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Satisfi ability solvers can now be effectively 
deployed in practical applications.

BY shARAD mALIK AnD LInTAo zhAnG

In its simplest form, the variables 
are Boolean valued (true/false, often 
represented using 1/0) and proposition-
al logic formulas can be used to express 
the constraints on the variables.15 In 
propositional logic the operators AND, 
OR, and NOT (represented by the sym-
bols ∧, ∨, and Ø respectively) are used 
to construct formulas with variables. 
If x is a Boolean variable and f, f1 and 
f2 are propositional logic formulas 
(subsequently referred to simply as 
formulas), then the following recursive 
defi nition describes how complex for-
mulas are constructed and evaluated 
using the constants 0 and 1, the vari-
ables, and these operators.

x ˲  is a formula that evaluates to 1 
when x is 1, and evaluates to 0 when x
is 0

Ø ˲ f is a formula that evaluates to 1 
when f evaluates to 0, and 0 when f eval-
uates to 1

f ˲ 1 ∧ f2 is a formula that evaluates to 
1 when f1 and f2 both evaluate to 1, and 

tHeRe ARe mAny  practical situations where we need 
to satisfy several potentially confl icting constraints. 
simple examples of this abound in daily life, for 
example, determining a schedule for a series of games 
that resolves the availability of players and venues, or 
fi nding a seating assignment at dinner consistent with 
various rules the host would like to impose. This also 
applies to applications in computing, for example, 
ensuring that a hardware/software system functions 
correctly with its overall behavior constrained by the 
behavior of its components and their composition, 
or fi nding a plan for a robot to reach a goal that is 
consistent with the moves it can make at any step. 
While the applications may seem varied, at the 
core they all have variables whose values we need to 
determine (for example, the person sitting at a given 
seat at dinner) and constraints that these variables 
must satisfy (for example, the host’s seating rules). 

Boolean 
satisfi ability
from Theoretical 
hardness to 
Practical success 



auGuST 2009  |   voL.  52  |   no.  8  |   communIcATIons of The Acm     77

evaluates to 0 if either f1 or f2 evaluate 
to 0

f ˲ 1 ∨ f2 is a formula that evaluates to 
0 when f1 and f2 both evaluate to 0, and 
evaluates to 1 if either f1 or f2 evaluate 
to 1
(x1 ∨ Øx2) ∧ x3 is an example formula 
constructed using these rules. Given a 
valuation of the variables, these rules 
can be used to determine the valuation 
of the formula. For example: when (x1

= 0, x2 = 0, x3 = 1), this formula evalu-
ates to 1 and when (x3 = 0), this formula 
evaluates to 0, regardless of the values 
of x1 and x2. This example also illus-
trates how the operators in the formula 
provide constraints on the variables. 
In this example, for this formula to be 
true (evaluate to 1), x3 must be 1. 

Boolean satisfi ability
A satisfying assignment for a formula 
is an assignment of the variables such 
that the formula evaluates to 1. It si-
multaneously satisfi es the constraints 

imposed by all the operators in the 
formula. Such an assignment may not 
always exist. For example the formu-
la (Øx1 ∨ Øx2) ∧ (x1 ∨ x2) ∧ (Øx1 ∨ x2) ∧ 
(x1 ∨ Øx2) cannot be satisfi ed by any 
of the four possible assignments 0/0, 
0/1, 1/0, 1/1 to x1 and x2. In this case 
the problem is overconstrained. This 
leads us to a defi nition of the Boolean 
Satisfi ability problem (also referred to 
as Propositional Satisfi ability or just 
Satisfi ability, and abbreviated as SAT): 
Given a formula, fi nd a satisfying assign-
ment or prove that none exists. This is the 
constructive version of the problem, 
and one used in practice. A simpler de-
cision version, often used on the theo-
retical side, just needs to determine if 
there exists a satisfying assignment for 
the formula (a yes/no answer). It is easy 
to see that a solver for the decision ver-
sion of the problem can easily be used 
to construct a solution to the construc-
tive version, by solving a series of n de-
cision problems where n is the number 

