
76 communIcATIons of The Acm | auGuST 2009 | voL. 52 | no. 8

review articles
DoI:10.1145/1536616.1536637

Satisfi ability solvers can now be effectively
deployed in practical applications.

BY shARAD mALIK AnD LInTAo zhAnG

In its simplest form, the variables
are Boolean valued (true/false, often
represented using 1/0) and proposition-
al logic formulas can be used to express
the constraints on the variables.15 In
propositional logic the operators AND,
OR, and NOT (represented by the sym-
bols ∧, ∨, and Ø respectively) are used
to construct formulas with variables.
If x is a Boolean variable and f, f1 and
f2 are propositional logic formulas
(subsequently referred to simply as
formulas), then the following recursive
defi nition describes how complex for-
mulas are constructed and evaluated
using the constants 0 and 1, the vari-
ables, and these operators.

x ˲ is a formula that evaluates to 1
when x is 1, and evaluates to 0 when x
is 0

Ø ˲ f is a formula that evaluates to 1
when f evaluates to 0, and 0 when f eval-
uates to 1

f ˲ 1 ∧ f2 is a formula that evaluates to
1 when f1 and f2 both evaluate to 1, and

tHeRe ARe mAny practical situations where we need
to satisfy several potentially confl icting constraints.
simple examples of this abound in daily life, for
example, determining a schedule for a series of games
that resolves the availability of players and venues, or
fi nding a seating assignment at dinner consistent with
various rules the host would like to impose. This also
applies to applications in computing, for example,
ensuring that a hardware/software system functions
correctly with its overall behavior constrained by the
behavior of its components and their composition,
or fi nding a plan for a robot to reach a goal that is
consistent with the moves it can make at any step.
While the applications may seem varied, at the
core they all have variables whose values we need to
determine (for example, the person sitting at a given
seat at dinner) and constraints that these variables
must satisfy (for example, the host’s seating rules).

Boolean
satisfi ability
from Theoretical
hardness to
Practical success

auGuST 2009 | voL. 52 | no. 8 | communIcATIons of The Acm 77

evaluates to 0 if either f1 or f2 evaluate
to 0

f ˲ 1 ∨ f2 is a formula that evaluates to
0 when f1 and f2 both evaluate to 0, and
evaluates to 1 if either f1 or f2 evaluate
to 1
(x1 ∨ Øx2) ∧ x3 is an example formula
constructed using these rules. Given a
valuation of the variables, these rules
can be used to determine the valuation
of the formula. For example: when (x1

= 0, x2 = 0, x3 = 1), this formula evalu-
ates to 1 and when (x3 = 0), this formula
evaluates to 0, regardless of the values
of x1 and x2. This example also illus-
trates how the operators in the formula
provide constraints on the variables.
In this example, for this formula to be
true (evaluate to 1), x3 must be 1.

Boolean satisfi ability
A satisfying assignment for a formula
is an assignment of the variables such
that the formula evaluates to 1. It si-
multaneously satisfi es the constraints

imposed by all the operators in the
formula. Such an assignment may not
always exist. For example the formu-
la (Øx1 ∨ Øx2) ∧ (x1 ∨ x2) ∧ (Øx1 ∨ x2) ∧
(x1 ∨ Øx2) cannot be satisfi ed by any
of the four possible assignments 0/0,
0/1, 1/0, 1/1 to x1 and x2. In this case
the problem is overconstrained. This
leads us to a defi nition of the Boolean
Satisfi ability problem (also referred to
as Propositional Satisfi ability or just
Satisfi ability, and abbreviated as SAT):
Given a formula, fi nd a satisfying assign-
ment or prove that none exists. This is the
constructive version of the problem,
and one used in practice. A simpler de-
cision version, often used on the theo-
retical side, just needs to determine if
there exists a satisfying assignment for
the formula (a yes/no answer). It is easy
to see that a solver for the decision ver-
sion of the problem can easily be used
to construct a solution to the construc-
tive version, by solving a series of n de-
cision problems where n is the number

of variables in a formula.
Many constraint satisfaction prob-

lems dealing with non-Boolean vari-
ables can be relatively easily translated
to SAT. For example, consider an in-
stance of the classic graph coloring
problem where an n-vertex graph needs
to be checked for 4-colorability, that is,
determining whether each vertex can
be colored using one of four possible
colors such that no two adjacent verti-
ces have the same color. In this case,
the variables are the colors {c0, c1, c2,
…, cn–1} for the n vertices, and the con-
straints are that adjacent vertices must
have different colors. For this problem
the variables are not Boolean and the
constraints are not directly expressed
with the operators {∧, ∨, Ø}. However,
the variables and constraints can be
encoded into a propositional formula
as follows. Two Boolean variables, ci0,
ci1, are used in a two-bit encoding of
the four possible values of the color for
vertex i. Let i and j be adjacent vertices. I

