CSC 244/444 Lecture Notes Sept. 24, 2023

Provability, Soundness and Completeness

Deductive rules of inference provide a mechanism
for deriving true conclusions from true premises

Rules of inference

So far we have treated formulas as “given”, and have shown how they can be related to
a domain of discourse, and how the truth of a set of premises can guarantee (entail) the
truth of a conclusion. However, our goal in logic and particularly in Al is to derive new
conclusions from given facts. For this we need rules of inference (and later, strategies
for applying such rules so as to derive a desired conclusion, if possible).

In general, a “forward” inference rule consists of one or more premises and a con-
clusion. Both the premises and the conclusion are generally schemas, i.e., they involve
metavariables for formulas or terms that can be particularized in many ways (just as
we saw in the case of valid formula schemas). We often put a horizontal line under the
premises, and write the conclusion underneath the line. For instance, here is the rule of
Modus Ponens

L 9=
o

This says that given a premise formula ¢, and another formula of form ¢ = 1, we may
derive the conclusion . It is intuitively clear that this rule leads from true premises to
a true conclusion — but this is an intuition we need to verify by proving the rule sound,
as illustrated below. An example of using the rule is this: from

MP

Dog(Snoopy), Dog(Snoopy) = Has-tail(Snoopy),

we can conclude Has-tail(Snoopy). (Of course, if the premises aren’t true, then the
conclusion needn’t be true either.)

The following are some additional well-known rules of inference, called Modus Tol-
lens (MT), Modus Tollendo Ponens (MTP, also called Propositional Resolution), Double
Negation Elimination (DN), And Introduction (Al), And Elimination (AE), and Or In-
troduction (OI):

MT W MTP : W’jvw, ¥, ZVW, ete.

- o, Y GANY PNY)

i — Al : AP . —— I —T F——
DN =5 Dogng A7 5 9T vy

All of these rules can be proved sound in the sense that the premises entail the conclusion:

Soundness of 2L=:%n .
All models of {¢1, ..., ¢, } are models of 1,
i.e., For all models M such that =pa {1, ..., Pn}, Fm ¥

Soundness is a very desirable property of a rule of inference: it can never lead us to a
false conclusion, as long as the facts we started with are correct. Unfortunately, we do
not always have the luxury of being able to restrict ourselves to sound inference. For
example, if you intend to cross an intersection and the light turns green, you generally
proceed on the assumption that the light in the other direction will be red, that this will
cause cross-traffic to stop, and it is therefore safe for you to cross. Assuming that you
believe that traffic lights can occasionally malfunction, or that drivers occasionally run
a red light, this involves unsound (though still reasonably reliable) inferences.

Another kind of example of unsound inference involves abduction or induction, where
we posit, or strengthen our belief in, a general principle based on a few examples. For
instance, a small child encountering some neighborhood dogs and finding that each of
those dogs (occasionally) barks might abductively conjecture that all dogs bark. After
some further examples of barking dogs (and no examples of nonbarking dogs), she might
inductively confirm this conjecture. It is hard to imagine a sound rule of inference, and a
reasonable set of prior beliefs, from which such a conclusion would follow. Yet this kind
of unsound reasoning is crucial for learning and coping with the world. We will later
study some methods of “defeasible” inference, but right now we continue to examine
deductive inference.

Proving soundness: example 1

Let’s prove the soundness of Double Negation Elimination (DN). We need to show that
any model of =—¢ is also a model of ¢. So let M be any model of =—¢, i.e.,

Fm 0.

Hence for all v.a.U, F=ap ——¢[U] (by definition of F=aq v);
hence for all v.a.U, Fam —¢lU] (by satisfaction conditions for —);
hence for all v.a.U, Em ¢[U] (by sat’n cond’ns for —),

ie, Emo. O

Proving soundness: example 2

For a slightly more complex case, let’s prove the soundness of the following rule (not a
commonly used one):

—(¢ =)

pAp
Again, let M be any model of the premise, i.e.,

Em (¢ =).
Hence for all v.a.U, Enm (¢ = ¥)[U] (by def'n of Epq 9);

hence for all v.a.U, Hwm (¢ = ¥)[U] (by sat’n cond’n for —);
i.e., for all v.a.U, it is not the case that = (¢ =) [U];
hence for all v.a.U, it is not the case that: Hn ¢[U] or = ¥)[U]
(by sat'n cond’ns for =);
ie., for all v.a.U, F=p o[U] and Fag) [U];
hence for all v.a.U, =m ¢[U] and [=pq —0)[U] (by sat’n cond’n for —);
hence for all v.a.U, E=aq (¢ A —9)[U] (by sat’'n cond’n for A);

ie, Ea (0A—Y). O

Rules involving substitution — equality and quantifiers

Some common rules involving substitution are Substitution of Equals (S=), Universal In-
stantiation (UI), Existential Instantiation (EL, also called Skolemization), and Existential
Generalization (EG),

where 7 and 7/ are ground (variable-free) terms, v is a variable, k is a new constant,
¢[v/7] is ¢ with all free occurrences of v replaced by 7, and the notation ¢(...7...) and
¢(...7"...) indicates that 7 occurs at least once in ¢, and we are replacing at least one
such occurrence with 7’.