of variables in a formula. 
Many constraint satisfaction prob-

lems dealing with non-Boolean vari-
ables can be relatively easily translated 
to SAT. For example, consider an in-
stance of the classic graph coloring 
problem where an n-vertex graph needs 
to be checked for 4-colorability, that is, 
determining whether each vertex can 
be colored using one of four possible 
colors such that no two adjacent verti-
ces have the same color. In this case, 
the variables are the colors {c0, c1, c2, 
…, cn–1} for the n vertices, and the con-
straints are that adjacent vertices must 
have different colors. For this problem 
the variables are not Boolean and the 
constraints are not directly expressed 
with the operators {∧, ∨, Ø}. However, 
the variables and constraints can be 
encoded into a propositional formula 
as follows. Two Boolean variables, ci0, 
ci1, are used in a two-bit encoding of 
the four possible values of the color for 
vertex i. Let i and j be adjacent vertices. I
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isfying solution, belongs to the class of 
problems known as NP-complete.8,12 An 
instance of any one of these problems 
can be relatively easily transformed 
into an instance of another. For exam-
ple, both graph coloring and SAT are 
NP-complete, and earlier we described 
how to transform a graph coloring in-
stance to a SAT instance. 

All currently known solutions for 
NP-Complete problems, in the worst 
case, require runtime that grows expo-
nentially with the size of the instance. 
Whether there exist subexponential so-
lutions to NP-Complete problems is ar-
guably the most famous open question 
in computer science.a Although there 
is no definitive conclusion, the answer 
is widely believed to be in the negative. 
This exponential growth in time com-
plexity indicates the difficulty of scal-
ing solutions to larger instances.

However, an important part of this 
characterization is “worst case.” This 
holds out some hope for the “typical 
case,” and more importantly the typi-
cal case that might arise in specific 
problem domains. In fact, it is exactly 
the non-adversarial nature of practical 
instances that is exploited by SAT solv-
ers.  

solving sAT
Most SAT solvers work with a restricted 
representation of formulas in conjunc-
tive normal form (CNF), defined as fol-
lows. A literal l is either a positive or a 
negative occurrence of a variable (for 
example, x or Øx). A clause, c, is the OR 
of a set of literals, such as (l1 ∨ l2 ∨ l3 … 
∨ ln). A CNF formula is the AND of a set 
of clauses, such as (c1 ∧ c2 ∧ c3 ∧ cm). An 
example CNF formula is: 

(Øx1 ∨ Øx2) ∧ (Øx1 ∨ x2 ∨ Øx3) ∧ (Øx1 ∨ x3 
∨ Øx4) ∧ (x1 ∨ x4)

The restriction to CNF is an active 
choice made by SAT solvers as it en-
ables their underlying algorithms. Fur-
ther, this is not a limitation in terms 
of the formulas that can be handled. 
Indeed, with the addition of new aux-
iliary variables; it is easy to translate 
any formula into CNF with only a lin-
ear increase in size.36 However, this 
representation is not used exclusively 
and there has been recent success with 

a http://www.claymath.org/millennium/.

The constraint ci ≠ cj is then expressed 
as Ø((ci0 == cj0) ∧ (ci1 == cj1)), here == rep-
resents equality and thus this condi-
tion checks that both bits in the encod-
ing do not have the same value for i and 
j. Further, (ci0 == cj0) can be expressed as 
(ci0 ∧ cj0) ∨ (Øci0 ∧ Øcj0), that is, they are 
both 1 or both 0. Similarly for (ci1 == cj1). 
If we take the conjunction of the con-
straints on each edge, then the result-
ing formula is satisfiable if and only if 
the original graph coloring problem 
has a solution. Figure 1 illustrates an 
instance of the encoding of the graph 
coloring problem into a Boolean for-
mula and its satisfying solution. 

