CSC 244/444 Nov. 22, 2021

Neural Networks:!

Neural networks have proved very effective for learning to classify
images, speech, text and other patterns, but also to transduce such
patterns into other patterns, for example mapping one language to
another (or to a logical form), mapping images to captions, gener-
ating possible continuations of given partial stories, etc. However,
pattern transduction falls short of thinking, and neural networks
require massive training data, whereas people learn concepts from
far fewer examples, and learn new facts by being told or reading.

1 Evolution of Neural Net Technology towards
“Deep Learning”

What are neural nets?

(Artificial) Neural Networks (ANNs, or just NNs), as understood in Al, are networks
of computational units that resemble networks of neurons in the brain. I.e., the units
compute a weighted sum of their inputs, and apply a “threshold function” (also called an
“activation function”) to produce a single output. This output is 0 or low if the weighted
sum of inputs is below threshold, while it is high (typically close to 1) if the weighted
sum of inputs is above threshold. The weights applied to the inputs received by a unit
can be altered in the course of learning. They can be thought of either as (modifiable)
properties of the unit receiving the inputs, or of the unit-to-unit connections.

Each neuron-like unit has a number of input connections to it and a number of output
connections leading away from it. Typically, units are arranged into layers, and function
either as input units, hidden units, or output units. Input units have a single input or
multiple inputs (which could be discrete or continuous) supplied from the outside, where
each input represents an element of the pattern to be processed; input units (typically)
transmit their output to multiple hidden units in the next layer via connections to those
units. Hidden units receive inputs from the previous layer, and transmit their output
through multiple connections to the next layer. Output units receive their inputs from
the previous layer, and their output represents an element of the NN’s final output. For
simple binary classification tasks, there might be just one output unit, supplying a choice
between the two classes. For multiple-choice tasks, we might have multiple outputs each
of which gives the probability of one of the choices being the correct one, with these
probabilities adding up to 1.

!Caveat: This an overview by a non-expert on this topic; For an up-to-date reference see Jurafsky &
Martin’s Speech and Language Processing, ch.7, http://web.stanford.edu/~jurafsky /slp3/7.pdf



A note about counting layers: There can be some ambiguity about how many layers a
NN has. Suppose that each unit of the initial “layer” sees the value of just one element
of the input pattern and neither applies a weight to it nor does any thresholding; i.e., it
simply transmits the given value to some number of units in the next layer. But then
that next layer is not hidden — its inputs are known; so we may well discount the layer
of transmission points as a layer of NN units. If, on the other hand, the input units
do weight and threshold their inputs, then even if each input unit just sees one element
of the input pattern and transmits its output to just one successor unit, it would be
counted as an input layer. In general, we can properly count any layer of units that
perform computations (other than identity) on their inputs as NN layers, even if the
weights applied to inputs are not adjustable, or no thresholding is done.

Some types of NNs

Perceptrons. The simplest kind of NN, a perceptron, has just one unit, accepting some
set of inputs and thresholding their weighted sum. Perceptrons were shown to be able
to learn to classify inputs (e.g., handwritten characters) by training them on labeled ex-
amples. Training involves use of classification successes and errors to modify the weights
of the connections from the inputs to the thresholding function, “rewarding” those con-
nections that contributed to correct outputs and “punishing” those that contributed to
incorrect outputs.

Perceptrons can learn to compute classifications only where the classes of inputs are
linearly separable. For example, in two dimensions (say, 2 input units with continuous
inputs), this implies straight-line separability of clusters of points in the Cartesian plane
corresponding to distinct classes; in three dimensions, it implies separability by a plane,
and in higher dimensions it implies separability by hyperplanes. Examples of classifi-
cation problems unsolvable by perceptrons are input parity (whether there is an even
or odd number of binary inputs) and connectedness (whether or not the “black” pixels
in a square binary array of black and white pixels are connected pixel-to-pixel or not).
The discovery of these limitation by Minsky & Papert in the late 1960s put a damper on
the initial hype that had accompanied the prior literature on perceptrons. Remarkably,
however, it was shown in later work that NNs with just one hidden layer (thus, 3 lay-
ers) could in principle compute any boolean function, could approximate any bounded,
continuous function, and implement any decision boundary; and with two hidden layers,
any function could be approximated. However, these results are not necessarily practi-
cal, because an exponential number of hidden units may be required for a given level
of approximation. In practice, adding more layers (possibly dozens) has been found to
improve NN performance. Also, note that function computation is intuitively inadequate
for reasoning over a knowledge base, which may involve a number of steps with no fixed
upper limit, and the knowledge base may be continually added to.