l
l

u
s

t
r

a
t

I
o

n
 b

y
 G

W
e

n
 V

a
n

h
e

e

78 communIcATIons of The Acm | auGuST 2009 | voL. 52 | no. 8

review articles

isfying solution, belongs to the class of
problems known as NP-complete.8,12 An
instance of any one of these problems
can be relatively easily transformed
into an instance of another. For exam-
ple, both graph coloring and SAT are
NP-complete, and earlier we described
how to transform a graph coloring in-
stance to a SAT instance.

All currently known solutions for
NP-Complete problems, in the worst
case, require runtime that grows expo-
nentially with the size of the instance.
Whether there exist subexponential so-
lutions to NP-Complete problems is ar-
guably the most famous open question
in computer science.a Although there
is no definitive conclusion, the answer
is widely believed to be in the negative.
This exponential growth in time com-
plexity indicates the difficulty of scal-
ing solutions to larger instances.

However, an important part of this
characterization is “worst case.” This
holds out some hope for the “typical
case,” and more importantly the typi-
cal case that might arise in specific
problem domains. In fact, it is exactly
the non-adversarial nature of practical
instances that is exploited by SAT solv-
ers.

solving sAT
Most SAT solvers work with a restricted
representation of formulas in conjunc-
tive normal form (CNF), defined as fol-
lows. A literal l is either a positive or a
negative occurrence of a variable (for
example, x or Øx). A clause, c, is the OR
of a set of literals, such as (l1 ∨ l2 ∨ l3 …
∨ ln). A CNF formula is the AND of a set
of clauses, such as (c1 ∧ c2 ∧ c3 ∧ cm). An
example CNF formula is:

(Øx1 ∨ Øx2) ∧ (Øx1 ∨ x2 ∨ Øx3) ∧ (Øx1 ∨ x3
∨ Øx4) ∧ (x1 ∨ x4)

The restriction to CNF is an active
choice made by SAT solvers as it en-
ables their underlying algorithms. Fur-
ther, this is not a limitation in terms
of the formulas that can be handled.
Indeed, with the addition of new aux-
iliary variables; it is easy to translate
any formula into CNF with only a lin-
ear increase in size.36 However, this
representation is not used exclusively
and there has been recent success with

a http://www.claymath.org/millennium/.

The constraint ci ≠ cj is then expressed
as Ø((ci0 == cj0) ∧ (ci1 == cj1)), here == rep-
resents equality and thus this condi-
tion checks that both bits in the encod-
ing do not have the same value for i and
j. Further, (ci0 == cj0) can be expressed as
(ci0 ∧ cj0) ∨ (Øci0 ∧ Øcj0), that is, they are
both 1 or both 0. Similarly for (ci1 == cj1).
If we take the conjunction of the con-
straints on each edge, then the result-
ing formula is satisfiable if and only if
the original graph coloring problem
has a solution. Figure 1 illustrates an
instance of the encoding of the graph
coloring problem into a Boolean for-
mula and its satisfying solution.

Encodings have been useful in trans-
lating problems from a wide range of
domains to SAT, for example, sched-
uling basketball games,40 planning in
artificial intelligence,20 validating soft-
ware models,17 routing field program-
mable gate arrays,28 and synthesizing
consistent network configurations.29
This makes SAT solvers powerful en-
gines for solving constraint satisfac-
tion problems. However, SAT solvers
are not always the best engines—there
are many cases where specialized tech-
niques work better for various con-
straint problems, including graph col-
oring (for example, Johnson et al.19).
Nonetheless, it is often much easier
and more efficient to use off-the-shelf
SAT solvers than developing special-
ized tools from scratch.

One of the more prominent practi-
cal applications of SAT has been in the
design and verification of digital cir-
cuits. Here, the translation to a formula
is very straightforward. The functional-
ity of digital circuits can be expressed
as compositions of basic logic gates.
A logic gate has Boolean input signals
and produces Boolean output signals.
The output of a gate can be used as an
input to another gate. The functions of

the basic logic gates are in direct corre-
spondence to the operators {∧, ∨, Ø}.
Thus various properties regarding the
functionality of logic circuits can be
easily translated to formulas. For ex-
ample, checking that the values of two
signals s1 and s2 in the logic circuit are
always the same is equivalent to check-
ing that their corresponding formulas
f1 and f2 never differ, that is, (f1 ∧ Øf2) ∨
(Øf1 ∧ f2) is not satisfiable.