Encodings have been useful in trans-
lating problems from a wide range of 
domains to SAT, for example, sched-
uling basketball games,40 planning in 
artificial intelligence,20 validating soft-
ware models,17 routing field program-
mable gate arrays,28 and synthesizing 
consistent network configurations.29 
This makes SAT solvers powerful en-
gines for solving constraint satisfac-
tion problems. However, SAT solvers 
are not always the best engines—there 
are many cases where specialized tech-
niques work better for various con-
straint problems, including graph col-
oring (for example, Johnson et al.19). 
Nonetheless, it is often much easier 
and more efficient to use off-the-shelf 
SAT solvers than developing special-
ized tools from scratch. 

One of the more prominent practi-
cal applications of SAT has been in the 
design and verification of digital cir-
cuits. Here, the translation to a formula 
is very straightforward. The functional-
ity of digital circuits can be expressed 
as compositions of basic logic gates. 
A logic gate has Boolean input signals 
and produces Boolean output signals. 
The output of a gate can be used as an 
input to another gate. The functions of 

the basic logic gates are in direct corre-
spondence to the operators {∧, ∨, Ø}. 
Thus various properties regarding the 
functionality of logic circuits can be 
easily translated to formulas. For ex-
ample, checking that the values of two 
signals s1 and s2 in the logic circuit are 
always the same is equivalent to check-
ing that their corresponding formulas 
f1 and f2 never differ, that is, (f1 ∧ Øf2) ∨ 
(Øf1 ∧ f2) is not satisfiable. 

This technique can be extended 
to handle more complex properties 
involving values on sequences of sig-
nals, for example, a request is eventu-
ally acknowledged. For such problems, 
techniques that deal with temporal 
properties of the system, such as mod-
el checking, are used.6 Modern SAT 
solvers have also been successfully ap-
plied for such tasks.3, 26 One of the main 
difficulties of applying SAT in check-
ing such properties is to find a way to 
express the concept of “eventually.” In 
theory, there is no tractable way to ex-
press this using propositional logic. 
However, in practice it is often good 
enough to just set a bound on the num-
ber of steps. For example, instead of 
asking whether a response to a request 
will eventually occur, we ask whether 
there will be a response within k clock 
cycles, where k is a small fixed number. 
Similar techniques have also been used 
in AI planning,20 for example, instead 
of determining if a goal is reachable, 
we ask whether we can reach the goal 
in k steps. This unrolling technique has 
been widely adopted in practice, since 
we often only care about the behavior 
of the system within a small bounded 
number of steps. 

Theoretical hardness: sAT 
and nP-completeness
The decision version of SAT, that is, de-
termining if a given formula has a sat-

figure 1. encoding of graph coloring.
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2 3

Ø(((c10 ∧ c20) ∨ (Øc10 ∧ Øc20)) ∧ ((c11 ∧ c21) ∨ (Øc11 ∧ Øc21))) ∧
Ø(((c10 ∧ c30) ∨ (Øc10 ∧ Øc30)) ∧ ((c11 ∧ c31) ∨ (Øc11 ∧ Øc31))) ∧
Ø(((c30 ∧ c20) ∨ (Øc30 ∧ Øc20)) ∧ ((c31 ∧ c21) ∨ (Øc31 ∧ Øc21)))

c10 = 0 ∧ c11 = 0 ∧ c20 = 0 ∧ c21 = 1 ∧ c30 = 1 ∧ c31 = 0

encoding

solution
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solvers for non-clausal representations 
(for example, NFLSAT18).

Most practically successful SAT solv-
ers are based on an approach called 
systematic search. Figure 2 depicts the 
search space of a formula. The search 
space is a tree with each vertex repre-
senting a variable and the out edges 
representing the two decision choices 
for this variable. For a formula with n 
variables, there are 2n leaves in the tree. 
Each path from the root to a leaf corre-
sponds to a possible assignment to the 
n variables. The formula may evaluate 
to 1 or 0 at a leaf (colored green and red 
respectively). Systematic search, as the 
name implies, systematically searches 
the tree and tries to find a green leaf or 
prove that none exists. 

