CSC2/458 Parallel and Distributed Systems
A Case Study of a High-speed GPU NFA
Implementation

Sreepathi Pai
April 20, 2022

URCS

Non-deterministic Finite Automata and the Automata Processor
Irregular Parallelism

Reducing Data Movement

Improving Compute Utilization

Reflections

Non-deterministic Finite Automata and the Automata Processor

Non-deterministic Finite Automata (NFA)

Recall CSC173

NFA are machines that

recognize regular languages 0
Are “non-deterministic” @

e can be in multiple states ° 1 e 0 @

at the same time

Easy to parallelize
e unlike DFA

Homogenous Non-Deterministic Finite Automata

e Traditionally, NFA match characters on their edges

e Glushkov NFAs or homogeneous NFAs match on the nodes
instead

e Also don't have ¢ transitions
e All children of a node are “activated” on a match
e Only activated nodes try to match a character

e Traditional NFAs can be converted to Homogeneous NFAs

losslessly

Automata Processor

Invented by Micron, the memory company

Never made into a product, AFAIK

Execution engine for Homogeneous NFAs
e A non-von Neumann processor

Ran at 133MHz, about 7.5ns per input symbol
e Roughly 133MB/s

Putting it all together

Regular expression: .*cat
turns into NFA:

and is mapped to the AP as:

AP vs the GPU

Property | AP GPU
Parallelism | 49,152 163,840
Bandwidth | 133MB/s | 768GB/s

This is going to be easy.
- Obi Wan Kenobi, Revenge of the Sith

Irregular Parallelism

Regular vs Irregular Parallelism

Property Regular | Irregular

Task Decomposition Early Late

Task Placement Static Dynamic

Task Activity Static Dynamic

Data Access Patterns Fixed Input-dependent
Communication Patterns | Fixed Input-dependent
Example MM Sparse MM

(MM - Matrix Multiply)

NFA Task Decomposition

What shall we parallelize on?

e Each input symbol “must” be processed serially
e Multiple states can be active at the same time

e Pick states as tasks?

NFA Task Placement

How do we map tasks to GPU hardware?

e There can be thousands of states

e Each thread gets one NFA state?
e But each input byte must be processed serially

e Can't split up an NFA across thread blocks
e Otherwise would require global synchronization

NFA Data Access and Communication Patterns

e Each task must access:

e input symbol (1 byte)

e match set (1 byte in 32 bytes, depending on input symbol)
e If symbol matches:

e children of current node must be activated (1 bit/child state)

What issues can we see in this scheme?

e Many threads are idle most of the time
e Not all NFA states are active on every input symbol
e No useful work done

e One could use a worklist instead to track active states

e Dynamic assignment of tasks to threads

Performance?

e 114 KB/second
e Ouch!

So what did we do?

[according to the paper]

Reducing Data Movement

Strategies

e NewTran (pron. “neutron”)

e Match Set Compression

Improving Compute Utilization

Strategies

e Fixed assignment for highly active states
e Profiling
e BFS “depth”
e Hotstart
e Dynamic assignment for low activity states
o Worklist

Reflections

Performance

e Did we handily beat the AP?

e What kind of performance modeling is needed here?

Graph-based computations

o NFAs are graph-based computations

e Not instruction-based programs

e Do you know of other graph-based computations?

	Non-deterministic Finite Automata and the Automata Processor
	Irregular Parallelism
	Reducing Data Movement
	Improving Compute Utilization
	Reflections

