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Non-deterministic Finite Automata (NFA)

� Recall CSC173

� NFA are machines that

recognize regular languages

� Are “non-deterministic”

� can be in multiple states

at the same time

� Easy to parallelize

� unlike DFA
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Homogenous Non-Deterministic Finite Automata

� Traditionally, NFA match characters on their edges

� Glushkov NFAs or homogeneous NFAs match on the nodes
instead

� Also don’t have ε transitions

� All children of a node are “activated” on a match

� Only activated nodes try to match a character

� Traditional NFAs can be converted to Homogeneous NFAs

losslessly
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Automata Processor

� Invented by Micron, the memory company

� Never made into a product, AFAIK

� Execution engine for Homogeneous NFAs

� A non-von Neumann processor

� Ran at 133MHz, about 7.5ns per input symbol

� Roughly 133MB/s



Putting it all together

Regular expression: .*cat

turns into NFA:

and is mapped to the AP as:



AP vs the GPU

Property AP GPU

Parallelism 49,152 163,840

Bandwidth 133MB/s 768GB/s

This is going to be easy.

- Obi Wan Kenobi, Revenge of the Sith
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Regular vs Irregular Parallelism

Property Regular Irregular

Task Decomposition Early Late

Task Placement Static Dynamic

Task Activity Static Dynamic

Data Access Patterns Fixed Input-dependent

Communication Patterns Fixed Input-dependent

Example MM Sparse MM

(MM - Matrix Multiply)



NFA Task Decomposition

What shall we parallelize on?

� Each input symbol “must” be processed serially

� Multiple states can be active at the same time

� Pick states as tasks?



NFA Task Placement

How do we map tasks to GPU hardware?

� There can be thousands of states

� Each thread gets one NFA state?

� But each input byte must be processed serially

� Can’t split up an NFA across thread blocks

� Otherwise would require global synchronization



NFA Data Access and Communication Patterns

� Each task must access:

� input symbol (1 byte)

� match set (1 byte in 32 bytes, depending on input symbol)

� If symbol matches:

� children of current node must be activated (1 bit/child state)



Issues

What issues can we see in this scheme?



Activity

� Many threads are idle most of the time

� Not all NFA states are active on every input symbol

� No useful work done

� One could use a worklist instead to track active states

� Dynamic assignment of tasks to threads



Performance?

� 114 KB/second

� Ouch!



So what did we do?

[according to the paper]
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Strategies

� NewTran (pron. “neutron”)

� Match Set Compression
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Strategies

� Fixed assignment for highly active states

� Profiling

� BFS “depth”

� Hotstart

� Dynamic assignment for low activity states

� Worklist
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Performance

� Did we handily beat the AP?

� What kind of performance modeling is needed here?



Graph-based computations

� NFAs are graph-based computations

� Not instruction-based programs

� Do you know of other graph-based computations?
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