The NP-completeness of the prob-
lem indicates that we will likely need to 
visit an exponential number of vertices 
in the worst case.  The only hope for a 
practical solver is that by being smart 
in the search, almost all of the tree can 
be pruned away and only a minuscule 
fraction is actually visited in most cas-
es. For an instance with a million vari-
ables, which is considered within the 
reach of modern solvers, the tree has 
210^6 leaves, and in reasonable compu-
tation time (about a day), we may be 
able to visit a billion (about 230) vertices 
as part of the search—a numerically in-
significant fraction of the tree size! 

Most search-based SAT solvers are 
based on the so called DPLL approach 
proposed by Davis, Logemann, and 
Loveland in a seminal Communications 
paper published in 1962.9 (This re-
search builds on the work by Davis and 
Putnam10 and thus Putnam is often 
given shared credit for it.). Given a CNF 
formula, the DPLL algorithm first heu-
ristically chooses an unassigned vari-
able and assigns it a value: either 1 or 0.  
This is called branching or the decision 
step. The solver then tries to deduce the 
consequences of the variable assign-
ment using deduction rules. The most 
widely used deduction rule is the unit-
clause rule, which states that if a clause 
in the formula has all but one of its lit-
erals assigned 0 and the remaining one 
is unassigned, then the only way for the 
clause to evaluate to true, and thus the 
formula to evaluate to true, is for this 
last unassigned literal to be assigned to 
1. Such clauses are called unit clauses 
and the forced assignments are called 

are assigned a value, in which case we 
have hit a green leaf and the formula is 
satisfiable, or when a conflicting clause 
exists when all branches have been ex-
plored, in which case the formula is un-
satisfiable. 

Consider the application of the 
algorithm to the formula shown in 
Figure 2. At the beginning the solver 
branches on variable x1 with value 1. Af-
ter branching, the first clause becomes 
unit and the remaining free literal Øx2 
is implied to 1, which means x2 must 
be 0. Now the second clause becomes 
unit and Øx3 is implied to 1. Then Øx4 is 
implied to 1 due to the third clause. At 
this point the formula is satisfied, and 
the satisfying assignment corresponds 
to the 8th leaf node from the left in the 
search tree. (This path is marked in 
bold in the figure.) As we can see, by 
applying the unit-clause rule, a single 
branching leads directly to the satisfy-
ing solution. 

Many significant improvements in 
the basic DPLL algorithm have been 

implications. This rule is applied itera-
tively until no unit clause exists. Note 
that this deduction is enabled by the 
CNF representation and is the main 
reason for SAT solvers preferring this 
form.

If at some point there is a clause in 
the formula with all of its literals evalu-
ating to 0, then the formula cannot be 
true under the current assignment. 
This is called a conflict and this clause 
is referred to as a conflicting clause. A 
conflict indicates that some of the ear-
lier decision choices cannot lead to a 
satisfying solution and the solver has 
to backtrack and try a different branch 
value. It accomplishes this by finding 
the most recent decision variable for 
which both branches have not been 
taken, flip its value, undo all variable 
assignments after that decision, and 
run the deduction process again. Oth-
erwise, if no such conflicting clause ex-
ists, the solver continues by branching 
on another unassigned variable. The 
search stops either when all variables 

figure 2. search space of a formula.

