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Outline
● GPUs (and equivalent Accelerators):

the software/hardware stack
● Why OS involvement is necessary
● Approaches

● Programming model + OS abstractions (PTASK)
● Virtualization (PEGASUS)

● Conclusions – Discussion



  

Accelerators as seen by ...

App Programmer
● Fit accelerate-able 

pattern
● Adapt algorithm to the 

programming model
● Optimize for specific 

accelerator 
architecture

System Programmer
● Maintain high-

performance 
accelerator access

● Time-sharing 
(users/processes)

● Space-sharing 
(memory)

● Safe, controlled access



  

Focus of an App programmer
● Initialize the accelerator and its run-time
● Create properly aligned data buffers
● “Upload” data buffers to the accelerator
● Start the accelerator (e.g. GPUs:

run the optimized accelerator code)
● “Download” result-buffers from accelerator
● Finalize the accelerator and its run-time

Runs on the GPU
→ GPU workload



  

Focus of a System programmer
● Initialize the accelerator and its run-time
● Create properly aligned data buffers
● “Upload” data buffers to the accelerator
● Start the accelerator (e.g. GPUs:

run the optimized accelerator code)
● “Download” result-buffers from accelerator
● Finalize the accelerator and its run-time

Runs on the GPU
→ GPU workload



  

GPU execution flow example



  

Libraries
Graphics, Compute,

Video, Audio, Crypto, ...

Application

GPU
1 CPU GPU

2

Kernel
Driver

Only architectural
details relevant to fine

executable
performance tuning

Implementing
standard

or commercial APIS

Can be Free Software

Following hosting
kernel's resource
management API

Known API
(e.g UploadBuffer,

ExecuteComputeFunc, ...)

SysCalls
(e.g. read, write, ioctl, ...)

OS kernel resource
management calls

(e.g. kmalloc, ioremap, ...)

Memory-mapped registers,
multiplexing control of

GPU-embedded accelerators

The GPU Software/Hardware Stack



  

Why involve the OS [1/2]
● Enhance system-wide objectives

● Impact to whole-system performance, 
power/energy optimizations

● Provide scheduling guarantees
● Fairness, isolation, safety
● Meet real-time requirements

● Support accurate accounting
● critical for cloud-level services



  

Why involve the OS [2/2]
● Extend the programming model's reach

● support alternating between task (CPU) and data 
parallel (GPU) patterns

● enable fast access to the GPU by other peripherals
● use the GPU for kernel-level services (e.g. crypto, 

file-systems)
● Only the OS can realize run-time anomalies 

and enforce their safe management



  

Challenges [1/2]
● The GPU is not an I/O device but a Turing-complete co-

processor
● GPU workload not directly equivalent to CPU process
● Unpredictable run-time of GPU workloads
● The GPU doesn't run OS code

● Unlike CPUs, they can be non-preemptive
● Hardware constraint
● Only non-clean watchdog-based reset supported

● Disjoint address spaces likely
– Automate (if possible) with data-movement
– Maintain high-performance (optimize copying/migration)



  

Challenges [2/2]
● Limiting interfaces

● GPU interface hidden behind “stack of black boxes”
● Existing kernel/driver interface is mono-semantic 

(much described through a single ioctl call)
● Performance overheads might be unacceptable

● E.g. games
● Vitalization is not straightforward

● Hardware-specific software-stack hard to split to 
independent layers

● MMIO adds another level of indirection



  

Goals
● Discuss different approaches to OS-

involvement in GPU management
● Describe basic OS abstractions
● Suggest ways to promote GPUs to first-class 

scheduling entities
● Provide coherent motivation examples
● Demonstrate conclusive benefits over the

“un-managed” case
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Ptask Outline
● Motivation: 

● make the GPU accessible to highly interactive applications
● Approach:

● Focus on unnecessary data duplication (data-movement) and sub-optimal 
migration

● Extend the existing programming model through a graph-based 
dependency representation

● Extend the kernel interface (syscalls) to automate and optimize data 
placement and GPU workload scheduling

● Key contribution:
● A semantically clear suggestion about how the OS can realize a GPU 

workload and adapt its scheduling policies



  

Motivation
● GPUs are everywhere

● Top supercomputers
● Workstations, PCs, smart-phones tablets

● Expanded, yet limited application domain
● Games, Simulation
● Highly data parallel applications (science)

● Current GPUs have challenging system limitations
● GPU+main memory disjoint
● Treated as I/O device by OS



Approach
● Use OS abstractions (processes, files, …)
● Build modular tools that allow reuse, flexible 

combinations
● Hide GPU limitations (e.g. incoherent memory) 

without hindering performance
● Rely on a semantically clear description of GPU 

workloads from the OS perspective to make 
GPUs first-class scheduling devices



  

OS abstractions
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Rich API for system interactions (system-calls)
Kernel-level management of resources (CPU, RAM, Disk, ...)