Feed-foward NNs. Networks in which signal propagation is unidirectional from layer
to layer (in effect, an acyclic directed graph) are called feed-forward NNs. There’s a



very convenient mathematical view we can take of such networks, where we regard each
hidden layer L as performing a matrix-vector multiplication, adding a vector of bias
amounts, and then thresholding the resulting vector uniformly (assuming that all units
in the layer use the same threshold function).

Why matrix-vector multiplication? Just think of each unit of layer L as receiving as
its input the entire vector of outputs of the previous layer. We can think of it that way,
because if a connection from a unit j in the previous layer to a unit ¢ in layer L is missing,
this is equivalent to unit ¢ assigning zero weight to the output of j. Now imagine the
weights that are applied by the units in layer L as rows of a matrix; i.e., row 1 contains
the vector of weights that unit 1 applies to the vector computed by the previous layer
(and thus supplied as input to layer L), row 2 contains the vector of weights that unit
1 applies to the vector computed by the previous layer, and so on. So you can see that
the product of this matrix times the vector of values received from the previous layer
yields another vector, consisting of the dot products of the rows with the received vector:
the desired linear combination of the values received from the previous layer. This dot
product is then shifted by some bias amount by the added bias vector, and the result is
thresholded to produce a component of the output vector of layer L. We’ll reiterate the
above perspective a little more formally later. Given this matrix-vector based view of
what an NN layer does, it is often natural to represent such a layer as a single node or
complex unit, performing a vector-to-vector transformation, i.e., a linear transformation
followed by uniform thresholding.

Recurrent NNs and LSTMs. Networks allowing cyclic signal pathways are called
recurrent networks. Important kinds of recurrent networks include Hopfield nets and
Boltzman machines, in which connections are bidirectional (and thus certainly “loopy”).
In Boltzman machines activation of units is probabilistic, rather than rigidly determined
by the inputs. Such networks can model associative access, in the sense of approximately
reproducing a complete learned pattern based on inputting parts of the pattern. In effect
they sparsely encode the learned patterns in the hidden layer(s).

In many natural language processing applications, recurrent neural nets with loops
serving as memory, particularly LSTMs (Long Short-Term Memory neural networks)
have played a key role. LSTM “modules” are in general made up out of units that
transform vectors, i.e., the inputs are vectors and the outputs are vectors (as per the
matrix-vector view described above). In LSTMs, a central (complex) hidden unit com-
putes its output vector based on “seeing” not only its current input vector (such as a
concatenation of “word embeddings” — words coded as vectors in a way that puts words
occurring in similar contexts close together in vector space) but also its own previous
output, modulated by an “input gate”. Roughly speaking, the gate may at various times
emphasize or de-emphasize the previous output of the central unit (depending on the
input), and this corresponds to the central unit “remembering” an earlier output, or
instead paying more attention to the current input in computing an output. The gate
works by applying weights to the vector components, but the weights are themselves



altered at every step as a function of the inputs. An LSTM also has an “output gate”,
that decides how much of the central unit’s output to pass on.