This technique can be extended
to handle more complex properties
involving values on sequences of sig-
nals, for example, a request is eventu-
ally acknowledged. For such problems,
techniques that deal with temporal
properties of the system, such as mod-
el checking, are used.6 Modern SAT
solvers have also been successfully ap-
plied for such tasks.3, 26 One of the main
difficulties of applying SAT in check-
ing such properties is to find a way to
express the concept of “eventually.” In
theory, there is no tractable way to ex-
press this using propositional logic.
However, in practice it is often good
enough to just set a bound on the num-
ber of steps. For example, instead of
asking whether a response to a request
will eventually occur, we ask whether
there will be a response within k clock
cycles, where k is a small fixed number.
Similar techniques have also been used
in AI planning,20 for example, instead
of determining if a goal is reachable,
we ask whether we can reach the goal
in k steps. This unrolling technique has
been widely adopted in practice, since
we often only care about the behavior
of the system within a small bounded
number of steps.

Theoretical hardness: sAT
and nP-completeness
The decision version of SAT, that is, de-
termining if a given formula has a sat-

figure 1. encoding of graph coloring.

1

2 3

Ø(((c10 ∧ c20) ∨ (Øc10 ∧ Øc20)) ∧ ((c11 ∧ c21) ∨ (Øc11 ∧ Øc21))) ∧
Ø(((c10 ∧ c30) ∨ (Øc10 ∧ Øc30)) ∧ ((c11 ∧ c31) ∨ (Øc11 ∧ Øc31))) ∧
Ø(((c30 ∧ c20) ∨ (Øc30 ∧ Øc20)) ∧ ((c31 ∧ c21) ∨ (Øc31 ∧ Øc21)))

c10 = 0 ∧ c11 = 0 ∧ c20 = 0 ∧ c21 = 1 ∧ c30 = 1 ∧ c31 = 0

encoding

solution

review articles

auGuST 2009 | voL. 52 | no. 8 | communIcATIons of The Acm 79

solvers for non-clausal representations
(for example, NFLSAT18).

Most practically successful SAT solv-
ers are based on an approach called
systematic search. Figure 2 depicts the
search space of a formula. The search
space is a tree with each vertex repre-
senting a variable and the out edges
representing the two decision choices
for this variable. For a formula with n
variables, there are 2n leaves in the tree.
Each path from the root to a leaf corre-
sponds to a possible assignment to the
n variables. The formula may evaluate
to 1 or 0 at a leaf (colored green and red
respectively). Systematic search, as the
name implies, systematically searches
the tree and tries to find a green leaf or
prove that none exists.

The NP-completeness of the prob-
lem indicates that we will likely need to
visit an exponential number of vertices
in the worst case. The only hope for a
practical solver is that by being smart
in the search, almost all of the tree can
be pruned away and only a minuscule
fraction is actually visited in most cas-
es. For an instance with a million vari-
ables, which is considered within the
reach of modern solvers, the tree has
210^6 leaves, and in reasonable compu-
tation time (about a day), we may be
able to visit a billion (about 230) vertices
as part of the search—a numerically in-
significant fraction of the tree size!

Most search-based SAT solvers are
based on the so called DPLL approach
proposed by Davis, Logemann, and
Loveland in a seminal Communications
paper published in 1962.9 (This re-
search builds on the work by Davis and
Putnam10 and thus Putnam is often
given shared credit for it.). Given a CNF
formula, the DPLL algorithm first heu-
ristically chooses an unassigned vari-
able and assigns it a value: either 1 or 0.
This is called branching or the decision
step. The solver then tries to deduce the
consequences of the variable assign-
ment using deduction rules. The most
widely used deduction rule is the unit-
clause rule, which states that if a clause
in the formula has all but one of its lit-
erals assigned 0 and the remaining one
is unassigned, then the only way for the
clause to evaluate to true, and thus the
formula to evaluate to true, is for this
last unassigned literal to be assigned to
1. Such clauses are called unit clauses
and the forced assignments are called

are assigned a value, in which case we
have hit a green leaf and the formula is
satisfiable, or when a conflicting clause
exists when all branches have been ex-
plored, in which case the formula is un-
satisfiable.