(Øx1 ∨ Øx2) ∧ (Øx1 ∨ x2 ∨ Øx3) ∧ (Øx1 ∨ x3 ∨ Øx4) ∧ (x1 ∨ x4)

x1 = 1

x2 = 1

x3 = 1 x3 = 1 x3 = 1 x3 = 1

x4 = 1

x3 = 0 x3 = 0 x3 = 0 x3 = 0

x2 = 1x2 = 0 x2 = 0

unknown

True (1)

False (0)

x1 = 0

figure 3. conflict-driven learning and non-chronological backtracking.
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x1 = 0, x4 = 1
x1 ∨ x4 
x1 ∨ Øx3 ∨ Øx8

x1 ∨ x8 ∨ x12

x2 ∨ x11

Øx7 ∨ Øx3 ∨ x9

Øx7 ∨ x8 ∨ Øx9

x7 ∨ x8 ∨ Øx10

x7 ∨ x10 ∨ Øx12

x3 = 1 ∧ x7 = 1 ∧ x8 = 0 → conflict
(Øx3 ∨ Øx7 ∨ Øx8) is valid

x2 = 0, x11 = 1
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proposed over the years. In particu-
lar, a technique called conflict-driven 
learning and non-chronological back-
tracking2, 24 has greatly enhanced the 
power of DPLL SAT solvers on problem 
instances arising from real applica-
tions, and has become a key element of 
modern SAT solvers. The technique is 
illustrated in Figure 3. The column on 
the left lists the clauses in the example 
formula. The colors of the literals show 
the current assignments during the 
search (red representing 0, green 1, 
and black representing unassigned). 
The middle graph shows the branch-
ing and implications at the current 
point in the search. At each vertex the 
branching assignment is shown in blue 
and the implications in gray. The first 
branching is on x1, and it implies x4=1 
(because of the first clause), the second 
branching is on x3, and it implies x8=0 
and x12=1 and so on. The right graph 
shows the implication relationships 
between variables. For example, x4=1 
is implied because of x1=0, so there is 
a directed edge from node x1=0 to node 
x4=1. x8=0 is implied because of both 
x1=0 and x3=1 (the red literals in the 
second clause), therefore, these nodes 
have edges leading to x8=0. 

After branching on x7 and implying 
x9=1 because of the 5th clause, we find 
that the 6th clause becomes a conflict-
ing clause and the solver has to back-
track. Instead of flipping the last deci-
sion variable x7 and trying x7=0, we can 
learn some information from the con-
flict. From the implication graph, we 
see that there is a conflict because x9 is 

implied to be both 1 and 0. If we con-
sider a cut (shown as the orange line) 
separating the conflicting implica-
tions from the branching decisions, we 
know that once the assignments cor-
responding to the cut edges are made, 
we will end up with a conflict, since no 
further decisions are made. Thus, the 
edges that cross the cut are, in some 
sense, responsible for the conflict. In 
the example, x3, x7, and x8 have edges 
cross the cut, thus the combination of 
x3=1, x7=1, and x8=0 results in the con-
flict. We can learn from this and ensure 
that this assignment combination is 
not tried in the future. This is accom-
plished by recording the condition (Øx3 
∨ Øx7 ∨ x8). This clause, referred to as 
a learned clause, can be added to the 
formula. While it is redundant in the 
sense that it is implied by the formula, 
it is nonetheless useful as it prevents 
search from ever making the assign-
ment (x3=1, x7=1, x8=0) again. 

Further, because of this learned 
clause, x7 = 1 is now implied after the 
second decision, and we can backtrack 
to this earlier decision level as the 
choice of x2 = 0 is irrelevant to the cur-
rent conflict. Since such backtracking 
skips branches, it is called non-chron-
ological backtracking and helps prune 
away unsatisfiable parts of the search 
space.

Recent Results
Recent work has exposed several signif-
icant areas of improvement now inte-
gral to modern SAT solvers.22 The first 
deals with efficient implementation of 

the unit-clause rule using a technique 
called two-literal watching. The second 
area relates to improvements in the 
branching step by focusing on exhaust-
ing local sub-spaces before moving to 
new spaces. This is accomplished by 
placing increased emphasis on vari-
ables present in recently added con-
flict clauses. Another commonly used 
technique is random restart,13 which 
periodically restarts the search while 
retaining the learned clauses from the 
current search to avoid being stuck in 
a search sub-space for too long. Other 
recent directions include formula 
preprocessing for clause and variable 
elimination,11 considering algorithm 
portfolios that use empirical hardness 
models to choose among their con-
stituent solvers on a per-instance ba-
sis39 and using learning techniques to 
adjust parameters of heuristics.16 With 
the advent of multicore processing, 
there is emerging interest in efficient 
multi-core implementations of paral-
lel SAT solvers.14 