The least obvious of these rules is probably EI, and it deserves some comment (es-
pecially because it is used in more general form in resolution theorem proving, the
predominant theorem proving technique in AI). The reasoning here is as follows: if there
erists an object such that ¢ holds for it, then we can invent a name x for this object
(called a Skolem constant), and assert ¢ with the variable replaced by x.

Interestingly, this rule is not sound, in the strict sense. The reason is that the premise
in no way constrains the constant k£ (a model of the premise may assign it any value),
yet the conclusion does constrain the value of x (its value must be chosen so as to satisfy
¢[v/K]). As aresult some models of the premise fail to be models of the conclusion — they
make the “wrong” choice of value for k. Nonetheless, the rule is “nearly” sound: if we
start with premises A and perform a series of inferences using sound rules of inference
and EI, reaching some conclusion ¢, then all models of A are models of ¢, provided
that no Skolem constants appear in ¢. In other words, even though EI itself is not
sound, it can help us reach conclusions in a sound fashion! In particular, if we deduce a
contradiction from A, then — even if we have used EI — we can be sure A is unsatisfiable
(has no models). This fact is also important in resolution-based theorem proving.

The remaining rules are sound, and this is rather easy to see intuitively. In a rigorous
proof, one would use induction on formula size and term size. For instance, the basis cases

for proving UT sound by induction on formula size are ones of form (V;I(i(/?(lﬁ)”).j:';;za()”))))
%w. The ~;(v) and ~(v) are arbitrarily complex terms containing any

and

number of free occurrences of v. But to establish these basis cases, we need an induction
on the sizes of the terms. After establishing the soundness of the basis cases, we consider
more complex formulas in place of the atomic ones, using the semantics of connectives
and quantifiers to make the inductive argument. Much the same applies to the S= and
EG rules.

Proof systems for forward proofs

Given a first-order language and some rules of inference, we have most of the ingredients
for a proof system. However, in some proof systems there is one additional ingredient,
a set of logical azioms (more accurately, aziom schemas). These logical axioms, as the
name suggests are logical truths (valid formulas) of the language, and as such can be
used as premises in any proof.

For instance, the following is a standard set of axioms for FOL, assuming that we
define all connectives syntactically in terms of A and — (e.g., we define (¢ =) as
—(¢ N 1)), and define Yv¢ as -Iv—¢ (rather than giving them independent semantic
definitions, as we did):

Al. ¢= (¢ = ¢) (Implication Introduction)

A2, (o= (Y=x%) = (¢=1v)=(¢=x)) (Implication Distribution)
A3. (=¢p = —¢) = (¢ =) (Contrapositive)

Ql. (Vwv(¢p=1v)) = ((VYre) = (Vvip)) (V-Distribution)

Q2. (Yv¢) = ¢lv/7] where 7 is ground (Universal Instantiation)

Q3. ¢ = (Yv¢) for v not free in ¢ (Universal Generalization)

I1. 7=7 for 7 a ground term (Self-Indentity)

[2. (c6=7) = (¢ = ds/r) (Substitution of Equals)

With these axioms, it turns out that we need only one rule of inference, MP. Note that Ul
is formulated here as an axiom, rather than a rule of inference. But we can see that this
axiom, together with MP, gives us the effect of a Ul inference rule. In general, there is a
“tradeoff” between logical axioms and rules of inference. We can express many axioms
as rules or vice versa. Logicians often restrict themselves to as few rules as possible, so
that it becomes relatively easy to analyze the theoretical properties of proofs. People
who actually want to use proof systems (e.g., Al system builders) generally find it much
more convenient to design a powerful set of inference rules, with little (or no) reliance on
axioms. It can be amazingly hard to prove “obvious” theorems in an axiomatic system.
As a small exercise, you might try to fill in the details of the last step of the proof of the
deduction theorem in the supplementary Genesereth & Nilsson text (p.59) (on reserve
in the Carlson library), which says that from (¢ = x) and ¢ = (x =) we can prove
¢ = 1 using MP and an instance of Implication Distribution). (Hint: you need to apply
MP twice.)