Consider the application of the
algorithm to the formula shown in
Figure 2. At the beginning the solver
branches on variable x1 with value 1. Af-
ter branching, the first clause becomes
unit and the remaining free literal Øx2
is implied to 1, which means x2 must
be 0. Now the second clause becomes
unit and Øx3 is implied to 1. Then Øx4 is
implied to 1 due to the third clause. At
this point the formula is satisfied, and
the satisfying assignment corresponds
to the 8th leaf node from the left in the
search tree. (This path is marked in
bold in the figure.) As we can see, by
applying the unit-clause rule, a single
branching leads directly to the satisfy-
ing solution.

Many significant improvements in
the basic DPLL algorithm have been

implications. This rule is applied itera-
tively until no unit clause exists. Note
that this deduction is enabled by the
CNF representation and is the main
reason for SAT solvers preferring this
form.

If at some point there is a clause in
the formula with all of its literals evalu-
ating to 0, then the formula cannot be
true under the current assignment.
This is called a conflict and this clause
is referred to as a conflicting clause. A
conflict indicates that some of the ear-
lier decision choices cannot lead to a
satisfying solution and the solver has
to backtrack and try a different branch
value. It accomplishes this by finding
the most recent decision variable for
which both branches have not been
taken, flip its value, undo all variable
assignments after that decision, and
run the deduction process again. Oth-
erwise, if no such conflicting clause ex-
ists, the solver continues by branching
on another unassigned variable. The
search stops either when all variables

figure 2. search space of a formula.

(Øx1 ∨ Øx2) ∧ (Øx1 ∨ x2 ∨ Øx3) ∧ (Øx1 ∨ x3 ∨ Øx4) ∧ (x1 ∨ x4)

x1 = 1

x2 = 1

x3 = 1 x3 = 1 x3 = 1 x3 = 1

x4 = 1

x3 = 0 x3 = 0 x3 = 0 x3 = 0

x2 = 1x2 = 0 x2 = 0

unknown

True (1)

False (0)

x1 = 0

figure 3. conflict-driven learning and non-chronological backtracking.

x1

x4 = 1

x1 = 0

x11 = 1

x8 = 0

x9 = 0

x7 = 1

x3 = 1

x12 = 1

x9 = 1

x2 = 0

x1 = 0, x4 = 1
x1 ∨ x4
x1 ∨ Øx3 ∨ Øx8

x1 ∨ x8 ∨ x12

x2 ∨ x11

Øx7 ∨ Øx3 ∨ x9

Øx7 ∨ x8 ∨ Øx9

x7 ∨ x8 ∨ Øx10

x7 ∨ x10 ∨ Øx12

x3 = 1 ∧ x7 = 1 ∧ x8 = 0 → conflict
(Øx3 ∨ Øx7 ∨ Øx8) is valid

x2 = 0, x11 = 1

x3 = 1, x8 = 0, x12 = 1

x7 = 1, x9 = 1, 0

x2

x3

x7

80 communIcATIons of The Acm | auGuST 2009 | voL. 52 | no. 8

review articles

proposed over the years. In particu-
lar, a technique called conflict-driven
learning and non-chronological back-
tracking2, 24 has greatly enhanced the
power of DPLL SAT solvers on problem
instances arising from real applica-
tions, and has become a key element of
modern SAT solvers. The technique is
illustrated in Figure 3. The column on
the left lists the clauses in the example
formula. The colors of the literals show
the current assignments during the
search (red representing 0, green 1,
and black representing unassigned).
The middle graph shows the branch-
ing and implications at the current
point in the search. At each vertex the
branching assignment is shown in blue
and the implications in gray. The first
branching is on x1, and it implies x4=1
(because of the first clause), the second
branching is on x3, and it implies x8=0
and x12=1 and so on. The right graph
shows the implication relationships
between variables. For example, x4=1
is implied because of x1=0, so there is
a directed edge from node x1=0 to node
x4=1. x8=0 is implied because of both
x1=0 and x3=1 (the red literals in the
second clause), therefore, these nodes
have edges leading to x8=0.

After branching on x7 and implying
x9=1 because of the 5th clause, we find
that the 6th clause becomes a conflict-
ing clause and the solver has to back-
track. Instead of flipping the last deci-
sion variable x7 and trying x7=0, we can
learn some information from the con-
flict. From the implication graph, we
see that there is a conflict because x9 is

implied to be both 1 and 0. If we con-
sider a cut (shown as the orange line)
separating the conflicting implica-
tions from the branching decisions, we
know that once the assignments cor-
responding to the cut edges are made,
we will end up with a conflict, since no
further decisions are made. Thus, the
edges that cross the cut are, in some
sense, responsible for the conflict. In
the example, x3, x7, and x8 have edges
cross the cut, thus the combination of
x3=1, x7=1, and x8=0 results in the con-
flict. We can learn from this and ensure
that this assignment combination is
not tried in the future. This is accom-
plished by recording the condition (Øx3
∨ Øx7 ∨ x8). This clause, referred to as
a learned clause, can be added to the
formula. While it is redundant in the
sense that it is implied by the formula,
it is nonetheless useful as it prevents
search from ever making the assign-
ment (x3=1, x7=1, x8=0) again.