Transformer models The sequence-to-sequence style of text processing by LSTMs has
more recently (since about 2017) been overtaken in various applications by transformer
models. These use a so-called attention mechanism to decide what (derived) features
of an input sequence to focus on in deriving outputs, rather than processing inputs
sequentially and trying to “remember” important input features detected earlier. They
are usually divided into two main parts, an encoder and a decoder, each consisting of
multiple NN layers. In early versions of the attention mechanism (typically added to a
sequence-to-sequence model) the idea was just to dynamically identify segments of the
final encoder output vector (e.g., segments corresponding to words, or rather to feature
vectors derived from the embeddings of the words) that were particularly relevant to
computing the desired output (e.g., in next-word prediction). This identification is done
with attention subnetworks that pick out certain segments of the output of the final
decoder layer as particularly relevant to extending the decoder output, communicating
this information to the decoder.

Later versions abandoned the recurrent aspects of encoders and decoders, instead
using attention more extensively. In particular, several layers in both the encoder and
the decoder use “self-attention”: For each output segment z; of such a layer, matrix
operations are used to determine its “relevance” to each other segment x;. (Essentially,
feature correlations are detected; intuitively, for example, features of the subject of a
sentence may be found to be relevant to features of the verb of the sentence.) these
i-j relevance scores at segment x; are combined with a linear transform of x; itself and
the result is passed on to the next layer in the encoder or decoder. In the attention-
modulated layers of the decoder, not only self-attention is used to determine outputs
to the next layer, but also encodings generated by the encoder layers. The layers with
self-attention in both the encoder and the decoder are followed by several more standard
feed-forward layers. The final decoder layer usually generates a distribution over likely
answers (using softmax — exponentiated individual answer values divided by the sum of
all exponentiated answer values).

Typically transformer models are pretrained on very large amounts of general data,
and for particular kinds of tasks are “fine-tuned” on examples of those tasks, altering
the weights in just the last few layers of the encoder and decoder. Language models
based on transformers (most famously GPT-3, and also the less data-huungry GPT-2,
BERT, and RoBERTa) can be used for word or sentence prediction based on quite long
(multi-sentence) prior text segments, for filling in missing words or phrases, summarizing,
answering questions, engaging in chat, etc. They are extremely good “mimics”, when
trained on very large amounts of data; for example, GPT-3 was trained on 45 terabytes
(45 million million bytes) of textual materials (Wikipedia, novels and other books, news
media, social media like Twitter, WeChat, Quora, etc.) and uses 175 billion parame-
ters. However, such machines do not think or reason, based on provided information in



conjunction with background knowledge, as people do.

Types of learning methods in NNs

In the 1960s and 70s, an obstacle to effective use of multilayer NNs was a lack of good
methods for training such networks using labeled examples: How can one assign “credit”
or “blame” to connection strengths of inputs to hidden units? This problem was solved
by using differentiable threshold functions and backpropagation. Essentially, this involves
taking the derivative of the (squared) output error (for a given NN input pattern) with
respect to each connection weight in the NN, and adjusting the weight in a positive or
negative direction depending on whether that derivative is negative or positive respec-
tively. In the original conception of perceptrons, threshold functions were discontinuous
step functions, and as such not differentiable. It was the introduction of continuous
sigmoid functions or hyperbolic tangent functions as threshold functions (see below) that
made backpropagation possible. The mathematics of backpropagation was already de-
veloped in the 1960s, but it was not until the 1970s that the applicability to NN learning
began to be appreciated, and it was only in 1986 that an experimental demonstration of
the technique by Rumelhart, Hinton, and Williams firmly established the utility of the
method.

Even with backpropagation, successes in training multilayer NNs were limited by the
need for huge numbers of training examples, and by the tendency of iterative learning
to settle into local minima, instead of finding weights that globally minimize errors. NN
developers generally had to be quite clever in engineering good “features” of an input,
for a given classification task, that would ease the learning problem for the NN. This
detracted from the idea of NNs as a means of learning arbitrary classification tasks.
A technique apparently due to Bourlard and Kamp (1988) was “auto-association” or
“autoencoding”. A basic autoencoder has at least an input layer, called an encoder
(think of it as having a large number of units, allowing for complex input patterns),
a hidden layer with fewer units (think of it as representing the input in an efficient
“code”), and an output layer, called the decoder (with the same number of units as the
input layer), which is intended to reproduce the input as nearly as possible. To learn to
reproduce its inputs (based on numerous input examples), the system is forced to learn
an efficient encoding (one of “lower dimensionality”) of its inputs. The important point
is that these efficient encodings are learned in a unsupervised manner, i.e., the inputs
needn’t be labeled with desired outputs, because the desired outputs are the inputs! The
encoding/decoding idea is key to many other tasks. For example, in language modeling
a NN may learn to encode fixed-length segments of text in such a way as to optimize
its prediction of the following word or words. In machine translation, an NN learns
to encode source language sentences in such a way as to optimize generation of the
corresponding sentence in the target language. (Of course the latter is an example of
supervised learning — we need to have the example translations from which to learn.)

