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Multigrid Solvers 

  Method of  solving linear equation systems 
  Transforms linear equation system into matrix 

equation of  the form Au = f 
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Multigrid Solution Process [1,2] 
1.  Run iterative smoother (e.g. 

Gauss-Seidel) on full-resolution 
matrix to remove high-
frequency errors from initial 
guess 

2.  Coarsen problem domain, 
producing a lower-resolution 
grid with a smaller matrix 

3.  Run smoother again on 
coarsened equation, removing 
lower-frequency error terms 

4.  Replace initial guess with 
interpolated coarse solution. 

5.  Repeat Steps 1-4 until solution 
converges. 

Image Source:  Baker at al.  “Challenges of  Scaling Algebraic 
Multigrid across Modern Multicore Architectures”.  IPDPS, 2011. 



Parallelism 
  Matrix is stored in a parallel version of  the  compressed-

sparse-row (CSR) format [3] 

  Each processor gets a set of  matrix rows; row-space further 
subdivided into local and remote referencing matrices. 

  Local range must be communicated to receive processors 
during setup phase. 



Test Problems 

  Laplace problem on 3D 
structured grid 
  Simple structure, seven 

point stencil. 

  3D diffusion problem, 
complicated geometry 
  Complex grid jumps [1], 

anisotropic geometry 



Test Machines 

  Hera:  864-node QDR-InfiniBand system 
  Four 2.3 GHz AMD quad-core processors per node 
  32 GB RAM per node (NUMA) 

  Jaguar: 18688-node Cray XT-5 
  Two AMD Operon Hex-core processors per node 

  16 GB RAM per node (NUMA) 

  Intrepid: 40960-node Quad-core Blue Gene/P 
  One quad-core 850 MHz Power 450 processor/node 
  2 GB memory per node (UMA) 



Quad-Core Cluster (Hera) 
  864 nodes, QDR InfiniBand 

interconnects 

  4 sockets per node, quad-
core AMD 8356 Opterons 

  2 MB L3 shared cache 

  32 GB of  memory, divided 
between four sockets 

  Memory outside of  local 
partition can be accessed 
via HyperTransport 

Image Source:  Advanced Micro Devices, Inc. via Wikipedia 



Cray XT5 (Jaguar) 
  18868 Nodes nodes, 

SeaStar 2+ interconnects 

  Two AMD Hex-Core 
Opterons per node 

  16 GB of  memory, divided 
up between sockets 

  2D torus network topology 

Image Source:  NCCS 
(http://www.nccs.gov/wp-content/uploads/2010/02/AMD-5.09.10.pdf) 



BlueGene/P Cluster 
(Intrepid) 

  40960 nodes, one quad-core PowerPC 450 
processor per node 

  2 GB memory per node, shared by all cores 
  Uniform Memory Access 

  3D torus network topology 
  Periodicity in all dimensions 



Result Summary 
  Hera 

  Extremely poor MPI-only 
performance 

  1-thread OpenMP run performs 
worst during solve 

  H4x4 best at low core counts, 
H2x8 overtakes it 

  Jaguar 
  Slightly better MPI-only 

performance, but still poor 
  NUMA-related issues on the 

H1x12 MG-1 trial 
  H4x3, H2x6 perform best, esp. 

with optimization 

  Intrepid 
  Fast node interconnects make 

MPI viable 

Image Source: Baker et al.  “Challenges of  Scaling Algebraic Multigrid across 
Modern Multicore Architectures.”  IPDPS, 2011. 



Results Discussion 
  NUMA effects noticeable on Hera, Jaguar. 

  Use of  MCSup to constrain threads to local memory 
partitions improves performance on NUMA machines 

  Process pinning required for memory locality 
constraints to be effective 

  Poor interconnect speed on non-BlueGene 
machines makes MPI transactions expensive. 
  Expected to become a problem as number of  cores 

on chip outstrips increases in interconnect speed. 



“Hierarchical Parallelization of  
Gene Differential Analysis” 

Mark Needham, Rui Hu, Sandhya Dwarkadas, Xing Qiu 



Gene Differential Association 
Analysis 

  Determine whether two genes have different 
correlation patterns under different conditions. 

  Partition n subjects into G subgroups.  Calculate 
correlation vectors and N-statistics (measures 
change in gene correlation over two conditions [4]). 

  Shuffle groups K times and recalculate N-statistics 
using new groupings. 

  Compute p-value using permuted N-statistics (low 
p-value indicates change in gene correlation across 
conditions [4]). 



Parallelized Algorithm 
  Permutation tasks shared 

across processors using 
Python and MPI. 

  N-statistics calculated 
using C++ and pthreads. 

  m x n data array replicated 
across MPI processes 

  Two m x G subgroup 
arrays, m-element N-
statistic array on each MPI 
process (shared access for  
pthreads). 

Image Source:  Needham et al.  “Hierarchical Parallelization of  Gene 
Differential Association Analysis.”  BMC Bioinformatics, 2011. 



Hardware 
  40 cores across 5 machines 

  One processor used for running Python script; that 
machine is not used for computation 

  32 cores available 

  Dual quad-core 3 GHz Intel Xeon processors 

  16 GB memory, Gigabit Ethernet interconnects 

  6 MB L2 cache per core 



Result Summary 

  Multithreaded simulations 
outperform MPI alone 

  MPI carries significant 
memory overhead due to 
data replication 

  Pinning processes to cores 
improves multithreaded 
performance 

  Additional threading 
beyond 2 threads yields 
little advantage on pinned 
system 

Image Source:  Needham et al.  “Hierarchical Parallelization of  Gene 
Differential Association Analysis.”  BMC Bioinformatics, 2011. 



Result Summary,ctd. 

  Jagged speedup curve 
attributed to imperfect 
load balancing. 

  Without process pinning, 
scheduling errors amplify 
the uneven quality of  the 
speedup curve [4]. 

  Scheduling issues can also 
seriously degrade 
performance in unpinned 
threads [4]. 

Image Source:  Needham et al.  “Hierarchical Parallelization of  Gene 
Differential Association Analysis.”  BMC Bioinformatics, 2011. 
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