
CSC 244/444 Lecture Notes Oct. 7, 2021

Semantic Nets (a Supplementary Grad Topic)

Semantic networks are a graphical representation
of knowledge that can be helpful in formulating
efficient algorithms for “taxonomic” reasoning,
property inheritance, “semantic priming”, mak-
ing analogies, etc.

Semantic nets and type hierarchies

Relational networks (now often called “knowledge graphs”)

Semantic networks were among the earliest devices proposed for representing knowledge
(e.g., M. Ross Quillian’s work up to 1968, mentioned again later). Early versions tried
to capture generic relations such as “plants need water”, where “plants” and “water”
would be represented as labeled nodes (vertices) and “need” would be a labeled directed
edge between them. Later work showed how to extend such networks to represent not
only generic or quantified propositions but also particular facts, such as that “Jack are a
pizza in the kitchen” (where an event argument is intruduced as well). In recent years,
generic semantic networks have been revived under the name “knowledge graphs”, with
less attention paid to how such networks can be interpreted compared to past work.

Type hierarchies specify a network of relationships, namely the relationship of types
(like CANARY) to their superordinate types (like BIRD), and the relationship of partic-
ular individuals (like FIDO) to their types (like DOG). The binary predicates we use to
specify these relationships are s (subset of) and e (element of). So a network for a type
hierarchy is a relational network based entirely on binary predicates (semantically, binary
relations). The use of a set-membership relation, e, can be seen as a way of “coercing”
a monadic predication like DOG(FIDO) into binary format, FIDO –e–>DOG.

Besides taxonomic relationships, we can also readily represent other binary relation-
ships, such as the relationship of block A being ON block B in a blocks world, or the
relationship of JOHN EATing PIZZA3 (a particular pizza). We simply use arcs (edges)
with labels such as ON and EAT to connect the entities involved in the relationship, as
in the following network fragments:

1

Len Schubert
Oct. 17, 2022

A B
ON

 BLOCK

JOHN1 PIZZA3

 PIZZA PERSON

EAT

e e
e e

Fig. 2: Binary relations (predicates) as arc labels

This type of relational network has been used in many experimental systems, for
instance in Patrick Winston’s 1970 program for learning blocks-world concepts such as
“house” (a block with a wedge on top) and “arch” (two upright blocks supporting a
horizontal block or wedge). An advantage of the network representation for such an
application is that it readily suggests graph-matching algorithms for finding similarities
and differences between the representations of different situations in a simple world such
as a blocks world.1

But note that in using e (set membership) to relate an individual to a 1-place pred-
icate like DOG, while using an arc label to relate individuals involved in a relation
like ON, we are mixing two very different notations. Furthermore, the notation does
not extend in any obvious way to 3-place predicates, 4-place predicates, etc. A more
uniform alternative, to be explained shortly, is to go from relational to propositional

semantic networks. But first we will look at an extension of the relational approach
based on “breaking down” all predications corresponding to English verbs into a 1-place
predication and one or more binary predications.

The idea of this approach is clearest from an example. Consider again “John ate the

pizza”. We can view this sentence as saying that there exists an “eating event”, with
the added information that the agent of the eating is John and that the theme (i.e., the
thing acted on) is the pizza (say, PIZZA3 as before). This breaks down the original
relationship into a type specification and two binary predications as follows:2

∃e. EAT(e) ∧AGENT(e,JOHN1) ∧THEME(e,PIZZA3)

We can replace the event variable by a Skolem constant, say E5, and then rewrite the

1See Winston’s “Learning structural descriptions from examples”, in P. Winston (ed.), The Psychology

of Computer Vision, McGraw-Hill, 1975, 157-209.
2The idea of introducing an event variable into the logical translations of verbs is due to Donald

Davidson, though he did not suggest breaking down the information in an action sentence as is done
here. He would have represented “John ate the pizza” as ∃e.EAT(e,JOHN1,PIZZA3) (if we ignore the
past tense). See D. Davidson, “The logical form of action sentences”, in N. Rescher (ed.), The Logic of

Decision and Action, U. Pittsburgh Press, 1967. Reprinted in D. Davidson & G. Harman (eds.), The
Logic of Grammar, Dickenson, 1975, 235-245.