In 2006, Hinton et al. showed how to make the autoencoding technique practical.



In effect they trained layers of restricted Boltzman machines so that each layer (with
fewer units than the previous layer) learns the inputs to the previous layer (thus the first
hidden layer learns the external inputs, and its outputs serve as inputs to be learned by
the next, sparser, layer, etc.). The final (output) layer consists of units fully connected
to all units of the previous layer, and only the last one or two layers of the NN are
trained in supervised fashion, i.e., the NN seeks to obtain the given, correct outputs for
a set of training inputs. In this training phase, the weights of the previously trained
“autoencoder” levels are held fixed. In effect this kind of network discovers for itself
what features of an input to derive in order to be able to compactly encode the inputs;
the successive levels learn more and more abstract features, and these generally serve
well for miscellaneous learning tasks, as inputs to the last layer or two.

This work again caused much excitement, and the term “deep learning”, was increas-
ingly used in the literature about such multilayer NNs. Ultimately, it turned out that the
availability of web-scale training data made Hinton et al.’s autoencoder approach unnec-
essary for learning from “big data” (though not for modest-size datasets). For example,
a multi-layer feed-forward network trained in supervised fashion on many millions of im-
ages labeled with objects occurring in those images could be used almost as-is for many
other tasks. One just needed to retrain the last couple of layers on labeled examples
for the task at hand (e.g., skeletal joint positions on people in an image — as recently
implemented by a local grad student, Iftekar Tanveer). Interestingly, in an NN trained
on “big data” for a sufficiently diverse task the earlier hidden layers automatically learn
to encode the inputs efficiently in a more or less task-independent way, at successive
greater levels of abstraction, just as if autoencoding had been used for training.

Convolutional neural networks

It should be added that the successes of the above deep-learning systems have also been
aided by a particular way the earlier layers are organized: Each of several initial hidden
layers consist of identical units with identical input weights, each taking inputs from
a small (say, 9-element) local “patch” of the input (where patches slightly overlap).
Computing the weighted sum of the elements of each input patch, performed uniformly
over identical, slightly overlapping patches that “tile” (cover) the entire input pattern,
amounts to mathematical convolution. Another way to think about it is as matching a
template to each patch of the input, and measuring the quality of the match; the match
results are then the outputs of the convolutional layer. The use of convolutional templates
was inspired by the “receptive fields” that play a key role in mammalian (including
human) vision. Often the convolutional layers are followed by “pooling” layers, which
again take their inputs from “patches” of the outputs of a convolutional layer, but in
this case they use adjacent, nonoverlapping patches and each computes the maximum
value in a patch. This reduces the dimensionality of the pattern being processed by a
factor equal to the number of values within a patch from which the maximum is chosen.
The effect is to ensure a degree of insensitivity to exactly where the convolution values



(template matches) were highest in a local region.?