Composable components ( $ cat file | grep pattern )
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GPU abstractions

No kernel-facing API
OS limited to safe device access support

Poor composability



CPU-bound processes hurt GPUs
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GPU-bound processes hurt CPUs
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 Image-convolution in CUDA

 Windows 7 x64 8GB RAM
 Intel Core 2 Quad 2.66GHz
 nVidia GeForce GT230
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Composition: Gestural Interface
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●       peripheral device direct input (e.g. camera
  →  data-parallel (GPU-fit) components            
  →  non-GPU-fit component (e.g. human interface)

●       catusb | xform | filter | hdinput &       # CPU,GPU composition



Existing limitations
● The programmer must control where (which device) to allocate 

a buffer as they code their program
● Double-buffering optimization can hurt
● Streaming buffers across processes impossible

● The programmer must control when to invoke a kernel, while 
the system asynchronously satisfies this request (command 
batching)

● Host (CPU) orchestrates data transfers and access to the 
device

● Data-replication will happen even on integrated CPU/GPU 
systems (coherent memory) 



Conceptually ...
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Ideally ...
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Data-flow-based GPU abstractions
● ptask (parallel task) 

● Analogous to a process for GPU workload
● List of input/output resources (e.g. stdin, stdout…)

● ports
● Type: Input, Sticky, Output
● State: Occupied, Unoccupied
● Bound to GPU-side or consumed by run-time

● channels
● Similar to pipes, connect arbitrary ports
● Type: Input (1 channel), Output (>=1 channel)
● Capacity: fifo queue of data-blocks

● data-blocks
● Memory-space transparent buffers

● templates
● Abstract buffer dimension and access pattern 

descriptor
● graph

● DAG: connected ptasks, ports, channels



Important system parameters
● Assign host (CPU) helper threads from a pool to ptasks – 

used for data movement, GPU dispatch
● Buffer-map: Pro-actively or lazily copy/migrate data to fit 

locality requirements (e.g. GPU expecting input in 
dedicated RAM)

● Templates: 
● Buffer dimensions + stride → iteration space
● Buffer type (fixed size, variable size, opaque buffer)
● Run-time binding description (CPU, GPU)
● Passed through meta-data channels for irregular data handling
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● Logical buffer 
● backed by multiple physical buffers
● buffers created/updated lazily
● mem-mapping used to share across process boundaries

● Track buffer validity per memory space
● writes invalidate other views
● Use reference counters

● Flags for access control/data placement

Data-blocks



Run-time
● State:

● Waiting (for input; not all input ports occupied)
● Queued (inputs available, read data-blocks occupying 

input/sticky ports, waiting for GPU)
● Executing (running on the GPU)
● Completed (finished execution, waiting for output ports 

to transition to occupied → waiting)
● Run-time scheduling of queued tasks

● Respect and optimize data locality



● First-available: manager threads compete for lock-protected accelerator(s)
● Fifo: first-available with queuing
● Priority: enhanced ptasks with priorities + device selection

● Static (programmer-requested) + Proxy (assigned to managed-thread to avoid 
priority laundering)

● Priority boosting based on current & average wait-time, average run-time
● Effective priority: f(static, proxy, boosting)
● Device selection: GPU strength, task fitness  (simple heuristics)

●  Data-aware: Priority + Prefer GPUs whose memory spaces contain most up-to-
date inputs

● Not work-conserving but can save costly data-migrations

PTask Scheduling

 



Implementation
● GPU programmable through user-level libraries

→ user-level component necessary for demonstrated use
→ (in practice) subject to user-attacks

● Windows: 
● Ptask API transparently described through ioctl extensions and user-

mode drivers (Windows-specific driver-development tools)
● Linux:

● Blocking sys-calls to pass information to the kernel; instrument 
applications

● Event-based (invoke, complete) tocken-bucket based algorithm
enhancing CPU task scheduler

● Priority-adjusted, time-replenished budget



Evaluation 1/3 

● Compare hand-coded, pipes-based,
non-pipe modular and ptask for 
latency (real-time) throughput
(unconstrained)

● Ptask optimizes both metrics while
being as or almost as efficient a
hand-optimized code



Evaluation 2/3
● Linux FUSE

● AES EncFS
● GPU-accelerated reads: 

17% faster
● GPU-accelerated writes: 