2

above predications by the network relations

E5 –e–>EAT, E5 –agent–> JOHN1, E5 –theme–>PIZZA3.

In linguistics, relations such as AGENT and THEME, connecting an event or situation to
the participating entities, are called thematic roles, and the representations of sentences
based on such roles is referred to as ‘neo-Davidsonian’.)3 One of the advantages of neo-
Davidsonian representations of sentences (shared with the original Davidsonian ones) is
that they allow us to express many kinds of modifiers of such sentences, such as temporal
and locative modifiers, in a straightforward way. In particular, we can capture the past
tense information in “John ate the pizza” by asserting that the eating event, E5, is before
the now-point (the time of speech), say NOW34:

E5 –before–>NOW34 .

Further, if we consider the modified sentence “John ate the pizza in the living room”, we
can capture the locative information by asserting that E5 is located in the living room
(say, LIVING-ROOM1):

E5 –loc-in–> LIVING-ROOM1 .

Putting all this information in graphical form (and adding type information that JOHN1
is a PERSON, PIZZA3 is a PIZZA, and LIVING-ROOM1 is a LIVING-ROOM), we
obtain the following relational semantic net:

JOHN1 PIZZA3

E5

PIZZAPERSON

LIVING−ROOM1

LIVING−ROOM

NOW34

e
e e

e

agent theme
before

loc−in

EAT

Fig. 3: ‘Eating’ as a monadic event predicate, with thematic relations (neo−Davidsonian)

The neo-Davidsonian approach easily extends to the representation of verbs with more
than two thematic roles, such as “give”, which normally relates at least 3 enities, as in
“John gave the pizza to Mary”; here the event type is GIVE, John is still the agent,
the pizza is again the theme, and Mary is the recipient. (You should have no trouble
representing this sentence as a relational semantic net, including the tense information
and any modifiers such as “in the kitchen” or “yesterday”. Think of this last modifier as
saying that the event is during a particular day, and this particular day is immediately-

3See, e.g., T. Parsons, Events in the Semantics of English, MIT Press, 1990.

3

before an instance of today, say, TODAY345.)

However, semantic nets based on neo-Davidsonian sentence representations lose some
of their appeal when we try to introduce logical connectives and quantifiers. For example,
how should we represent the negation of a sentence like “John ate the pizza”? This
requires saying that there does not exist a (past) eating event whose agent is John and
whose theme is the pizza. In other words, for every event, either it is not in the past, or
it is not of type EAT, or its agent is not John, or its theme is not the pizza in question
(PIZZA3).

A simple form of negation that is frequently introduced into relational semantic nets
is negation of arc-labels. For example, we might use JOHN1 –¬e–>PERSON to express
that John is not a person, or E1 –¬theme–>PIZZA3 to express that the thing eaten in
eating event E1 was not the particular pizza denoted by PIZZA3.

Introducing disjunction is more problematic. Note that facts, or propositions, are
represented by labeled arcs in these networks. For instance, the fact (or proposition)
that John is a person is represented by the arc JOHN1 –e–>PERSON. But then to form
a disjunction of such facts requires some way of linking together arcs, and saying that
these form a disjunction. A notation loosely based on Winston’s might be as follows:

JOHN1

PERSON GORILLA

e e

OR

Fig. 4: Disjunction in a relational semantic network

Note that the OR-arc is shown as being directed, but we could make it undirected since
disjunction is symmetric in its operands. However, if we also wish to represent other
connectives, such as implication, then the direction matters.

At this point we have a “sufficient” set of connectives, in the sense that FOL formulas
can always be changed to clause form, and this involves no other connectives except
atomic negation and disjunction of literals (in network terms, negated or unnegated
arcs). However, we are still lacking quantifiers. Again taking our cue from clause form,
we can use variables to represent universal quantification. We will use names prefixed
with “?” for (universal) variables, to distinguish them from other node names (constants).
So for instance to represent

∀x. PERSON(x) ⇒LOVES(x,MARY3),

4

i.e, “Everyone loves Mary” (formalized without introducing events or thematic relations),
we could use either of the following relational networks:

?x

PERSON

MARY3

OR
e

?x

PERSON

MARY3

e
=>

LOVES LOVES

Fig. 5: Representing universal quantification with variables

The network on the left uses implication, and the one on the right disjunction (in effect,
clause form) for the same proposition.

