

Managing Accelerators:
the Operating System Perspective

PTask: Operating System Abstractions to Manage
GPUs as Compute Devices [SOSP, October 2011]
Chris Rossbach, Jon Currey – MSR,
Mark Silberstein – Technion,
Baishakhi Ray, Emmett Witchel – UT Austin

Pegasus (Coordinated Scheduling in Virtualized
Accelerator-based Platforms) [Usenix ATC, June 2011]
Visakha Gupta, Karsten Schwan – Georgiatech,
Niraj Tolia – Maginatics,
Vanish Talwar, and Parthasarathy Ranganathan – HP Labs

Presentation

Kostas
Shantonu

Outline
● GPUs (and equivalent Accelerators):

the software/hardware stack
● Why OS involvement is necessary
● Approaches

● Programming model + OS abstractions (PTASK)
● Virtualization (PEGASUS)

● Conclusions – Discussion

Accelerators as seen by ...

App Programmer
● Fit accelerate-able

pattern
● Adapt algorithm to the

programming model
● Optimize for specific

accelerator
architecture

System Programmer
● Maintain high-

performance
accelerator access

● Time-sharing
(users/processes)

● Space-sharing
(memory)

● Safe, controlled access

Focus of an App programmer
● Initialize the accelerator and its run-time
● Create properly aligned data buffers
● “Upload” data buffers to the accelerator
● Start the accelerator (e.g. GPUs:

run the optimized accelerator code)
● “Download” result-buffers from accelerator
● Finalize the accelerator and its run-time

Runs on the GPU
→ GPU workload

Focus of a System programmer
● Initialize the accelerator and its run-time
● Create properly aligned data buffers
● “Upload” data buffers to the accelerator
● Start the accelerator (e.g. GPUs:

run the optimized accelerator code)
● “Download” result-buffers from accelerator
● Finalize the accelerator and its run-time

Runs on the GPU
→ GPU workload

GPU execution flow example

Libraries
Graphics, Compute,

Video, Audio, Crypto, ...

Application

GPU
1 CPU GPU

2

Kernel
Driver

Only architectural
details relevant to fine

executable
performance tuning

Implementing
standard

or commercial APIS

Can be Free Software

Following hosting
kernel's resource
management API

Known API
(e.g UploadBuffer,

ExecuteComputeFunc, ...)

SysCalls
(e.g. read, write, ioctl, ...)

OS kernel resource
management calls

(e.g. kmalloc, ioremap, ...)

Memory-mapped registers,
multiplexing control of

GPU-embedded accelerators

The GPU Software/Hardware Stack

Why involve the OS [1/2]
● Enhance system-wide objectives

● Impact to whole-system performance,
power/energy optimizations

● Provide scheduling guarantees
● Fairness, isolation, safety
● Meet real-time requirements

● Support accurate accounting
● critical for cloud-level services

Why involve the OS [2/2]
● Extend the programming model's reach

● support alternating between task (CPU) and data
parallel (GPU) patterns

● enable fast access to the GPU by other peripherals
● use the GPU for kernel-level services (e.g. crypto,

file-systems)
● Only the OS can realize run-time anomalies

and enforce their safe management

Challenges [1/2]
● The GPU is not an I/O device but a Turing-complete co-

processor
● GPU workload not directly equivalent to CPU process
● Unpredictable run-time of GPU workloads
● The GPU doesn't run OS code

● Unlike CPUs, they can be non-preemptive
● Hardware constraint
● Only non-clean watchdog-based reset supported

● Disjoint address spaces likely
– Automate (if possible) with data-movement
– Maintain high-performance (optimize copying/migration)

Challenges [2/2]
● Limiting interfaces

● GPU interface hidden behind “stack of black boxes”
● Existing kernel/driver interface is mono-semantic

(much described through a single ioctl call)
● Performance overheads might be unacceptable

● E.g. games
● Vitalization is not straightforward

● Hardware-specific software-stack hard to split to
independent layers

● MMIO adds another level of indirection

Goals
● Discuss different approaches to OS-

involvement in GPU management
● Describe basic OS abstractions
● Suggest ways to promote GPUs to first-class

scheduling entities
● Provide coherent motivation examples
● Demonstrate conclusive benefits over the