Further, because of this learned
clause, x7 = 1 is now implied after the
second decision, and we can backtrack
to this earlier decision level as the
choice of x2 = 0 is irrelevant to the cur-
rent conflict. Since such backtracking
skips branches, it is called non-chron-
ological backtracking and helps prune
away unsatisfiable parts of the search
space.

Recent Results
Recent work has exposed several signif-
icant areas of improvement now inte-
gral to modern SAT solvers.22 The first
deals with efficient implementation of

the unit-clause rule using a technique
called two-literal watching. The second
area relates to improvements in the
branching step by focusing on exhaust-
ing local sub-spaces before moving to
new spaces. This is accomplished by
placing increased emphasis on vari-
ables present in recently added con-
flict clauses. Another commonly used
technique is random restart,13 which
periodically restarts the search while
retaining the learned clauses from the
current search to avoid being stuck in
a search sub-space for too long. Other
recent directions include formula
preprocessing for clause and variable
elimination,11 considering algorithm
portfolios that use empirical hardness
models to choose among their con-
stituent solvers on a per-instance ba-
sis39 and using learning techniques to
adjust parameters of heuristics.16 With
the advent of multicore processing,
there is emerging interest in efficient
multi-core implementations of paral-
lel SAT solvers.14

The original Davis Putnam algo-
rithm10 based on resolution is often
regarded as the first algorithm for SAT
and has great theoretical and historical
significance. However, this algorithm
suffers from a space growth problem
that makes it impractical. Reduced Or-
dered Binary Decision Diagrams (ROB-
DDs)5 are a canonical representation of
logic functions, that is, each function
has a unique representation for a fixed
variable ordering. Thus, ROBDDS can
be used directly for SAT. However, ROB-
DDs also face space limitations with
increasing instance size. Stålmarck’s
algorithm35 uses breadth-first search
instead of depth-first search as in
DPLL, and has been shown to be practi-
cally useful. Its performance relative to
DPLL based solvers is unclear as public
versions of efficient implementations
of Stålmarck’s algorithm are not avail-
able due to its proprietary nature.

When represented in CNF, SAT can
be regarded as a discrete optimization
problem with the objective to maximize
the number of satisfied clauses. If this
max value is equal to the total number
of clauses, then the instance is satisfi-
able. Many discrete optimization tech-
niques have been explored in the SAT
context, including simulated anneal-
ing,33 tabu search,25 neural networks,34
and genetic algorithms.23

figure 4. speedup of sAT solvers in recent years.

1000

100

10

1

solver

G
ra

sp
 (

2
0

0
0

)

zc
h

af
f(

2
0

0
1)

B
er

km
in

 (
2

0
0

2
–0

3
)

zc
h

af
f

(2
0

0
3

–0
4

)

s
ie

g
e

(2
0

0
4

)

m
in

is
at

2
 (

2
0

0
6

)

R
sa

t
+

s
at

e
li

te

 (
2

0
0

7)

m
in

is
at

 +
 s

at
e

li
te

(2

0
0

5
)

R
el

at
iv

e
so

lv
in

g
 t

im
e

(l
og

 s
ca

le
)

>500

33.5

4
6.8 4.3

1.2
1.7

1

review articles

auGuST 2009 | voL. 52 | no. 8 | communIcATIons of The Acm 81

one of the more
prominent practical
applications of
sAT has been in
the design and
verification of
digital circuits.
The functionality
of digital circuits
can be expressed
as compositions of
basic logic gates.

A variation of the optimization ap-
proach, first proposed in the early
1990s, solves SAT using local search (for
example, GSAT31). The algorithm first
randomly selects a value for each vari-
able, and calculates how many clauses
are satisfied. If not all clauses are sat-
isfied, it repeatedly flips the value of a
variable to increase the number of the
clauses satisfied. If no such variable is
available, it accepts a decrease in the
objective function by either flipping
a random variable, or restarting from
a fresh set of variable assignments.
This is accelerated further, by confin-
ing the flips to literals in clauses not
satisfied by the current assignment.30
This simple algorithm, when carefully
implemented, is surprisingly effective
on certain classes of SAT instances.
Unfortunately, this algorithm is in-
complete in the sense that while it may
be able to find an assignment for a sat-
isfiable SAT instance, it cannot prove
an instance to be unsatisfiable. More
recently, incomplete solvers based on
a technique called survey propagation4
have been found to be very effective for
certain classes of SAT instances and
have attracted much attention in the
theory community.