Now let’s try to represent this in terms of events and thematic relations. Actually,
the term “event” is somewhat inappropriate for a static relation like LOVES, so we will
broaden our concept of an event to include things that might more properly be called
situations, circumstances, or eventualities (e.g., the situation or circumstance of a certain
individual loving Mary).4 First writing this out in FOL, we have

∀x. PERSON(x) ⇒∃e. LOVES(e) ∧AGENT(e,x) ∧THEME(e,MARY3),

where we can think of e as the event or situation of x loving Mary. We Skolemize the
existential variable,5 and drop the universal quantifier (rewriting x as ?x):

PERSON(?x) ⇒LOVES(sk(?x)) ∧AGENT(sk(?x),?x) ∧THEME(sk(?x),MARY3).

We Skolemized since we don’t have a network notation for existential quantifiers (‘de-
pendent’ on a wider-scope universal quantifier). However, now we have the problem of
representing the Skolem term, sk(x), as part of a network. We could represent func-
tional terms as subnetworks by introducing new linkage types, but let us instead allow
functional terms directly as node labels. Then the network equivalent of the above
proposition is as follows:

4Situation semantics uses the term “situation” to encompass both event-like and situation-like entities.
The term episode is used in episodic logic, with much the same meaning.

5We can Skolemize even though we have not eliminated implications, since the existential quantifier
is in a ‘positive’ environment, i.e., it would remain an existential quantifier even after elimination of
implications and distribution of negation.

5

PERSON
LOVES

?x

sk(?x)

MARY3

e

=>

=>
theme

agent

e

=>

Fig. 6: A Skolem function corresponding to a ‘LOVES’ situation

Note that we have to use 3 implications (or 3 disjunctions), since we don’t have an
explicit network notation for conjunction. In effect, the three implications correspond
to the 3 clauses we would get in converting the FOL formula to clause form. (You can
also think of them as 3 Horn clauses.)

Propositional semantic networks

With the introduction of limited forms of logical connectives and quantification, we are
‘pushing the limits’ of the relational network notation. We still have no representation
for ternary (etc.) relations, except by breaking them down using thematic roles; we have
no negation of compound formulas (just atomic formulas), no disjunction of more than
two propositions (try it!), no existential quantifiers and no network representation of
functional terms.

There are certainly various specialized applications that require no more than the
relational network constructs (perhaps without disjunction and universal quantification).
Nonetheless, if we want to develop a semantic network representation that is as flexible
as FOL, we would like a general way of representing arbitrary FOL formulas as networks.
This is what propositional semantic networks provide.

Roughly speaking, the ‘translation’ from FOL to propositional semantic networks is
simply this:

Given any FOL expression φ (wff, term, or atom),

1. Create a node for φ, provided none exists as yet;

2. If φ is not an atomic symbol, then

(a) create nodes for the top-level subexpressions of φ, where none exist as yet;
this will include a node for the top-level operator of the expression, such as a
predicate, function, logical connective, or quantifier;

6

(b) insert directed edges from the node for φ to the nodes for the top-level subex-
pressions of φ; label these edges in some systematic way to make clear what
the syntactic roles of the subexpressions are, in relation to φ;

(c) if any of the subexpressions of φ are again non-atomic, expand them into
networks in the same way as described for φ.

For example, consider the formula LOVES(JOHN1,MARY3). To represent this as a
propositional network, we create a proposition node for the formula (proposition) as a
whole. Then we create nodes for LOVES, JOHN1 and MARY1 (if none exist yet), since
these are the top-level subexpressions. Finally, we add directed edges from the propo-
sition node to the three subexpression nodes. We label these in some systematic way
to indicate what syntactic roles they play in the proposition; for instance, we might use
pred, arg1, arg2 respectively to indicate that LOVES is the predicate of the proposition,
and JOHN1 and MARY3 are the first and second argument respectively. The result is
this small propositional network:

P1

LOVES

JOHN1 MARY3

pred

arg1 arg2

Fig. 7: A simple propositional semantic net

Note that we have arbitrarily labelled the node for the proposition as a whole “P1”, just
so we have an unambiguous way of referring to that node. This network is rather like
some of the relational nets we have seen, but it is crucial to appreciate the differences in
semantics. Unlike the e (membership) relation in relational nets, the pred label is merely
a syntactic indicator, and the same goes for arg1 and arg2. In fact, in a propositional
semantic net none of the edge labels are semantically interpreted – only the nodes receive

semantic values.

