
3/30/2022

1

AlphaServer GS320 
Alexander Bowman and Andrew Hahn

Architecture Overview

● Supports up to 8 Quad-Processor Building Blocks (QBB)

● QBBs are connected via the Global Switch (GS)

● GS supports virtual lanes

● GS allows for totally ordered multicasts

Quad-Processor Building Blocks (QBB)

● Supports up to 4 processors

● Uses duplicate tag store (DTAG)

● DTAG stores copy of each tag in each processor’s cache

● DTAG handles intra-node coherence

● Directory (DIR) and transaction in transit table (TTT) handle inter-node 

coherence

Quad-Processor Building Block (QBB)

10-Port 

Local

Crossbar

Switch

1.6 GB/s

3.2 GB/s

P
L

2

P
L

2

P
L

2

P
L

2

SDRAM Memory

8GB, 64-bit

200 MHz

64-entry

Cache

I/O

PCI:

4 PCI Bus

64-bit, 33 MHz

Global Port

DTAG

DIR

TTT

Arbitration Point

32 Alpha 21264 Duplicate 

Tag Store

Transactions 

In Transit 

Buffer

Credits: Alok Garg

1 2

3 4



3/30/2022

2

The Directory

Owner = 0 S0 S1 S2 S3 S4 S5 S6 S7

14-bit per 64 Byte Memory Line

6-bit

Forward

QBB0
DTAG

QBB3

P0 P1 P2 P3

Invalidate

Invalidate

Credits: Alok Garg

Coherence Protocol Overview

● Exploits the limited number of processors

● Supports read, read-exclusive, exclusive, and exclusive without data

● No negative acknowledgements

● Dirty sharing - data can be shared without updating the home node

● Inter-node and intra-node coherence use mostly the same protocol

MOESI

● MESI + owner state

● Owner has write access but can share data with other processors

● On write owner invalidates sharers but does not bring home data up to date

● Home forwards requests to owner (if one exists)

MOESI Read

H/D N3/I

N4/IN5/I

N2/MN1/I N2/O

Rd

Forward

Marker
Reply

N5/S

Credits: Alok Gorg

5 6

7 8



3/30/2022

3

MOESI Read-Exclusive

H/D N3/I

N4/IN5/S

N2/ON1/I

RE

Forward

Marker

Invalidate
N5/I

N2/I

Ack

Reply

N3/E

Credits: Alok Gorg

Avoiding Protocol Deadlock

● Example: Data is stuck behind forward request in 

queue

● Solution: Three virtual lanes Q0, Q1, Q2

● Q0: Requests from processor to home

● Q1: Home to processor (Totally Ordered!)
○ Total ordering: messages received in the same ordered 

they are sent

○ Ordering comes from the crossbar switch

● Q2: Third party processor 

Image source: Alok Garg’s slide deck

Early Request Race Condition

H/D N3/M

N4/IN5/I

N2/IN1/I

RE

H/D Forward

Rd

Marker

Forward

H/D N3/I

Reply

N2/MN2/O

Reply

N5/S

Marker

DEADLOCK

?

Credits: Alok Garg

Late Request Race Condition

H/D N3/I

N4/IN5/I

N2/MN1/I

Rd

Forward

Marker

N2/X

Write Back

Ack

Reply

Write Buffer

N5/S

DEADLOCK

?

Credits: Alok Garg

9 10

11 12



3/30/2022

4

Efficient Implementation of Consistency Models

● AlphaServer GS320 implements two new optimizations
○ Separation of Incoming Read Replies

■ Commit

■ Data/Response

○ Early Commit for Read and Read-Exclusive Requests

Early Acknowledgement of Invalidation Requests

● Invalidations are considered to be complete when a commit event is 

generated

● Commit incoming invalidation requests as soon as they arrive in the 

incoming queue
○ As opposed to when the invalidation has been completed

○ Don't have to wait for the invalidation to reach the head of the incoming queue in every 

processor with an old copy

○ Processors can still hold a stale value while the writing processor thinks all copies have 

been invalidated

Commit Points

8x8

Global

Crossbar

Switch

QBB

QBB

QBB

QBB

QBB

QBB

QBB

QBB
DTAG

DIR

TTT

Commit Point

Slide courtesy of Alok Garg [3]

Early Acknowledgement: An Example

● (u,v) = (1,0) is disallowed in this 

example under sequential 

consistency, but is possible if early 

acknowledgements are applied 

without being careful

● With a careless implementation of 

early acknowledgment, (1,0) is 

possible

Source: Figure 4 from [1]

13 14

15 16



3/30/2022

5

Maintaining Consistency with Early Acknowledgement

● Two solutions to the problem
○ Prevent read requests from bypassing invalidation requests

■ Total FIFO ordering isn't necessary

■ Well-suited to strict consistency models

○ Require previously committed invalidations to be serviced prior to a read to ensure 

program order

■ Effectively flush pending invalidations on a read reply

■ Works well for more relaxed consistency models where program order is enforced 

less often

● Is there anything we can do to avoid this overhead while ensuring 

consistency?