The Role of Benchmarks
It is important to note the role of prac-
tical benchmarks in the development
of modern SAT solvers. These bench-
marks are critical in tuning the solvers
to various classes of practical instances
(that is, instances generated from real-
world applications). While we do not
have deep insight into how these solv-
ers exploit the special structure found
in these instances, we do know that
the structure is critical in our ability
to tackle them. (There exists some re-
cent work that provides initial insights
into the effect of structure on DPLL
search.37,38) Experimental research in
SAT solvers has been enabled in large
part by benchmarks put forward col-
lectively by the research community,
and the challenge in the form of a SAT
solver competition that is held regu-
larly with the International Conference
on Theory and Applications of Satisfi-
ability Testing (SAT).b The community
has also benefited from the SATLive
portal, which has provided widespread

b http://www.satcompetition.org/.

dissemination of links to SAT articles
and software.c

Figure 4 provides some data on the
improvements in SAT solvers at the SAT
Competition in recent years.d It plots
the relative solving times for a set of
solvers developed over the last 10 years.
This includes solvers that placed first
in the industrial benchmarks category
of the SAT competitions. The solvers
were run on a set of benchmarks from
hardware and software verification (not
used in the competitions).32 This is nor-
malized to the best solver in the 2007
competition (RSAT with the SatElite
preprocessor). The slow-down of the
Grasp solver is a lower bound, since it
could not complete some of the bench-
marks in the 10,000-second time limit.
While this study is limited to a specific
set of benchmarks, it is indicative of
the progress in SAT solvers since 2000.

Industrial Impact
SAT solvers are maturing to the point
that developers are using them in a
range of application domains, much
like mathematical programming tools
or linear equation solvers. Early use of
SAT was seen in planning in artificial
intelligence with practical use in space
exploration.27 Recent increases in the
capacity of commercial solvers has en-
abled widespread use in the electronic
design automation (EDA) industry as
the reasoning engine behind verifica-
tion and testing tools such as auto-
matic test pattern generators,21 equiva-
lence checkers, and property checkers.
SAT-based bounded model checkers
have been used in industrial micro-
processor verification.7 More recently,
SAT has also been used in tools for
software verification and debugging,
for example, industrial verification of
device drivers using SAT-based model
checking,e as well as SAT-based static
analysis.f Outside of verification and
testing, SAT techniques have also been
applied in configuration management
such as resolving software package de-
pendencies.g

c http://www.satlive.org/.
d Provided by Sanjit Seshia, UC Berkeley.
e http://www.microsoft.com/whdc/DevTools/

tools/SDV.mspx.
f http://www.coverity.com/index.html.
g http://news.opensuse.org/2008/06/06/sneak-

peeks-at-opensuse-110-package-manage-
ment-with-duncan-mac-vicar/.

82 communIcATIons of The Acm | auGuST 2009 | voL. 52 | no. 8

review articles

23. Marchiori, e. and rossi, C. a flipping genetic algorithm
for hard 3-sat problems. In Proceedings of the
Genetic and Evolutionary Computation Conference
(orlando, fl, 1999), 393–400.

24. Marques-silva, J.P, and sakallah, k.a. Conflict analysis
in search algorithms for propositional satisfiability.
IEEE International Conference on Tools with Artificial
Intelligence, 1996.

25. Mazure, b., sas l., and Grgoire, e., tabu search for sat.
In Proceedings of the 14th National Conference on
Artificial Intelligence (Providence, rI, 1997).

26. McMillan, k.l., applying sat methods in unbounded
symbolic model checking. In Proceedings of the
14th International Conference on Computer Aided
Verification. lecture notes In Computer science 2404
(2002). springer-Verlag, london, 250–264.

27. Muscettola, n., Pandurang nayak, P., Pell, b., and
Williams, b.C. remote agent: to boldly go where no
aI system has gone before. Artificial Intelligence 103,
1–2, (1998), 5–47.

28. nam, G.-J., sakallah, k. a., and rutenbar, r.a.
satisfiability-based layout revisited: Detailed routing
of complex fPGas via search-based boolean sat.
International Symposium on Field-Programmable
Gate Arrays (Monterey, Ca, 1999).