Proofs

Having introduced the notion of logical axioms, we can now formally define a proof of ¢
from A (in a forward inference system) as a sequence of closed formulas

¢1a ¢27 ey ¢n (n > 1)
where ¢, = ¢, and for each ¢; (1 <1i<n):
(1) ¢Z € A? or

(ii) ¢; is an instance of a logical axiom, or
(iii) ¢; is the result of applying a rule of inference to a subset of {¢1, ..., $i—1}

It is customary to annotate proof steps with the appropriate justifications, as shown in
the following example.

Example of proof
Let the premises be

A = {(vx (Jy (Loves(x,y)), (Vx (Loves(John,x) = x=John))}.
We wish to prove

Loves(John,John).

Proof:
1. (Vx (y (Loves(x,y)) A
2. (Vx (Loves(John,x) = x=John)) A
3. Jy Loves(John,y) UL 1
4. Loves(John,C) EI (Skolemization), 3
5. Loves(John,C) = C = John UI, 2
6. C=John MP, 4, 5
7. Loves(John,John) S=, 6, 4

Provability (derivability), theoremhood, and consistency

We say that ¢ is provable from a set of premises A, written as
Ao

iff there is a proof of ¢ from A (in the proof system under consideration). The
turnstile F is often read as “derives”.

A theorem ¢ of a logical system is a formula (or schema) derivable from the logical
axioms alone, written as

F ¢.
For example, all axioms are (trivially) theorems as well, and then there are other theo-
rems such as

== b, (¢ =) e (g), etc.

A set of formulas is inconsistent if it is possible to prove both ¢ and —¢ for some
formula ¢. (INB: Inconsistency is a syntactic property of sets of formulas, relative to
a proof system, not a semantic property.) An alternative definition of inconsistency
involves introducing a formula o (also written as 1), called the empty formula, or falsity,

and to add a rule of inference £7¢: then we say A is inconsistent iff

A+ o

If a set of formulas is not inconsistent (i.e., if no contradiction can be derived), then it
is consistent.

Soundness and Completeness of Proof Systems

We have finally arrived at a very important point, where we can talk about the connection
between proof systems and semantics: we can now say what it means for a proof system
to be sound and complete.

The notion of a sound proof system is just a straightforward generalization of the
notion of a sound rule of inference. In particular, a proof system is sound iff the only
formulas we can derive from premises A are logical consequences of A. Thus soundness
guarantees that we’ll never draw false conclusions from true premises. In symbols, a
proof system is sound iff for all sets of premises A and every possible conclusion ¢,

A F ¢ implies that A = ¢.

Conversely, a proof system is complete iff whenever a set of formulas A entails (logi-
cally implies) ¢, we can also derive ¢ from A. Thus completeness guarantees that we will
never fail to derive a logical consequence of a set of premises, assuming that we use some
systematic method of trying all possible proofs. In symbols, a proof system is complete
iff

A | ¢ implies that A F ¢.

Thus for a sound and complete proof system we have

AF ¢ if and only if A | ¢.

It turns out that FOL does indeed have sound and complete proof systems. In fact,
the axiomatic system mentioned above (with MP as its only rule of inference) is sound
and complete, and there are many other sound and complete proof systems for FOL.

A slightly weaker form of completeness is refutation completeness. What this means
is that for any unsatisfiable set of formulas, we can derive a contradiction:

If A is unsatisfiable, then A F o.

Proving soundness of a proof system is a simple matter, once we have established the
soundness of the individual rules of inference. We just need to do a simple induction on

the lengths of proofs.

Proving completeness is quite another matter. It involves a construction of a model
where terms denote themselves, i.e., the domain of discourse consists of “objects” like
“A” “B”, “John”, “father-of(John)”, “f(A,g(B))”, etc. More accurately, when we allow
for equality, the terms denote equivalence classes of terms related by equations. This
ingenious construction, due to Henkin, is beyond the scope of this course. However,
in connection with resolution-principle theorem proving, we may prove refutation com-
pleteness for resolution, applied to clauses without equality.

