestamp order

1
PO 23 4
P1 ><><
1 23 4

11

Vector Timestamps

* Lamport timestamps do not imply causality

+ Solution: vector timestamps: captures the
notion of causality in addition to
concurrency

— Maintain a vector clock with n integers for n
processes

12

Vector Timestamps

* Pi maintains a vector Vi such that the following
two properties are maintained:

— Vi[i] is the number of events that have occurred so far
at Pi

— If Vi[j] = a then Pi know that a events have occurred at
Pj
* When Pi receives a timestamp t on a message,
Vi[j] is set to max(Vi[j],t[j]) for all j =1
— V<=V iff V[j] <= V[j] for all]
— V=V iff V[j] = V[j] for all j
-V<ViffV<=V and VI=V

13

Causally Ordered Multicast Using
Vector Timestamps

* Maintained by
— Incrementing Vi[i] on every message sent
— Piggy-backing Vi on every message
* In order to maintain causal order, message r
from Process Pj delivered only if the following
conditions are met:
— vtj(N[j] = VK[j]+1 - r is the next message expected
from Pj
— vtj(nN[i]<=VK[i] for all i# — Pk has seen all messages
seen by Pj

Lamport vs. Vector Timestamps

1.(00) 2200

) \
d
P2 J 4,220

03,(2,1,0)

P3 -
e 1,(0,0,1) f5,(2,2,2)

14

Enforcing Causal
Communication

(1,0,0) (1,1,0)
1

“m

11,0/
y)

B T s -
o 'X><A\~
P, 1 1

T T T
(0,0,0) (1,00) (11,0

15

16

Time

* Physical clocks

— Synchronization challenges
* Logical clocks

— Lamport timestamps

— Vector timestamps

Mutual Exclusion

» Centralized
 Distributed
* Token-based

Performance measured in terms of

— Bandwidth (proportional to number of
messages)

— Delay at each entry and exit
— Throughput

17

18

Centralized Algorithm

HEHE S ®EE ®EE
R
Request | | 0K eq‘%“ Releass 2
AL Noreoly

5 & (e
L auewe s \&)
/ em

Coordinator

(a) (b) (©

From: Distributed System: Van Steen and Tanenbaum

19

Distributed Algorithm

» Uses a version of Lamport’s totally
ordered multicast

Accesses
= resource

Y
>U‘!' o) 0
o
ﬁ}" \12 OK/} ’\w /‘i*(
8 - -
) P 1€) Q‘) (3 Accesses
“\D‘ 12 \i@ N OK N / N/ resource

(@) (b) (©)

Figure 6.16: (a) Two processes want to access a shared resource at the same
moment. (b) Pg has the lowest timestamp, so it wins. (¢) When process Py is
done, it sends an OK also, so Py can now go ahead.

From: Distributed System: Van Steen and Tanenbaum

20

Token Ring Algorithm

W Token
o , Y AN
) DD D 3
|

e P 3 I
‘_'\z./ \E./’ \.E/' \i./*

From: Distributed System: Van Steen and Tanenbaum

Comparison of Mutual Exclusion

Algorithms
Algorithm | Messages | Delay before | Problems
per entry (in
entry/exit | message
times)
Centralized |3 2 Coordinator

crash

Distributed |2(n-1) 2(n-1) Crash of any

process

Lost token,
process crash

Tokenring |1to Oton-1

21

22

Election Algorithms

» Election of a leader or coordinator
— Bully algorithm
— Ring algorithm

23

Bully Algorithm

» Each process has a unique id (know all ids

but not which one are operational)

— P sends an ELECTION message to all
processes with higher numbers

— If no one responds, P wins the election and
becomes the coordinator

— If a higher id responds, it takes over and holds
an election

— Highest id succeeds and lets all processes
know it is the new coordinator

24

Ring Algorithm

« On detecting a coordinator failure

— Build an ELECTION message with your own
id and send to successor in ring

— Each node adds its own id to the message
before sending it along

—When message is returned, replace with
COORDINATOR message sent around the
ring

Snapshots or Global State

« State in which a distributed system might
have been
— Local state of each process + messages in
transit
— A distributed snapshot [Chandy and Lamport
1985]

» Consistent global state (consistent cut) implying
messages received have been sent

— Useful for deadlock or termination detection,
debugging, garbage collection, ...

25

26

27

Global State Determination

« Example uses: deadlock or termination
detection

 Solution: distributed snapshot (Chandy
and Lamport 1985)
— Important property: consistent global state/cut

— Termination detection: snapshot in which all
channels are empty

28

Generating a Distributed
Snapshot

Record global state (initiate, or when
receiving a marker on an incoming
channel)

Send markers on outgoing channels

Record incoming messages on each
channel until marker is received

Finish recording when markers are
received on all incoming channels

29