The semantic values of the nodes are just what you would expect from the close
correspondence between FOL syntax and the network syntax: LOVES is interpreted as
a binary relation (a set of ordered pairs), and JOHN1 and MARY3 are interpreted as
individuals in the domain of discourse. The proposition node, P1, is either true or false
in any given model.

In the same way, we can map more complex formulas into propositional networks,
following the above procedure. The two networks below encode “Everyone loves Mary”,
based on the FOL formula

7

∀x. PERSON(x) ⇒LOVES(x,MARY3),

and “Everyone loves someone”, based on the FOL formula

∀x. PERSON(x) ⇒∃y. PERSON(y) ∧∃e. LOVES(x,y,e),

after Skolemization to

PERSON(?x) ⇒PERSON(sk1(?x)) ∧LOVES(?x,sk1(?x),sk2(?x)).

Figure 8: Propositional networks for "Everyone loves Mary" (with explicit∀), and "Everyone loves someone"

P1∀

P2

P3 P4

=>

PERSON

MARY3

 ?x
quan var

scope

arg1
pred

arg1

LOVES

pred

arg2arg1

op

=>

P1

P2 P3

P4 P5

t1 t2sk1 sk2
?x

PERSON AND

pred

arg1

op

op

arg2arg1

arg1
arg2

arg3
arg2

arg1

func func
arg1

arg1

pred

LOVES

pred

Note two differences in the kinds of representations that have been used in the two nets
(just to illustrate some of the possibilities). The network on the left ignores situations/
events, while the one on the right includes an explicit Davidsonian event argument; and
the network on the left includes an explicit quantifier, while in the network on the right
quantification is implicit in the variable node ?x. These differences reflect differences in
the original FOL formulas.

These rather complex networks may make you wonder whether there is any point
in a network representation. After all, given the way the networks were obtained, they
are just another way to represent the expression-subexpression structure of FOL (or any
other logical formalism based on expressions)! The answer is that as far as propositional
content is concerned, FOL and propositional networks are indeed equivalent. So from
that perspective, it is a matter of taste which representation we use. The FOL repre-
sentation is really the more practical, since it is more concise and much easier to write
down and read.6

However, as pointed out before, graphical representations can be very helpful in the
formulation of data structures and algorithms appropriate for some kinds of knowledge

6For further discussion of the relation between logic and networks, see L. Schubert, “Extending the
expressive power of semantic networks”, in Artificial Intelligence 7, 163-198; and “Semantic nets are in
the eye of the beholder”, in J. Sowa (ed.), Principles of Semantic Networks, Morgan Kaufmann, 1991,
95-107.

8

retrieval and inference tasks, One idea that networks suggest is that we should be able
to travel not only from propositions to their parts and participants, but also in the
“backward” direction, from the entities referenced to the propositions about them. So by
allowing bidirectional edge traversal, we can find all the explicitly known facts about any
entity by going to the unique node for that entity, and travelling “backward” along the
incident links to proposition nodes. This can be useful for ‘object-oriented information
retrieval’, e.g., for responding to a question such as “What do you know about John”, or
“What does John look like?”.7

Another idea, going back at least to the sixties, is to use signal propagation along the
edges in a semantic net to determine how closely related two concepts are: the sooner
the signals from one arrive at the other, the more closely related they are likely to be.
M.R. Quillian used this idea to do some early work on disambiguation. For instance, in a
sentence like “John watered the plant”, he suggested that we choose the ‘vegetable’ sense
of “plant” in favor of the ‘industrial plant’ sense, because there are shorter semantic net
pathways connecting the former sense to a sense of “watering” which means providing
water as nutrient to a plant.8

The above uses of semantic nets could be called “associative” processing; i.e., they
let us find associations between entities (objects, types, propositions, etc.). In the next
subsection we look at techniques that can more properly be called inference techniques.