“un-managed” case

PTask: Operating System Abstractions to Manage
GPUs as Compute Devices

SOSP, October 2011

Chris Rossbach, Jon Currey – MSR,
Mark Silberstein – Technion,

Baishakhi Ray, Emmett Witchel – UT Austin

Ptask Outline
● Motivation:

● make the GPU accessible to highly interactive applications
● Approach:

● Focus on unnecessary data duplication (data-movement) and sub-optimal
migration

● Extend the existing programming model through a graph-based
dependency representation

● Extend the kernel interface (syscalls) to automate and optimize data
placement and GPU workload scheduling

● Key contribution:
● A semantically clear suggestion about how the OS can realize a GPU

workload and adapt its scheduling policies

Motivation
● GPUs are everywhere

● Top supercomputers
● Workstations, PCs, smart-phones tablets

● Expanded, yet limited application domain
● Games, Simulation
● Highly data parallel applications (science)

● Current GPUs have challenging system limitations
● GPU+main memory disjoint
● Treated as I/O device by OS

Approach
● Use OS abstractions (processes, files, …)
● Build modular tools that allow reuse, flexible

combinations
● Hide GPU limitations (e.g. incoherent memory)

without hindering performance
● Rely on a semantically clear description of GPU

workloads from the OS perspective to make
GPUs first-class scheduling devices

OS abstractions

p
r
o
g
r
a
m
m
e
r-
vi
si
bl
e
in
t
e
rf
a
c
e

O
S
-
le
v
el
a
b
st
r
a
ct
io
n
s

H
a
r
d
w
a
r
e

in
t
e
rf
a
c
e

Rich API for system interactions (system-calls)
Kernel-level management of resources (CPU, RAM, Disk, ...)

Composable components ($ cat file | grep pattern)

D
ir
e
c
t
X
/
C
U
D
A
/
O
p
e
n
C
L
R
u
n
ti
m
e

L
a
n
g
u
a
g
e
I
n
t
e
g
r
a
ti
o
n

S
h
a
d
e
r
s
/
K
e
r
n
el
s

G
P
G
P
U
A
PI
s

p
r
o
g
r
a
m
m
e
r-
vi
si
bl
e
in
t
e
rf
a
c
e

S
in
gl
e
O
S
-
le
v
el
a
b
st
r
a
ct
io
n
!

