Threading Building Block (TBB) by Intel

* C++ library

— Represents higher-level task-based parallelism that
abstracts platform details and threading from the
user

— Doesn’t require special language/compiler
— Can be used on any processor with any OS

* Task scheduler implements task stealing for
dynamic workload balancing

* Implements common parallel performance
pattern such as parallel loops, flow graphs etc.

BB

* Implements concurrent containers — scalable
alternative to serial data containers such as C++
STL containers

* Provides a comprehensive set of synchronization
primitives — mutexes, condition variables, atomic
operations

* Provides the ability to specify priorities for tasks/
task groups

* Implements parallel data structures such as
concurrent priority queues, concurrent
unordered sets, etc.

Grand Central Dispatch (GCD) by %
Apple

* Also implements task queues using a
thread pool paradigm
— Uses threads at the lower level

* Applications create tasks that can be
expressed either as a function or as a
“block” (akin to a closure)

* Mac OS X, Apache HTTP Server

GCD

* Application framework

— Dispatch queues — queue of tasks; concurrent or
serial. Queues with different priority levels are
created by the library that can execute tasks
concurrently

— Dispatch source — allow client to register
blocks/functions to execute asynchronously on
system events or POSIX signal

— Dispatch groups — allow several tasks to be grouped
for later joining

— Dispatch semaphores — allow a client to permit a
certain number of tasks to execute concurrently

1/25/2012

Lithe: Composing Parallel
Software Efficiently

Pan, Hindman, Asanovic
MIT/Berkeley
PLDI 2010

Software Trends

* Parallel applications using parallel libraries in turn using
other parallel libraries
* E.g.
— SuiteSparseQR
* Incorporated into MATLAB
* Uses Intel’s TBB
* Calls BLAS libraries
— Which use OpenMP
» State of the art
— User required to make decisions on degree of parallelism
at each level

— Thread virtualization implies user has no control over
influencing resource allocation

Possible Solutions

* Require all parallelism to be expressed using a
universal high-level abstraction

* Provide a low-level substrate for parallel
libraries to interface with

Lithe

* Cooperative hierarchical resource
management
— Hardware threads
— Hierarchy of schedulers

— Cooperative request/release/allocation of threads
up and down the hierarchy

1/25/2012

Lithe Implementation

* Harts: hardware threads, one per physical
core/hardware context

* Execution contexts

Conventional System Vs Lithe

Application Application

[ey] [Cubeanys][Ctibenc | [tiweary] [Crawraryn][ty]

SUENEEE -1 %0

Sl A

|
G

Hardware Hardware

fa) (b)

Figure 1. In conventional systems (a), each library is only aware of its own set of virtualized threads, which the operating system multiplexes
onto available physical processors. Lithe, (b), provides unvirtualized processing resources, or harts, which are shared cooperatively by the
application libraries, preventing resource oversubscription.

Image source: Pan et al., PLDI 2010

Lithe Interface

Application

Library A

Library
B

sche Sched e Scheduler
Sc hl:‘cl-,.ﬁ Schedose Sched o PO
Interface
§ §§§ § § e § %
T T Hn! Lithe
= <—Runtime
| Lithe Runtime | Interface

T T - T
| " 1Y 1" Hardware Cores 1 * 1 ° |

Figure 2. Software stack showing the callback and runtime inter-
faces.

Image source: Pan et al., PLDI 2010

Lithe Interface

* Scheduler -> implements Lithe callback
interface for a library

* Runtime -> invokes the appropriate
library’s callback

: sched_reque
sched_yield sched_unreg
= ister

Image creator: Shantonu Hossain

1/25/2012

Example

Hart 0

call foo
register

& request

unregister
return

Y

Time

(Parent Scheduler,)

Hart 1 Hart 2

enter
enter

yield
yviela

parent and child scheduler.

Figure 3. An example of how multiple harts might flow between a

tmagesource—Panet=atPtDI 2010

Lithe Runtime Functions and Scheduler

Callbacks

scheduler callbacks.

Table 1. The Lithe runtime functions and their corresponding

Lithe Runtime Interface

Scheduler Callback Interface

sched register (s

ched) register (child)

sched unregister

() unregister(c d)

sched_request (nh

arts) request (child, nharts)

sched_enter (child) enter ()
sched yield() vield(child)
sched reenter () enter()

ctx init(ctx, stack) NIA

ctx fini (ctx) NIA
ctxrun(ctx, fn) N/A
ctxpause(fn) NIA

ctx resume (ctx) NIA

ctx block (ctx)

block{ctx)

ctxunblock (ctx)

unblock (ctx)

Image

source: Pan et al., PLDI 2010

Parallel Quicksort Example

vold sort(vector =v)

par_sort_sched sched;
sched.q.init ();

lithe register(&sched) ;
1ithe request (MAX NUMHARTS) ;

par_sort (v, &sched.q);

vector snext;

while ned.g.dequeus (&next))
par_sort (next, &sched.q);

litheunregister();

void par_sort (vector v, qusue sq)

if

r->length < 1000)
sort (v) ;

vector sleft, sright;
v->partition(&left, &right);

g->engueus (right) ; tine

par_sort (left, q);

HART 0 HART 1 HART 2
@ call sort
lithe register
lithe_request
lithe_enter
par_sort _enter lithe_enter
- - par_sort_enter
lithe_yield lithe yield
lithe unreg
- ret

void par_sort_enter(par_sort.sched ssched)

{
vector snext;
while hed->q.dequeue (&next))
pa: + (next, &sched-»q);

litheyield();

¥

Image source: Pan et al., PLDI 2010

Lithe — SPMD Scheduler

delete sched,

1 vold Spmdsched
1 while (/+ un:

fune (arg) ;

)i
" ctx pause(clear

»)

n void

5 if (/+ not all

ed.yield(

_spawn (int N, vo

. schedunregister () ;

ed::cleanup(ctx) {

ed_reenter () ;

unc) (voids)

sarg) |
dSched (N, func 1

te() {
ted tasks /)

ter() {
ed paused co

up) ;

tasks completed /)

)i

Image sourice: Pan et al., PLDI 2010

1/25/2012