Inference in semantic nets

Transitivity inference

A particularly simple and natural kind of inference is transitivity inference of the sort
mentioned at the beginning. If there is a directed path from a token node A to a type
node P , with successive edge labels e s s ... s, we can infer A–e–> P ; and if there is a
directed path from type node P to type node Q, where all edge labels are s, then we can
infer P–s–> Q.

Normally we would not add such inferences to the network, since this could ‘clutter’
a network containing n facts with O(n2) new arcs (each representing a fact inferred by
transitivity). However, we can easily make the required inferences whenever the desired
result is posed as a query, or arises as a subgoal in some inference task. In the following
we focus on query-answering. When we are using a network representation of facts, it is
natural to represent the queries as networks as well. For example, the following network
corresponds to the query “Is Fido a mammal?”, which can easily be answered with the
network in Fig. 1, using transitivity inference.

7For the latter query, it is useful to have a classification of the propositions accessible from each object;
for instance, propositions about an object’s outward appearance might comprise a separate category (e.g.,
see J. DeHaan and L.K. Schubert, “Inference in a topically organized semantic net”, AAAI-86, 334-338.

8M. Ross Quillian, “Semantic memory”, in Marvin Minsky (ed.), Semantic Information Processing,
MIT Press, 1968, 216-270.

9

MAMMAL

HUMAN DOG

FIDO

s s

e

(From Fig. 1)

MAMMAL

FIDO

e

QUERY

Figure 9: A simple transitive query

Network matching

Another simple type of query-answering can be accomplished by network matching. For
example, consider questions such as

Did a pizza get eaten?

Where did John eat the pizza?

in relation to Fig. 3. The logical form of these queries, using thematic roles as in Fig. 3,
is

? ∃x. PIZZA(x) ∧∃e. EAT(e) ∧THEME(e,x)

? ∃x. ∃e. EAT(e) ∧AGENT(e,JOHN1) ∧THEME(e,PIZZA3) ∧LOC-IN(e,x)

(We put the question mark in front to indicate that this ‘operator’ operates on the entire
formula.) As query networks, these are

EAT

?e

PIZZA

e

?xtheme

e

EAT

?e
?x

PIZZA3JOHN1

e

agent
theme

loc−in

(a) (b)

Figure 10: Two queries that can be answered for figure 3

We can easily see how these graphs can be matched against the network in Fig. 3, allowing
affirmative answers. The matching process can be viewed as a kind of unification process,
in which variable nodes become unified with other nodes. Note that the pizza in the
first query is represented by variable node ?x, and the eating event by variable node
?e; ?x becomes bound to PIZZA3, and ?e to eating event E5, in Fig. 3. Similarly the

10

eating location and the eating event in the second query are represented by variable
nodes ?x and ?e, and these become bound to LIVING-ROOM1 and E5 respectively in
the matching process.

Here the variables in the queries correspond to existentially quantified variables in
the logical form. This is the opposite of clause form, where variables are regarded as
universally quantified. We’ll comment further on that shortly. Note also that from a
resolution perspective, matching a query graph against a given network may correspond
to multiple resolution steps. If we had answered the first pizza-query by resolution, we
would have negated it and converted to clause form, obtaining

¬PIZZA(x) ∨¬EAT(e) ∨¬THEME(e,x).

Now, the network in Fig. 3 can be viewed as containing the clauses

PIZZA(PIZZA3), EAT(E5), THEME(E5,PIZZA3),

among others, and these together with the denial clause obviously yield the empty clause
in three steps. The graph-matching process closely parallels this resolution refutation.
However, we are working with the positive form of the query, rather than its denial, and
so conjunctions in the query do not get converted to disjunctions.

Network matching plus transitivity inference:
Property inheritance

Answering a query may of course require more than one step, as in logical deduction in
general. Consider the question

Does John love Mary?

Since we have considered several different network notations, there are several ways to
formulate this as a network query. First, if we keep LOVES as a binary predicate (rather
than using thematic roles), and use a relational network notation, then the query network
is simply as in Fig. 11(a) (cf., Fig. 5). If we decompose the question using thematic
relations, then the resultant relational query network is as in Fig. 11(b) (cf., Fig. 6).
Finally, if we use a propositional semantic network syntax (and do not decompose into
thematic roles), we obtain the network in Fig. 11(c) (cf., Fig. 8).