GPU abstractions

No kernel-facing API
OS limited to safe device access support

Poor composability

CPU-bound processes hurt GPUs

I
m
a
g
e-
c
o
n
v
ol
ut
io
n
in
C
U
D
A

W
in
d
o
w
s
7
x
6
4
8
G
B
R
A
M

In
te
l
C
or
e
2
Q
u
a
d
2.
6
6
G
H
z

n
Vi
di
a
G
e
F
or
c
e
G
T
2
3
0

H
ig
h
er
is
b
et
te
r

no CPU load high CPU load0

200

400

600

800

1000

1200

GPU benchmark throughput

E
x
p
l
a
n
a
t
i
o
n
:
a
n

a
p
p
l
i
c
a
t
i
o
n

c
a
n

s
u
b
m
i
t
w
o
r
k
l
o
a
d
s
t
o

t
h
e

G
P
U

o
n
l
y

w
h
e
n

i
t
i
s
s
c
h
e
d
u
l
e
d

o
n

t
h
e

C
P
U

S
o
l
u
t
i
o
n
:
B
u
i
l
d

G
P
U
-
a
w
a
r
e

C
P
U

s
c
h
e
d
u
l
e
r

GPU-bound processes hurt CPUs

Fl
at
te
r
li
n
e
s
A
re
b
et
te
r

 Image-convolution in CUDA

 Windows 7 x64 8GB RAM
 Intel Core 2 Quad 2.66GHz
 nVidia GeForce GT230

E
x
p
l
a
n
a
t
i
o
n
:
t
h
e

G
P
U

i
s
n
o
n
-
p
r
e
e
m
p
t
i
b
l
e
;
n
o
t
a
l
l
G
P
U

w
o
r
k
l
o
a
d
s
a
r
e

u
s
e
r
-
i
n
t
e
r
a
c
t
i
v
e

S
o
l
u
t
i
o
n
:
B
u
i
l
d

G
P
U
-
a
w
a
r
e

C
P
U

s
c
h
e
d
u
l
e
r

Composition: Gestural Interface
c
a
p
t
u
r
e

fi
lt
e
r

x
f
o
r
m

“
H
a
n
d
”
e
v
e
n
t
s

R
a
w

i
m
a
g
e
s

d
e
t
e
c
t

n
o
i
s
y
p
o
i
n
t
c
l
o
u
d

g
e
o
m
et
ri
c
tr
a
n
sf
o
r
m
at
io
n

c
a
pt
u
re
c
a
m
er
a
i
m
a
g
e
s

d
et
e
ct
g
e
st
u
re
s

n
oi
s
e
fil
te
ri
n
g

● peripheral device direct input (e.g. camera
 → data-parallel (GPU-fit) components
 → non-GPU-fit component (e.g. human interface)

● catusb | xform | filter | hdinput & # CPU,GPU composition

Existing limitations
● The programmer must control where (which device) to allocate

a buffer as they code their program
● Double-buffering optimization can hurt
● Streaming buffers across processes impossible

● The programmer must control when to invoke a kernel, while
the system asynchronously satisfies this request (command
batching)

● Host (CPU) orchestrates data transfers and access to the
device

● Data-replication will happen even on integrated CPU/GPU
systems (coherent memory)

Conceptually ...

O
S
e
x
e
c
u
ti
v
e

c
a
p
t
u
r
e

G
P
U

k
e
r
n
el

u
s
e
r

R
u
n
!

c
a
m
d
r
v

G
P
U
d
ri
v
e
rH

W

P
CI
-
xf
er

P
CI
-
xf
er

x
f
o
r
m

c
o
p
y

to
G
P
U

c
o
p
y
fr
o
m
G
P
UP

CI
-
xf
er

fi
lt
e
r

c
o
p
y
fr
o
m
G
P
U

d
e
t
e
c
t

IR
P

H
I
D
d
r
v

r
e
a
d
(
)

c
o
p
y

to
G
P
U

w
r
i
t
e
(
)

r
e
a
d
(
)

w
r
i
t
e
(
)

r
e
a
d
(
)

w
r
i
t
e
(
)

r
e
a
d
(
)

c
a
p
t
u
r
e

x
f
o
r
m

fi
lt
e
r

d
e
t
e
c
t

#
>

c
a
p
t
u
r
e

|

x
f
o
r
m

|

f
i
l
t
e
r

|

d
e
t
e
c
t

&

P
T
a
s
k
S
O
S
P
2
0
1
1

23

Ideally ...
c
a
p
t
u
r
e

G
P
U

k
e
r
n
el

u
s
e
r

R
u
n
!

c
a
m
d
r
v

IN
G
P
U
D
ri
v
e
r INH

W

P
CI
-
xf
er

x
f
o
r
m

C
o
p
y

T

o

G
P

U

OUT

P
CI
-
xf
er

fi
lt
e
r

C
o
p
y
fr
o
m
G
P
U

d
e
t
e
c
t

IR
P

H
I
D
d
r
v

r
e
a
d
(
)

w
r
i
t
e
(
)

r
e
a
d
(
)

w
r
i
t
e
(
)

r
e
a
d
(
)

w
r
i
t
e
(
)

r
e
a
d
(
)

c
a
p
t
u
r
e

x
f
o
r
m

fi
lt
e
r

d
e
t
e
c
t

OUT

#
>

c
a
p
t
u
r
e

|

x
f
o
r
m

|

f
i
l
t
e
r

|

d
e
t
e
c
t

&

P
T
a
s
k
S
O
S
P
2
0
1
1

24

Data-flow-based GPU abstractions
● ptask (parallel task)

● Analogous to a process for GPU workload
● List of input/output resources (e.g. stdin, stdout…)

● ports
● Type: Input, Sticky, Output
● State: Occupied, Unoccupied
● Bound to GPU-side or consumed by run-time

● channels
● Similar to pipes, connect arbitrary ports
● Type: Input (1 channel), Output (>=1 channel)
● Capacity: fifo queue of data-blocks

