
CSC2/458 Parallel and Distributed Systems

A Case Study of a High-speed GPU NFA

Implementation

Sreepathi Pai

April 20, 2022

URCS



Outline

Non-deterministic Finite Automata and the Automata Processor

Irregular Parallelism

Reducing Data Movement

Improving Compute Utilization

Reflections



Outline

Non-deterministic Finite Automata and the Automata Processor

Irregular Parallelism

Reducing Data Movement

Improving Compute Utilization

Reflections



Non-deterministic Finite Automata (NFA)

� Recall CSC173

� NFA are machines that

recognize regular languages

� Are “non-deterministic”

� can be in multiple states

at the same time

� Easy to parallelize

� unlike DFA

X

1
0

01 10



Homogenous Non-Deterministic Finite Automata

� Traditionally, NFA match characters on their edges

� Glushkov NFAs or homogeneous NFAs match on the nodes
instead

� Also don’t have ε transitions

� All children of a node are “activated” on a match

� Only activated nodes try to match a character

� Traditional NFAs can be converted to Homogeneous NFAs

losslessly

[0] [1]

[1] [0]



Automata Processor

� Invented by Micron, the memory company

� Never made into a product, AFAIK

� Execution engine for Homogeneous NFAs

� A non-von Neumann processor

� Ran at 133MHz, about 7.5ns per input symbol

� Roughly 133MB/s



Putting it all together

Regular expression: .*cat

turns into NFA:

and is mapped to the AP as:



AP vs the GPU

Property AP GPU

Parallelism 49,152 163,840

Bandwidth 133MB/s 768GB/s

This is going to be easy.

- Obi Wan Kenobi, Revenge of the Sith



Outline

Non-deterministic Finite Automata and the Automata Processor

Irregular Parallelism

Reducing Data Movement

Improving Compute Utilization

Reflections



Regular vs Irregular Parallelism

Property Regular Irregular

Task Decomposition Early Late

Task Placement Static Dynamic

Task Activity Static Dynamic

Data Access Patterns Fixed Input-dependent

Communication Patterns Fixed Input-dependent

Example MM Sparse MM

(MM - Matrix Multiply)



NFA Task Decomposition

What shall we parallelize on?

� Each input symbol “must” be processed serially

� Multiple states can be active at the same time

� Pick states as tasks?



NFA Task Placement

How do we map tasks to GPU hardware?

� There can be thousands of states

� Each thread gets one NFA state?

� But each input byte must be processed serially

� Can’t split up an NFA across thread blocks

� Otherwise would require global synchronization



NFA Data Access and Communication Patterns

� Each task must access:

� input symbol (1 byte)

� match set (1 byte in 32 bytes, depending on input symbol)

� If symbol matches:

� children of current node must be activated (1 bit/child state)



Issues

What issues can we see in this scheme?



Activity

� Many threads are idle most of the time

� Not all NFA states are active on every input symbol

� No useful work done

� One could use a worklist instead to track active states

� Dynamic assignment of tasks to threads



Performance?

� 114 KB/second

� Ouch!



So what did we do?

[according to the paper]



Outline

Non-deterministic Finite Automata and the Automata Processor

Irregular Parallelism

Reducing Data Movement

Improving Compute Utilization

Reflections



Strategies

� NewTran (pron. “neutron”)

� Match Set Compression



Outline

Non-deterministic Finite Automata and the Automata Processor

Irregular Parallelism

Reducing Data Movement

Improving Compute Utilization

Reflections



Strategies

� Fixed assignment for highly active states

� Profiling

� BFS “depth”

� Hotstart

� Dynamic assignment for low activity states

� Worklist



Outline

Non-deterministic Finite Automata and the Automata Processor

Irregular Parallelism

Reducing Data Movement

Improving Compute Utilization

Reflections



Performance

� Did we handily beat the AP?

� What kind of performance modeling is needed here?



Graph-based computations

� NFAs are graph-based computations

� Not instruction-based programs

� Do you know of other graph-based computations?


	Non-deterministic Finite Automata and the Automata Processor
	Irregular Parallelism
	Reducing Data Movement
	Improving Compute Utilization
	Reflections