11

JOHN1
LOVES

MARY3

LOVES

JOHN1 MARY3

e

agent theme

LOVES

?p

JOHN1 MARY3

?e

pred

arg1 arg2

(a) (b) (c)

Figure 11: Three ways of asking ’Does John love Mary?" (see figs. 5, 6, and 8 respectively)

We can attempt to answer the question, in any of these forms, by matching the cor-
responding queries against the networks in Figs. 5, 6, and 8. Let’s begin with query
format 11(a), matching this against Fig. 5 (left-hand network). We succeed, unifying
?x with JOHN1. However, we are not done because the edge we have matched, ?x –
LOVES–>MARY3, is part of a logical compound, namely an implication. In other
words, ?x –LOVES–>MARY3 is not asserted by the network, but rather an implication
is asserted that has ?x –LOVES–>MARY3 as its consequent. We can “reason back-
ward” in this implication, forming the new goal JOHN1—e–>PERSON. (This is the
antecedent of the implication, with the unifier applied to it.) Clearly, if we had this
type information explicitly in the network, we would succeed in one further matching
step. Now it may be that we have the following information as part of a type hierar-
chy: JOHN1—e–>MAN—s–>PERSON. In that case, we can solve our subgoal with a
simple transitivity inference.

Much the same kind of query matching, with creation of a subgoal, would occur
in matching query 11(b) against the network in Fig. 6, or query 11(c) against the first
network in Fig. 8. In each case, we could complete the answering process if we had a
type hierarchy containing the fact that John is a man, and that men are persons.

When answering a query involves use of a type hierarchy as in the above examples, we
are in effect making use of property inheritance. In general, property inheritance refers
to the transfer of properties from a higher node to a lower node in a type hierarchy.
In the above example, we used the fact (encoded in 3 variant networks) that every
PERSON loves Mary to infer that JOHN1 loves Mary. So we transferred the property of
loving Mary from the higher-level PERSON node to the lower-level token node, JOHN1.
Because of the ease of checking hierarchy relationships in a semantic net, a semantic
net representation is considered particularly appropriate for applications emphasizing
property inheritance. (However, it should be pointed out that we can get the same effect
with, say, a clausal reasoning system that uses a type specialist to do type checking.
In such a case, it might be appropriate to view the type specialist, but not the clausal
knowledge base as a whole, as a semantic net.)

12

Now let’s look a little more closely at the representation of queries in quantifier-
free form. As already noted, it is the existentially quantified variables that are retained
as variables in the query. In fact, in general the proper way to eliminate quantifiers
in a query (or goal to be proved) involves reverse Skolemization: we replace universally
quantified variables by Skolem constants and functions, where the arguments of a Skolem
function are all the existentially quantified variables in whose scope it lies. That this
makes sense is clear from the analogy to resolution refutations: even though we are
not using the denial of the query, we want unification to work just as in the case of a
resolution refutation, and so we Skolemize as if we had negated the query. For example,
the question

“Is there someone that everyone loves?”, i.e.,

?∃y. PERSON(y) ∧∀x. PERSON(x) ⇒LOVES(x,y),

becomes

?PERSON(y) ∧ (PERSON(F(y)) ⇒LOVES(F(y),y)).

If we convert this to a network and match it against the network in Fig. 5 (on the left),
we succeed for implicative part of the query, unifying ?y with MARY3 and F(MARY3)
with ?x. It then remains to verify PERSON(MARY3), represented in network form as
MARY3—e–>PERSON, which could again be done with a suitable type hierarchy.

We should note that propositional semantic nets may not make property inheri-
tance quite as easy as relational nets. The ‘algorithm’ given for generating propositional
semantic networks from FOL representations does not immediately guarantee the con-
version of type relations into a simple network format. After all, the FOL encoding
of a statement such as that all dogs are mammals would be a quantified implicative
formula like ∀x.DOG(x)⇒ MAMMAL(x). This translates into a rather complex propo-
sitional network fragment. We can simplify type relationships by augmenting FOL to
allow statements such as SUB(DOG,MAMMAL) (DOG is a subtype of MAMMAL). We
would treat SUB as having a fixed semantics (namely, as expressing the subset relation),
independent of the chosen interpretation. This would now lead to quite a simple net-
work fragment as well, and property inheritance would then be as easy as in relational
semantic nets.