● data-blocks
● Memory-space transparent buffers

● templates
● Abstract buffer dimension and access pattern

descriptor
● graph

● DAG: connected ptasks, ports, channels

Important system parameters
● Assign host (CPU) helper threads from a pool to ptasks –

used for data movement, GPU dispatch
● Buffer-map: Pro-actively or lazily copy/migrate data to fit

locality requirements (e.g. GPU expecting input in
dedicated RAM)

● Templates:
● Buffer dimensions + stride → iteration space
● Buffer type (fixed size, variable size, opaque buffer)
● Run-time binding description (CPU, GPU)
● Passed through meta-data channels for irregular data handling

M
ai
n
M
e
m
o
ry

G
P
U
0
M
e
m
o
ry

G
P
U
1
M
e
m
o
ry

…
D
a
t
a
-
b
l
o
c
k

s
p
a
c
e

V M R
W

d
a
t
a

m
a
i
n

1 1 1
1

g
p
u
0

0 1 1
0

g
p
u
1

1 1 1
0

● Logical buffer
● backed by multiple physical buffers
● buffers created/updated lazily
● mem-mapping used to share across process boundaries

● Track buffer validity per memory space
● writes invalidate other views
● Use reference counters

● Flags for access control/data placement

Data-blocks

Run-time
● State:

● Waiting (for input; not all input ports occupied)
● Queued (inputs available, read data-blocks occupying

input/sticky ports, waiting for GPU)
● Executing (running on the GPU)
● Completed (finished execution, waiting for output ports

to transition to occupied → waiting)
● Run-time scheduling of queued tasks

● Respect and optimize data locality

● First-available: manager threads compete for lock-protected accelerator(s)
● Fifo: first-available with queuing
● Priority: enhanced ptasks with priorities + device selection

● Static (programmer-requested) + Proxy (assigned to managed-thread to avoid
priority laundering)

● Priority boosting based on current & average wait-time, average run-time
● Effective priority: f(static, proxy, boosting)
● Device selection: GPU strength, task fitness (simple heuristics)

● Data-aware: Priority + Prefer GPUs whose memory spaces contain most up-to-
date inputs

● Not work-conserving but can save costly data-migrations

PTask Scheduling

Implementation
● GPU programmable through user-level libraries

→ user-level component necessary for demonstrated use
→ (in practice) subject to user-attacks

● Windows:
● Ptask API transparently described through ioctl extensions and user-

mode drivers (Windows-specific driver-development tools)
● Linux:

● Blocking sys-calls to pass information to the kernel; instrument
applications

● Event-based (invoke, complete) tocken-bucket based algorithm
enhancing CPU task scheduler

● Priority-adjusted, time-replenished budget

Evaluation 1/3

● Compare hand-coded, pipes-based,
non-pipe modular and ptask for
latency (real-time) throughput
(unconstrained)

● Ptask optimizes both metrics while
being as or almost as efficient a
hand-optimized code

Evaluation 2/3
● Linux FUSE

● AES EncFS
● GPU-accelerated reads:

17% faster
● GPU-accelerated writes:

28% faster
● Priority inversion possible

without Ptask
● Nice-levels carrying to GPU

tasks with Ptask

● Micro-benchmarks
● Variation of access patterns

and input sizes in ptask
graphs

● Ptask outperforms hand-
optimized data/compute
overlapping and
composable alternative

● Reason: data copying

Evaluation 3/3

Range of graph sizes, matrix dimensions
●Data-aware policy is scalable
●Oblivious ptask assignment (e.g. priority)
hurts performance

4 graphs, 36 ptasks each, 1 GPU
● Priority throughput increases linearly
 with the priority of the graph

Summary

● Operating-system inspired accelerator programming
model based on data-flows

● Performance stems from avoiding unnecessary data
replication across address spaces (devices, process)

● GPU abstractions equivalent to familiar OS
abstractions

● Abstractions built from the application programmer's
perspective – a Ptask is a compute/graphics/...-
kernel instance

● Proves scheduling is better than un-managed GPUs

Pegasus (Coordinated Scheduling in Virtualized
Accelerator-based Platforms)

Usenix ATC, June 2011

Visakha Gupta, Karsten Schwan – Georgiatech,
Niraj Tolia – Maginatics,

Vanish Talwar, and Parthasarathy Ranganathan – HP Labs

Why Coordinated Scheduling is
Needed?