The uniformity of the convolutional and pooling layers in convolutional NNs (CNNs)
significantly eases the learning problem, since only one set of weights, used by each unit
in a convolutional layer, needs to be learned for such layers, and pooling layers implement
fixed max-functions. CNNs have been successfully applied to image and video processing,
various NLP tasks (speech recognition, query-based document retrieval, syntactic and
semantic parsing, machine translation, etc.), drug discovery, and the game of Go, in
particular Google’s AlphaGo (this defeated a 9-dan Go player 4 games to 1; the program
also used special move prediction networks, board-value networks, and Monte Carlo
game-tree search); the later AlphaGo Zero program was even stronger, playing well above
human levels. (Coming back to large transformer models like GPT-3 for a moment, it’s
interesting to note that these have also proved capable of producing results similar to
those produced by CNNs; they have also proved capable of playing chess — which after
all can be viewed as a transduction from chess board configurations to moves.)

These recent successes (along with the “Watson” Jeopardy win and many news items
about self-driving cars) have led to much hype about imminent human-level AI. How-
ever, no NNs so far understand language, or learn to reason, plan, or engage in dialogue
the way people do. They are still totally dependent on huge amounts of data for pre-
training, plus fairly extensive supervised training for particular tasks in order to learn
those tasks, whereas people learn concepts from relatively few examples and can learn
facts in a single “shot” from another person or text source. Currently the most advanced
systems for reasoning, planning, or engaging in dialogue are still ones based on symbolic
representations, rather than NNs.

2 Some Specifics

The behavior of individual units

As noted, standard NN units are thought of as “threshold units” because, in analogy
with organic neurons, their output may be close to 0 until the net value of the inputs
reaches a certain threshold, and will then rather abruptly become much higher. More
precisely, suppose that unit i receives inputs from units 1,2, ..., n; (normally unit 4 itself
won’t be one of these, unless it feeds its own output back to itself as an input). Suppose
further that the outputs of those units are s, sg, ..., s, respectively; (below we’ll write
them as s;1, s;9, ..., Sin to make clear that units 1,2,...,n are the ones with connections
to unit ¢; the point is that each unit in general receives inputs from a distinct set of prior
units). The connections from units 1,2, ...,n that transmit their outputs to unit i are
assumed to have weights (connection strengths) w1, wjg, ..., win. These can be positive
or negative, and we can think of a signal transmitted over a connection with a positive
weight as “excitatory” (it tends to make the target unit “fire”) and one transmitted over

2For a max operation the derivative still exists, though it is a step function, i.e., the second derivative
has singularities



a connection with negative weight as “inhibitory” (it tends to prevent the target unit
from firing). The net input net; to unit ¢ is taken to be the weighted sum of the signals
received from units 1,2,...,n (i.e., the dot product of the weight vector and the signal
vector) plus a bias constant b;:

n
net; = Zwijsij + b;.
j=1
This is the value that feeds into the threshold function (activation function) f of unit i,
causing the unit to produce a 0 output or very low output when net; is below the fixed
threshold, and an output near 1 when net; is above threshold:

si = f(net;), where, e.g.,

1
f(z) = jp—
You can see that for very negative x, f(z) is close to 0, for x = 0 it is 0.5, and for
x > 0, it rises to 1. Thus 0 can be thought of as the threshold value (but the threshold is
really “smeared out” around 0). There are other sigmoid functions besides this so-called
“logistic function”, i.e., differentiable functions with this sort of S-shape. An advantage
of the logistic version, is that its derivative is expressible in terms of itself:

f'(@) = f(z)(1 = f(z)).
This makes the derivation of the backpropagation rules easier. Other popular threshold
functions are f(x) = tanh(z), which rises from —1 to +1 (with value 0 at x = 0) and
whose derivative is (14 f(z)(1 — f(z)); and the rectified linear unit (ReLU) that is 0 for
negative x and rises up linearly from 0 — thus its derivative is simply O for negative z
and constant for positive x.

(a sigmoid function).