The original Davis Putnam algo-
rithm10 based on resolution is often 
regarded as the first algorithm for SAT 
and has great theoretical and historical 
significance. However, this algorithm 
suffers from a space growth problem 
that makes it impractical. Reduced Or-
dered Binary Decision Diagrams (ROB-
DDs)5 are a canonical representation of 
logic functions, that is, each function 
has a unique representation for a fixed 
variable ordering. Thus, ROBDDS can 
be used directly for SAT. However, ROB-
DDs also face space limitations with 
increasing instance size. Stålmarck’s 
algorithm35 uses breadth-first search 
instead of depth-first search as in 
DPLL, and has been shown to be practi-
cally useful. Its performance relative to 
DPLL based solvers is unclear as public 
versions of efficient implementations 
of Stålmarck’s algorithm are not avail-
able due to its proprietary nature.  

When represented in CNF, SAT can 
be regarded as a discrete optimization 
problem with the objective to maximize 
the number of satisfied clauses. If this 
max value is equal to the total number 
of clauses, then the instance is satisfi-
able. Many discrete optimization tech-
niques have been explored in the SAT 
context, including simulated anneal-
ing,33 tabu search,25 neural networks,34 
and genetic algorithms.23 

figure 4. speedup of sAT solvers in recent years.
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one of the more 
prominent practical 
applications of 
sAT has been in 
the design and 
verification of 
digital circuits. 
The functionality 
of digital circuits 
can be expressed 
as compositions of 
basic logic gates. 

A variation of the optimization ap-
proach, first proposed in the early 
1990s, solves SAT using local search (for 
example, GSAT31). The algorithm first 
randomly selects a value for each vari-
able, and calculates how many clauses 
are satisfied. If not all clauses are sat-
isfied, it repeatedly flips the value of a 
variable to increase the number of the 
clauses satisfied. If no such variable is 
available, it accepts a decrease in the 
objective function by either flipping 
a random variable, or restarting from 
a fresh set of variable assignments. 
This is accelerated further, by confin-
ing the flips to literals in clauses not 
satisfied by the current assignment.30 
This simple algorithm, when carefully 
implemented, is surprisingly effective 
on certain classes of SAT instances. 
Unfortunately, this algorithm is in-
complete in the sense that while it may 
be able to find an assignment for a sat-
isfiable SAT instance, it cannot prove 
an instance to be unsatisfiable. More 
recently, incomplete solvers based on 
a technique called survey propagation4 
have been found to be very effective for 
certain classes of SAT instances and 
have attracted much attention in the 
theory community. 

The Role of Benchmarks
It is important to note the role of prac-
tical benchmarks in the development 
of modern SAT solvers. These bench-
marks are critical in tuning the solvers 
to various classes of practical instances 
(that is, instances generated from real-
world applications). While we do not 
have deep insight into how these solv-
ers exploit the special structure found 
in these instances, we do know that 
the structure is critical in our ability 
to tackle them. (There exists some re-
cent work that provides initial insights 
into the effect of structure on DPLL 
search.37,38) Experimental research in 
SAT solvers has been enabled in large 
part by benchmarks put forward col-
lectively by the research community, 
and the challenge in the form of a SAT 
solver competition that is held regu-
larly with the International Conference 
on Theory and Applications of Satisfi-
ability Testing (SAT).b The community 
has also benefited from the SATLive 
portal, which has provided widespread 

b http://www.satcompetition.org/.

dissemination of links to SAT articles 
and software.c

Figure 4 provides some data on the 
improvements in SAT solvers at the SAT 
Competition in recent years.d It plots 
the relative solving times for a set of 
solvers developed over the last 10 years. 
This includes solvers that placed first 
in the industrial benchmarks category 
of the SAT competitions. The solvers 
were run on a set of benchmarks from 
hardware and software verification (not 
used in the competitions).32 This is nor-
malized to the best solver in the 2007 
competition (RSAT with the SatElite 
preprocessor). The slow-down of the 
Grasp solver is a lower bound, since it 
could not complete some of the bench-
marks in the 10,000-second time limit. 
While this study is limited to a specific 
set of benchmarks, it is indicative of 
the progress in SAT solvers since 2000.  