Objectives of Pegasus
● Treats accelerators as first class schedulable

entities
● Supports scheduling methods that efficiently uses both

general purpose and accelerator cores
● shares accelerators fairly and efficiently across

multiple virtual machines (VM)
● Provides system support for efficient accelerator

management via virtualization
● Operates at a hypervisor level (VMM)
● Uses a uniform resource model for all cores on

heterogeneous CMP

The Virtualization Approach

Accelerators as First-Class
Schedulable Entities

New Abstraction for Accelerator

● VCPU (virtual CPU) – first class schedulable
entity on physical CPU

● aVCPU (accelerator virtual CPU) - first class
schedulable entity on GPU
● has execution context on both, CPU (polling

thread, runtime, driver context) and GPU (CUDA
kernel)

Pegasus Architecture

Pegasus Scheduling Policies

No Co-ordination
● Round Robin (RR) – relies on the GPU

runtime/driver layer to handle all requests
● AccCredit (AccC) – Instead of using the

assigned VCPU credits for scheduling aVCPUs,
new accelerator credits are defined based on
static profiling
● Proportional fair-share

Hypervisor Controlled Policy
● Strict Co-Scheduling (CoSched)

● Hypervisor has the complete control on scheduling
● Hypervisor scheduling determines which domain

should run on a GPU depending on the CPU
schedule

● Accelerator core are treated as slaves to host cores
● Latency reduction by occasional unfairness
● Possible waste of resources e.g. if domain picked

for GPU has no work to do

Hypervisor Coordinated Policies
● Augmented Credit-based Scheme (AugC)

● Scan the hypervisor CPU schedule to temporarily
boost credits of domains selected for CPUs

● Pick domain(s) for GPU(s) based on GPU credits
and remaining CPU credits from hypervisor
(augmenting)

● Throughput improvement by temporary credit boost
● Feedback-based proportional fair

share(SLAF)
● Periodic scanning can lead to adjustment in the

timer ticks assigned to aVCPUs if they do not get or
exceed their assigned/expected time quota

Experimental Evaluation

Experimental Set-up
● Xeon quad core @3GHz, 3GB RAM and

NVIDIA 9800 GTX card with 2 GPUs
● Xen 3.2.1 hypervisor
● Linux kernel as guest domains with 512MB

memory, 1VCPU each
● Benchmarks

category Source

Financial Cuda SDK Bionomial(BOp), BlackScholes(BS),
Mente-Carlo(MC)

Media-processing Cuda SDK/parboil ProcessImage(PI)=matrix
multiply+DXTC, MRIQ,

FastWalshTransform(FWT)
Scientific parboil CP, TPACF, RPES

Virtualization Overhead

Scheduling Performance
Black Scholes – Latency and throughput sensitive

Scheduling Performance
FWT – Latency sensitive

Take Away from Pegasus
● Pegasus approach utilizes accelerators as first

class schedulable entities via virtualization
● Coordinated scheduling is effective

● Even basic accelerator request scheduling can
improve sharing performance

● Scheduling lowers degree of variability caused by
un-coordinated use of the NVIDIA driver

Conclusions - Discussion
● Focus shift towards the systems aspect of

GPUs/Accelerators
● What other opportunities open up by managing

accelerators at the operating system level?
● Drawbacks? Is the system very sensitive to

performance overheads (see Ptask micro-
benchmarks)

● Are Ptask and Pegasus the right levels of
abstraction?

Sources & References
● PTask: Operating System Abstractions to Manage GPUs as Compute

Devices [SOSP, 2011]
● Pegasus (Coordinated Scheduling in Virtualized Accelerator-based

Platforms) [Usenix ATC, 2011]
● Operating Systems Challenges for GPU Resource Management

[OSPERT 11]
● Graphic Engine Resource Management [TR] Mikhail Bautin, Ashok

Dwarakinath, Tzi-cker Chiueh
● GPU Virtualization on VMware’s Hosted I/O Architecture [USENIX

Workshop on I/O Virtualization, 2008]
● TimeGraph: GPU Scheduling for Real-Time Multi-Tasking

Environments [Usenix ATC, 2011]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	CPU-bound processes hurt GPUs
	GPU-bound processes hurt CPUs
	Composition: Gestural Interface
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Location Transparency: Datablocks
	Slide 28
	PTask Scheduling
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