Finally an important point to be reminded of once again is that we can view the
transformation performed by a NN layer as a matrix-vector multiplication followed by
adding a bias vector and thresholding the resultant vector. In terms of the notation
above, we would assume that every unit ¢ of an m-unit NN layer receives the entire set
of signals §; = s;1, ..., Sin from the previous layer, i.e., §; is actually the same for all
1. Each unit forms a dot product w;-$;, adds a bias term b;, and applies thresholding
function f to this. Again, if every unit ¢ does this, the result is a vector of m thresholded,
bias-shifted dot products (one component for each NN unit) — and that is the same as
saying that we are applying an m x n matrix W of weights (where each of the m rows of
length n corresponds to a NN unit) to the signal vector $;, adding a bias vector b_;, and
then using f to threshold the elements of the resulting m-vector. In short, the NN layer
forms f(Ws; + b_;) As noted earlier, the assumption that §; is independent of whichever
unit ¢ we’re considering is unimportant, because a unit can “select” which inputs to take
into account by applying weight 0 to the rest. In actual training of a network we might
start with full connections and non-zero weights, but eventually zero-out components
that seem not to affect the quality of the outputs. (In brain development from infancy,



synaptic connections become very dense at first, and later are “pruned” to become more
sparse.)

Backpropagation

First you should note that since we have a mathematical expression for the input-output
behavior of each unit of an NN, we can also derive a mathematical expression for the
output of each unit (including the NN output units) of the NN for any given input. Thus
we can conceptualize the problem of finding the optimal weights w;; and biases b;, given
a set of training examples, as a problem of minimizing the average output error over
all the examples. This is a mathematical problem that can be tackled, for example, by
gradient descent methods, since our functions are all differentiable.

However, from a learning perspective it is more convenient to use a method that
learns example-by-example, and that is what backpropagation enables. We won’t go
through that derivation (which is based on the chain rule of differentiation, whose general
form is 6 f(g(...))/ow = f'(g(...))dg(...)/dw, where w is some parameter whose influence
on f(g(...)) we are trying to determine). Backpropagation makes weight adjustments in
proportion to the derivatives of output error terms at each layer, working backward from
the final layer. The secret of success lies in using the right notion of an “error term” at
each layer, enabling the recursive computation of the derivatives of the net output error
with respect to each weight, and hence the direction of adjustment of those weights. The
algorithm is simple enough to be stated here for a feed-forward network:

Consider a particular training example;

1. Compute the output s; for each unit 4, in a forward sweep from the input layer to
the output layer;

2. For each output unit ¢, compute its error term,
5i < Si(l — Si)(ti — Si),
where t; is the correct (desired) output value at output unit i. Note the resemblance
of s;(1—s;) to the derivative of the logistic sigmoid function; and of course (t; — s;)
is the error at output unit ¢;

3. For each layer whose successor layer has already been processed:

For each unit 7 in the layer, compute its error term,

0; Si(l - Si) Zkeoutputs (wk%ék)’

note that wyg; is the weight of the connection from unit ¢ to successor unit k —
whose error term §; we have already computed;

4. Increment each network weight
Wi 4 Wij + 10385,
where 7 is a constant called the learning rate (which should be small enough not
to give excessive importance to a single input-output example); recall that s;; is



the output of unit j, but indicating that it is connected to unit ¢; (we could have
just written s;).

We can’t expect to get an optimal set of weights after a single pass through the training
set; rather, we iterate until weights no longer change significantly. Often a momentum
term is added to the increment in step 4, which is just a constant < 1 times the increment
added at the previous iteration. This can accelerate convergence and help avoid local
minima.

As noted earlier, in applications to language modeling and other “sequence model-
ing” tasks, recurrent NNs (RNNs), such as LSTMs have often been used, which contain
feedback loops that enable “remembering” and using features of input segments seen
earlier in the processing. As also noted, more recently transformer models have begun to
dominate. We have often referred to natural language processing, since it seems natural
to try to redeploy these NLP techniques to reasoning tasks; after all, logic is ultimately
derivative from propositions and argumentation expressed in ordinary language. How-
ever, NNs are by their nature one-step, direct transducers from one pattern to another,
rather than mechanisms that retrieve information from an explicit propositional memory
and combine the retrieved information in as many steps as required to reach a relevant
conclusion. So progress towards NN-based understanding and reasoning is handicapped
from the outset, and the results that exist generally come down to one-shot inference by
analogy (i.e., mimicry of training examples).

10