Generalized proof systems with “backward” deduction rules

When people do mathematical proofs, they rarely rely entirely on forward rules of infer-
ence. For example, the following is a familiar mode of reasoning: we are given premises
A and wish to show (¢ = 1); we do this by assuming the antecedent ¢, adding it to the
premises, and then trying to show ¢. Our intuition is that this is sufficient to demon-
strate the truth of the desired conditional formula. Symbolically, this rule of Assumption
of the Antecedent (AA) can be written as follows:

AE(p=17)
Aoy

The double line (not a standard notation!) indicates that if we wish to establish the
“numerator”, it is sufficient to establish the “denominator”. In other words, the problem
of demonstrating the relation in the numerator can be “reduced” to the problem of
demonstrating the relation in the denominator. (Briefly, the numerator is implied by the
denominator; note that this is the opposite as in forward inference rules!)

AA:

Some additional examples of backward rules are And Reduction (AR), Or Reduction
(OR), and Reductio ad Absurdum (RA):
AEGAY o AE@VY L ape
AE ¢, and A E o LAY A ¢ED
AR and OR should be pretty much self-explanatory. The third rule, RA, is very impor-
tant, both because it is commonly used in mathematics and because it plays an important
role in resolution proofs. What is says is that to establish a formula ¢, we can assume
the negation of ¢, and hence derive a contradiction. Again, it seems intuitively clear
that this is a sound method of proof. However, rather than relying on our intuitions, we
need to prove such rules sound. This is left as an exercise, but the following illustrates
the sort of argument we use.

AR :

Example proof of soundness for a backward rule

The following is a “less powerful” — but still sound — version of OR:
AE(¢VY)
AEé

Let’s prove that this is sound. Since the claim is that establishing the “denominator”
is sufficient to establish the “numerator”, let’s assume the denominator and then prove
the numerator.! Thus we are assuming that

A):d)a

ie.,
For all models M such that Ep A, Eaq 6.

With this assumption in mind, we now want to show

A= (pV),

ie.,
For all models M such that Fap A, Ea (¢ V).

So consider an arbitrary model M such that ¢ A. (This is another implicit use of
Assumption of the Antecedent!) We want to show that = (¢ V ¢). But from the two
assumptions we have made, we know that

Em o, ie.,
for all v.a. U, = ¢[U]; hence,
]

for all v.a. U, = ¢[U] or Y[U]; hence
for all via. U, Em (¢ V)[U] (by sat’'n cond’s for V);

ie, Fum (9VY).

This establishes that, if the “denominator” is true, then any model M of A is a model
of (¢ V ¢) and hence completes the proof.(]

Examples of proof systems

You’ve already seen an example of a forward-deduction system that relies heavily on
axioms, namely the 8-axiom system with MP above. There is also a deduction system
with 13 axiom schemas and one rule of inference, MP, in the Genesereth & Nilsson
reference (on Carlson reserve, as mentioned before). The two are quite similar, except
that the one in G&N is only for FOPC rather than FOL (no allowance for equality);
on the other hand, it has extra axioms to deal explicitly with some of the “extra”
connectives, like biconditional, rather that relying on definitional replacement of those
connectives.

The system of Pelletier in the “Natural Deduction” handout is a good example of a
system that relies at least as much on backward deduction as on forward rules. Proofs
tend to be much easier to construct in such a system. Note that no axioms at all are
used. Also note that the formal definition of a proof becomes more complex than in the

We are using Assumption of Antecedent in doing so. This may seem strange — why prove these rules
sound if in doing so we need to use them? The answer is that we are doing metalevel reasoning about a
formally defined operation. The formally defined operation, in this case, is the backward inference rule
above. Naturally, in proving anything — even if it is a claim about formal rules of inference — we have to
use some rules of inference!

case of a forward deduction system. (We won’t attempt such a definition.)

Our next topic will be theorem proving based on the resolution principle. In this
approach to deduction, we work in two stages, in effect using two different languages.
We start off with an unconstrained first-order language for expressing the premises and
desired conclusion of a theorem-proving problem. We then apply the reductio ad absur-
dum rule exactly once, adding the denial of the conclusion to the premises. Then we
convert to a quantifier-free form called clause form, and from that point on we try to de-
rive the empty clause 0, using forward inference based resolution, plus possibly factoring
and paramodulation. Resolution is a generalization of MTP (“cancelling” contradictory
parts of two clauses), while factoring is a kind of simplification and paramodulation is a
generalized form of substitution of equals. If there are no occurrences of equality in our
premises or desired conclusion, we get by entirely without axioms. If we want to reason
with equality, we sometimes need the self-identity axiom

x = x (with the variable x undestood to be universally quantified).

Resolution principle theorem proving is relatively easy to implement, and resolution
proofs are also fairly natural and easy to follow, at least compared with proofs in ax-
iomatic systems with just a weak rule like MP. This accounts for its popularity in Al,
including its use as a basis for the Prolog programming language.