29. narain, s., levin, G., kaul, V., Malik, s. Declarative
infrastructure configuration and debugging. Journal of
Network Systems and Management, Special Issue on
Security Configuration. springer, 2008.

30. selman, b., kautz, h.a., and Cohen, b. noise strategies
for improving local search. In Proceedings of the
12th National Conference on Artificial Intelligence
(seattle, Wa, 1994). american association for artificial
Intelligence, Menlo Park, Ca, 337–343.

31. selman, b., levesque, h., and Mitchell, D. a new
method for solving hard satisfiability problems. In
Proceedings of the 10th National Conference on
Artificial Intelligence, (1992) 440–446.

32. seshia, s.a., lahiri, s.k., and bryant, r.e. a hybrid
sat-based decision procedure for separation logic
with uninterpreted functions. In Proceedings of the
40th Conference on Design Automation (anaheim, Ca,
June 2–6, 2003). aCM, ny, 425–430; http://doi.acm.
org/10.1145/775832.775945.

33. spears, W.M. simulated annealing for hard satisfiability
problems. Cliques, Coloring and Satisfiability, Second
DIMACS Implementation Challenge. DIMACS Series
in Discrete Mathematics and Theoretical Computer
Science. D.s. Johnson and M.a. trick, eds. american
Mathematical society (1993), 533–558.

34. spears, W. M. a nn algorithm for boolean satisfiability
problems. In Proceedings of the 1996 International
Conference on Neural Networks, 1121–1126.

35. stålmarck, G. a system for determining prepositional
logic theorems by applying values and rules to triplets
that are generated from a formula. u.s. Patent number
5276897, 1994.

36. tseitin, G. on the complexity of derivation in
propositional calculus. In Studies in Constructive
Mathematics and Mathematical Logic, Part 2 (1968),
115–125. reprinted in Automation of reasoning vol. 2.
J. siekmann and G. Wrightson, eds. springer Verlag,
berlin, 1983, 466–483.

37. Williams, r., Gomes, C., and selman, b. backdoors
to typical case complexity. In Proceedings. of the
18th International Joint Conference on Artificial
Intelligence (2003), 1173–1178.

38. Williams, r., Gomes, C., and selman, b. on the
connections between heavy-tails, backdoors, and
restarts in combinatorial search. In Proceedings of the
International Conference on Theory and Applications
of Satisfiability Testing, 2003.

39. xu, l., hutter, f., hoos, h. h., leyton-brown, k. satzilla:
Portfolio-based algorithm selection for sat. Journal of
Artificial Intelligence Research 32, (2008), 565–606.

40. zhang, h. Generating college conference basketball
schedules by a sat solver. In Proceedings of the 5th
International Symposium on Theory and Applications
of Satisfiability Testing. (Cincinnati, oh, 2002).

Sharad Malik (sharad@princeton.edu) is a professor in
the Department of electrical engineering at Princeton
university, Princeton, nJ.

Lintao Zhang (lintaoz@microsoft.com) is a researcher at
Microsoft research asia, beijing, China.

© 2009 aCM 0001-0782/09/0800 $10.00

Beyond sAT
The success with SAT solvers has em-
boldened researchers to consider
problems related to, but more difficult
than SAT. The most promising of these
is Satisfiability Modulo Theories (SMT)
that has received significant attention
in recent years.

In SAT, the variables are assumed to
be constrained only by the clauses in
the formula. SMT extends SAT by con-
sidering the case when the variables
may be connected by one or more un-
derlying theories. For example, con-
sider the formula (x1 ∧ Øx2 ∧ x3). This
formula is clearly satisfiable with (x1 =
1, x2=0, x3=1). However, if x1, x2 and x3
represent the following relationships
among the real variables y1 and y2:

x1: y1 <0
x2: y1 + y2 < 1
x3: y2 < 0
Then, in fact, there is no assignment

to y1 and y2 for which (x1 = 1, x2=0, x3=1),
i.e., y1 and y2 cannot be both negative
and their sum at least one. Thus, the
original formula is unsatisfiable given
this underlying relationship. In this
example, the specific theory used to
determine the validity of a satisfying
assignment is Linear Real Arithmetic.
Emerging SMT solvers can incorporate
reasoning for a range of theories such
as Linear Integer Arithmetic, Differ-
ence Logic, Arrays, Lists, Uninterpreted
Functions and many others, including
their combinations.1 The theoretical
difficulty depends on the specific theo-
ries considered. SMT is seeing rapid
progress and initial commercial use in
software verification.

conclusion
The success with SAT has led to its
widespread commercial use in certain
domains such as design and verifica-
tion of hardware and software systems.
There is even a sense in parts of the
computer science community that this
problem has been successfully tamed
in practice. This is probably too opti-
mistic a view. There are still enough
instances that are difficult for current
solvers, and it is unclear if they will be
able to handle the change in scale/na-
ture of instances from yet unseen do-
mains. However, there is definitely a
sense of confidence that we will be able
to continue to strengthen our solvers.