Industrial Impact
SAT solvers are maturing to the point 
that developers are using them in a 
range of application domains, much 
like mathematical programming tools 
or linear equation solvers. Early use of 
SAT was seen in planning in artificial 
intelligence with practical use in space 
exploration.27 Recent increases in the 
capacity of commercial solvers has en-
abled widespread use in the electronic 
design automation (EDA) industry as 
the reasoning engine behind verifica-
tion and testing tools such as auto-
matic test pattern generators,21 equiva-
lence checkers, and property checkers.  
SAT-based bounded model checkers 
have been used in industrial micro-
processor verification.7 More recently, 
SAT has also been used in tools for 
software verification and debugging, 
for example, industrial verification of 
device drivers using SAT-based model 
checking,e as well as SAT-based static 
analysis.f Outside of verification and 
testing, SAT techniques have also been 
applied in configuration management 
such as resolving software package de-
pendencies.g 

c http://www.satlive.org/.
d Provided by Sanjit Seshia, UC Berkeley.
e http://www.microsoft.com/whdc/DevTools/

tools/SDV.mspx.
f http://www.coverity.com/index.html.
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Beyond sAT 
The success with SAT solvers has em-
boldened researchers to consider 
problems related to, but more difficult 
than SAT. The most promising of these 
is Satisfiability Modulo Theories (SMT) 
that has received significant attention 
in recent years.

In SAT, the variables are assumed to 
be constrained only by the clauses in 
the formula. SMT extends SAT by con-
sidering the case when the variables 
may be connected by one or more un-
derlying theories. For example, con-
sider the formula (x1 ∧ Øx2 ∧ x3). This 
formula is clearly satisfiable with (x1 = 
1, x2=0, x3=1). However, if x1, x2 and x3 
represent the following relationships 
among the real variables y1 and y2:

x1: y1 <0
x2: y1 + y2 < 1
x3: y2 < 0
Then, in fact, there is no assignment 

to y1 and y2 for which (x1 = 1, x2=0, x3=1), 
i.e., y1 and y2 cannot be both negative 
and their sum at least one. Thus, the 
original formula is unsatisfiable given 
this underlying relationship. In this 
example, the specific theory used to 
determine the validity of a satisfying 
assignment is Linear Real Arithmetic. 
Emerging SMT solvers can incorporate 
reasoning for a range of theories such 
as Linear Integer Arithmetic, Differ-
ence Logic, Arrays, Lists, Uninterpreted 
Functions and many others, including 
their combinations.1 The theoretical 
difficulty depends on the specific theo-
ries considered. SMT is seeing rapid 
progress and initial commercial use in 
software verification.

conclusion
The success with SAT has led to its 
widespread commercial use in certain 
domains such as design and verifica-
tion of hardware and software systems. 
There is even a sense in parts of the 
computer science community that this 
problem has been successfully tamed 
in practice. This is probably too opti-
mistic a view. There are still enough 
instances that are difficult for current 
solvers, and it is unclear if they will be 
able to handle the change in scale/na-
ture of instances from yet unseen do-
mains. However, there is definitely a 
sense of confidence that we will be able 
to continue to strengthen our solvers.

Given its theoretical hardness, the 

practical success of SAT has come as a 
surprise to many in the computer sci-
ence community. The combination of 
strong practical drivers and open com-
petition in this experimental research 
effort created enough momentum to 
overcome the pessimism based on the-
ory. Can we take these lessons to other 
problems and domains? 
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