Nonmonotonic inheritance

Finally, we should take our first look at a type of nonmonotonic reasoning. We cannot
always express our general knowledge about types of objects in the world as universal
statements. For example, it seems true to say that canaries fly (or can fly), yet we know
there are exceptions, such as fledgling canaries, canaries with clipped wings, and perhaps
some genetically abnormal canaries.

We could represent this ‘generic’ (but not universal) property of canaries by some new
type of link, which will be notated here as an unlabelled arc. (This is rather appropriate,

13

since we’re not sure what such links mean!)

CANARY——>FLY

We read this as “Generally, canaries fly”, or “By default, canaries fly” if we want to
emphasize the fact that this is not a universal statement. Now if we also have

TWEETY—e–>CANARY,

then we would like to tentatively infer (given no information to the contrary) that Tweety
flies. So this is a kind of transitivity inference (or simple property inheritance), but one
which leads to conclusions ‘by default’. Now suppose we also know that

TWEETY—e–>FLEDGLING-CANARY—s–>CANARY,

i.e., Tweety is a fledgling canary and all fledgling canaries are canaries. Further, we know
that generally fledgling canaries don’t fly, though maybe some particularly precocious
ones do. So this is another generic property, but a negative one. We’ll notate this by
‘crossing out’ a generic arc:

FLEDGLING-CANARY–|–>FLY

But now we have a conflict, if we try to answer the question, “Does Tweety fly?”. One
path in the network, running from TWEETY to FLEDGLING-CANARY to CANARY
to FLY (the last step, by a default arc), leads to the conclusion that Tweety flies, while
the other path, from TWEETY to FLEDGLING-CANARY to the negation of FLY
(where the last arc is a negated default arc), leads to the opposite conclusion.

Clearly, if default links were given a universal interpretation (and negative default
links a universal negative interpretation), we would have an unsatisfiable network. Even
if we do allow for exceptions, it’s not clear what conclusion we should draw, given the
two paths. Should we perhaps draw no conclusion at all about Tweety’s flying status,
given the contrary bits of evidence?

Well, intuitively, the conclusion in this case should be that Tweety doesn’t fly. This
conclusion can be assured if we stipulate that default property inheritance from a lower

type node ‘wins’ over property inheritance from any node lying higher on the same inher-

itance path. Intuitively, the information based on fledgling canaries is more specific than
the information based more generally on canaries (which lie above fledgling canaries in
the type hierarchy); this more specific information should override the more general. It
is possible to justify such a stipulation if we use a probabilistic semantics for generic
statements,9 but that’s beyond our current purview.

There are cases where we have conflicting evidence, but the above stipulation does
not help us arbitrate a conclusion. A famous example is the ‘Nixon diamond’: we are
given

NIXON—e–>QUAKER—->PACIFIST, and

9See F. Bacchus, Representing and Reasoning with Probabilistic Knowledge, MIT Press, 1990.

14

NIXON—e–>REPUBLICAN–|–>PACIFIST,

i.e., Nixon is a quaker and quakers are (generally) pacifists; but Nixon is also a Repub-
lican, and Republicans are (generally) not pacifists. In the corresponding network there
is of course only one node for NIXON and one for PACIFIST, hence the four links form
a “diamond”. In this case it seems reasonable to abstain from drawing a conclusion –
there is simply no way to arbitrate among the conflicting ‘arguments’ for and against
the conclusion.10

CANARY

TWIGGY FLEDGLING−
CANARY

TWEETY

FLY

e s

__

e

QUAKER REPUBLICAN

PACIFIST

NIXON

e e

Fig. 13: Conflicts in default inheritance

(a) Does Tweety fly? (b) Is Nixon a pacifist?

Rules have been invented for more complicated cases, where we have multiple default
arguments for and against a conclusion, and the paths corresponding to these arguments
overlap in various ways. Some of these rules can be justified by probabilistic semantics,
but in general the whole area of default reasoning is not yet on very firm semantic ground.

10However, if we had some knowledge of proportions of quakers who are pacifists and proportions of
Republicans who are nonpacifists, we might be able to draw some reasonable tentative conclusion.

15