Given its theoretical hardness, the

practical success of SAT has come as a
surprise to many in the computer sci-
ence community. The combination of
strong practical drivers and open com-
petition in this experimental research
effort created enough momentum to
overcome the pessimism based on the-
ory. Can we take these lessons to other
problems and domains?

References
1. barrett, C., sebastiani, r., seshia, s., and tinelli, C.

satisfiability modulo theories. a. biere, h. van Maaren,
t. Walsh, eds. Handbook of Satisfiability 4, 8 (2009),
Ios Press, amsterdam.

2. bayardo r., and schrag, r. using CsP look-back
techniques to solve real-world sat instances. National
Conference on Artificial Intelligence, 1997.

3. biere, a., Cimatti, a., Clarke, e. M., and zhu, y. symbolic
model checking without bDDs. Tools and Algorithms
for the Analysis and Construction of Systems, 1999.

4. braunstein, a., Mezard, M., and zecchina, r. survey
propagation: an algorithm for satisfiability. Random
Structures and Algorithms 27 (2005), 201–226.

5. bryant, r.e. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers C-35 (1986), 677–691.

6. Clarke, e.M., Grumberg, o., and Peled, D.a. Model
Checking. MIt Press, Cambridge, Ma, 1999.

7. Copty, f., fix, l., fraer, r., Giunchiglia, e., kamhi, G.,
tacchella, a., and Vardi, M.y. benefits of bounded
model checking at an industrial setting. Proceedings of
the 13th International Conference on Computer-Aided
Verification, 2001.

8. Cook, s.a. the complexity of theorem-proving
procedures. Third Annual ACM Symposium on Theory
of Computing, 1971.

9. Davis, M., logemann, G., and loveland, D. a machine
program for theorem proving. Comm. ACM 5 (1962),
394–397.

10. Davis, M., and Putnam, h. a computing procedure for
quantification theory. JACM 7 (1960), 201–215.

11. eén, n., and biere, a. effective preprocessing in
sat through variable and clause elimination. In
Proceedings of the International Conference on Theory
and Applications of Satisfiability Testing, 2005.

12. Garey, M.r., and Johnson, D.s. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. h. freeman, 1979

13. Gomes, C. P., selman, b., and kautz, h. boosting
combinatorial search through randomization. In
Proceedings of National Conference on Artificial
Intelligence (Madison, WI, 1998).

14. hamadi, y., Jabbour, s., and sais, l. Manysat: solver
description. Microsoft research, tr-2008-83.

15. huth, M. and ryan, M. Logic in Computer Science:
Modeling and Reasoning about Systems. Cambridge
university Press, 2004.

16. hutter, f., babic, D., hoos, h.h., and hu, a. J. boosting
verification by automatic tuning of decision procedures.
In Proceedings of the International Conference on
Formal Methods in Computer-Aided Design, (austin,
tx, nov. 2007).

17. Jackson, D., and Vaziri, M., finding bugs with a
constraint solver. In Proceedings of the International
Symposium on Software Testing and Analysis
(Portland, or, 2000).

18. Jain, h. Verification using satisfiability checking,
predicate abstraction, and Craig interpolation.
Ph.D. thesis, Carnegie-Mellon university, school of
Computer science, CMu-Cs-08-146, 2008.

19. Johnson, D.s., Mehrotra, a., and trick, M. a. Preface:
special issue on computational methods for graph
coloring and its generalizations. Discrete Applied
Mathematics 156, 2; Computational Methods for Graph
Coloring and its Generalizations. (Jan. 15, 2008),
145–146.

20. kautz, h. and selman, b. Planning as satisfiability.
European Conference on Artificial Intelligence, 1992.

21. larrabee, t. test pattern generation using boolean
satisfiability. IEEE Transactions on Computer-Aided
Design (Jan. 1992) 4–15.

22. Madigan, M.W., Madigan, C.f., zhao, y., zhang, l., and
Malik, s. Chaff: engineering an efficient sat solver.
In Proceedings of the 38th Conference on Design
Automation. (new york, ny, 2001).