GS320's Memory Model

● GS320 uses the Alpha memory model
○ The programmer must explicitly set 

synchronization points for memory

○ Invalidations commit when they reach the 

arbitration point

■ Within the node for local requests

■ At the global switch for remote 

requests

Source: Slide 162 of Professor Dwarkadas' lecture slides for this course [2]

Separation of Incoming Replies

● The choice to commit at the arbitration point results in long incoming 

queues
○ Flushing the queue on every barrier is expensive

○ Preventing read requests from bypassing invalidation requests delays critical data

● Separate requests into two components:
○ A reply with the requested data that can bypass the

incoming queue altogether

○ A commit message used for ordering

● Replies can be sent on Q2 and commit

messages can be sent on Q1

Source: Figure 5 from [1]

Separation of Incoming Replies

● Time critical data replies bypass other messages

● The Commit reply in the inbound queue keeps a FIFO ordering of incoming 

messages
○ Allows early invalidation acknowledgement to be applied without having to flush the queue 

on every read

■ We know what invalidations should have been performed prior to the read

● This process requires hardware support. Each processor must:
○ Expect two reply components

○ Have a count of pending requests to ensure all requests received prior to a barrier have 

been serviced before continuing execution

17 18

19 20



3/30/2022

6

Early Commit for Read and Read-Exclusive Requests

● Applying early commit to data requests as well can reduce the delay at 

synchronization points
○ Processors can continue past barriers as long as they have received their commit replies 

(sent from the arbitration point), even if the data they require (sent from the processor) still 

has not arrived

○ From a consistency point of view, events are considered complete at commit time

● Commit events cannot bypass invalidates, reads, or read-exclusive data 

forwards to satisfy consistency

Generalized Applicability

● These optimizations can be used in any memory consistency model, 

regardless of how strict

● Reply Separation into commit and data messages is more useful for more 

relaxed models that see performance benefits from allowing reads to 

bypass other entries in the incoming queue

● Early commit drastically improves performance in strict consistency models 

as well as more relaxed models by allowing processors to pass 

synchronization points as soon as all commit messages have been 

received

● No rollback is ever required like in speculative models. Once an event is 

committed, it can be considered complete in terms of ordering

AlphaServer GS320 Hardware Implementation

● Implemented in 1999 with a technology stack from 1997-98

● Designed for modularity and ease of upgradability

● QBBs and I/O can be swapped out while the system is online
○ Streamlining the process of repairs and upgrades

● The modularity makes it possible to tailor the hardware to the specific 

application

AlphaServer GS320 Hardware Implementation

Source: Figures 8 and 9 from [1]

21 22

23 24



3/30/2022

7

System Performance

● Less time spent spinning at barriers 

since it's not necessary to wait for 

data, only the commit message

● Lack of negative ACK messages 

reduces network traffic

● Deadlock is avoided through the 

total ordering on Q1

● Replies bypassing requests in Q1 

(by going through Q2) improves 

read latency

Source: Tables 3 and 5 from [1]

AlphaServer GS320's Influences in the Modern Day

Intel Rack Scale Design

● Resources can be dynamically 

assigned as required at runtime to suit 

the task at hand
○ 100G ethernet makes it possible to form 

virtual nodes that are composed from 

hardware in different locations on demand

● Finer control over system building 

blocks
○ FPGA, accelerator, and networking modules 

can be installed on sleds within a rack

Source: Intel [3]

Citations

[1] Gharachorloo, Kourosh, et al. “Architecture and Design of AlphaServer

GS320.” ACM SIGARCH Computer Architecture News, vol. 28, no. 5, Dec.

2000, pp. 13–24, 10.1145/378995.378997. Accessed 28 Mar. 2022.

[2] Dwarkadas, Sandhya. “Shared Memory and Memory Consistency.”

CSC2/458 Lecture Slides, 2022.

[3] Garg, Alok. Architecture & Design of AlphaServer GS320 Presentation,

2022. Animations used for examples.

[4] Intel Corporation. Intel Rack Scale Design Architecture. 2018.

25 26

27