28% faster
● Priority inversion possible 

without Ptask
● Nice-levels carrying to GPU 

tasks with Ptask

● Micro-benchmarks
● Variation of access patterns 

and input sizes in ptask 
graphs

● Ptask outperforms hand-
optimized data/compute 
overlapping and 
composable alternative

● Reason: data copying



Evaluation 3/3

Range of graph sizes, matrix dimensions
●Data-aware policy is scalable
●Oblivious ptask assignment (e.g. priority)
hurts performance

4 graphs, 36 ptasks each, 1 GPU
● Priority throughput increases linearly
 with the priority of the graph



Summary

● Operating-system inspired accelerator programming 
model based on data-flows

● Performance stems from avoiding unnecessary data 
replication across address spaces (devices, process)

● GPU abstractions equivalent to familiar OS 
abstractions

● Abstractions built from the application programmer's 
perspective – a Ptask is a compute/graphics/...-
kernel instance

● Proves scheduling is better than un-managed GPUs
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Why Coordinated Scheduling is 
Needed?



  

Objectives of Pegasus
● Treats accelerators as first class schedulable 

entities
● Supports scheduling methods that efficiently uses both 

general purpose and accelerator cores
● shares accelerators fairly and efficiently across 

multiple virtual machines (VM)
● Provides system support for efficient accelerator 

management via virtualization
● Operates at a hypervisor level (VMM)
● Uses a uniform resource model for all cores on 

heterogeneous CMP



  

 

The Virtualization Approach



  

 



  



  

 



  

 

Accelerators as First-Class 
Schedulable Entities



  

New Abstraction for Accelerator

● VCPU (virtual CPU) – first class schedulable 
entity on physical CPU 

● aVCPU (accelerator virtual CPU) -  first class 
schedulable entity on GPU  
● has execution context on both, CPU (polling 

thread, runtime, driver context) and GPU (CUDA 
kernel)



  

Pegasus Architecture



  

 



  

 



  

 



  

 



  

 



  

 

Pegasus Scheduling Policies



  

No Co-ordination
● Round Robin (RR) – relies on the GPU 

runtime/driver layer to handle all requests
● AccCredit (AccC) – Instead of using the 

assigned VCPU credits for scheduling aVCPUs, 
new accelerator credits are defined based on 
static profiling
● Proportional fair-share



  

Hypervisor Controlled Policy
● Strict Co-Scheduling (CoSched)

● Hypervisor has the complete control on scheduling
● Hypervisor scheduling determines which domain 

should run on a GPU depending on the CPU 
schedule

● Accelerator core are treated as slaves to host cores
● Latency reduction by occasional unfairness
● Possible waste of resources e.g. if domain picked 

for GPU has no work to do



  

Hypervisor Coordinated Policies
● Augmented Credit-based Scheme (AugC)

● Scan the hypervisor CPU schedule to temporarily 
boost credits of domains selected for CPUs

● Pick domain(s) for GPU(s) based on GPU credits 
and remaining CPU credits from hypervisor 
(augmenting)

● Throughput improvement by temporary credit boost
● Feedback-based proportional fair 

share(SLAF)
● Periodic scanning can lead to adjustment in the 

timer ticks assigned to aVCPUs if they do not get or 
exceed their assigned/expected time quota



  

 

Experimental Evaluation



  

Experimental Set-up
● Xeon quad core @3GHz, 3GB RAM and 

NVIDIA 9800 GTX card with 2 GPUs
● Xen 3.2.1 hypervisor
● Linux kernel as guest domains with 512MB 

memory, 1VCPU each
● Benchmarks

category Source

Financial Cuda SDK Bionomial(BOp), BlackScholes(BS), 
Mente-Carlo(MC)

Media-processing Cuda SDK/parboil ProcessImage(PI)=matrix 
multiply+DXTC, MRIQ, 

FastWalshTransform(FWT)
Scientific parboil CP, TPACF, RPES



  

Virtualization Overhead



  

Scheduling Performance
Black Scholes – Latency and throughput sensitive



  

Scheduling Performance
FWT – Latency sensitive



  

Take Away from Pegasus
● Pegasus approach utilizes accelerators as first 

class schedulable entities via virtualization
● Coordinated scheduling is effective

● Even basic accelerator request scheduling can 
improve sharing performance

● Scheduling lowers degree of variability caused by 
un-coordinated use of the NVIDIA driver



  

Conclusions - Discussion
● Focus shift towards the systems aspect of 

GPUs/Accelerators
● What other opportunities open up by managing 

accelerators at the operating system level?
● Drawbacks? Is the system very sensitive to 

performance overheads (see Ptask micro-
benchmarks)

● Are Ptask and Pegasus the right levels of 
abstraction?
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