
   Long Short-Term Memory (LSTM) NNs for Natural Language Processing (NLP)

The first point to be aware of, in using NNs for NLP, is that the inputs to an NN are usually
assumed to consist of “embedding vectors” (typically with 100 or so components) representing
words, rather than the explicit  words themselves.  These embedding vectors are learned from
large text corpora, in such a way that words that tend to occur in the vicinity of the same words
will have similar vector embeddings; e.g., “dog” and “cat” will have similar embeddings because
they tend to co-occur with the same words. Vector similarity is measured by their dot product
(proportional to the cosine of the angle between them), transformed via the sigmoid function into
a probability. A widely used method of obtaining embeddings is Word2Vec (with a “skip-gram”
algorithm at its core); this is discussed in detail in the 3rd edition draft of Jurafsky & Martin’s
book, esp. sections 6.8-6.10 (see https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf).

So how do we handle these vector inputs? (As reference, see Sec. 7.3 in Jurafsky & Martin.) The
answer is that we simply concatenate the vectors, so that each component of each vector serves
as a separate input at the NN input layer. Now consider the next layer, which is a hidden layer
(i.e., not the output layer) in deep NNs.  This hidden layer can have any number of units, where
these units receive inputs from some or all of the units in the input layer. So we want to form a
linear combination (dot product with a weight vector) of these inputs for each hidden unit, and
then pass the result through a soft threshold function. We can think of the weight vectors as the
rows of a matrix, and so we can do all the required dot products in one fell swoop by matrix
multiplication. We then apply the same soft threshold (say, a sigmoid or relu — rectified linear
unit) component-by-component to the vector resulting from the matrix-vector product. At the
output layer, we usually desire a probability distribution over a set of alternatives (e.g., a POS for
the middle word in the input). To achieve this, we apply a softmax transformation instead of a
sigmoid function to the vector (z1, z2, …, zd) resulting from the final matrix multiplication, i.e., 
    ezi/[ez1+…+ezd].
So for example, this might represent the probability of the ith possible POS (i = 1, 2, …, d) of the
middle input word.

Now, NLP typically involves processing arbitrarily long texts (or speech input). How do we use
a NN of fixed size to do that? We can think of it as passing a “sliding window” of fixed size over
the text – or more realistically, as pushing words of a text into an input array (buffer) at one end
(by convention, the right end), and dropping them out at the other.  So the NN “sees” successive
input segments shifted by one word at each step. But a problem with this, in a strict feed-forward
network, is that at each step the network completely forgets what it has already seen — each
newly shifted buffer state is treated as unrelated to the previous state. This is at odds with the fact
that dependencies in NLP can be rather long-distance. For example, in the question,  “Which
chapter did you say I should plan to read tomorrow?”, the words  “read tomorrow” might be
misclassified as VB NN (instead of VB RB), because it is the initial question phrase  “Which
chapter” that  justifies  the  omission  of  an  object  following  “read”.  Consequently,  we  use
recurrent NNs, i.e., ones containing cyclic connections. The simplest example is the use of units
with a self-loop, i.e., feeding their output back into themselves as one of their inputs, as a way of
“reminding themselves” of what they saw a moment earlier.

To understand how such cells can function as memory cells, we need to discuss how the signal
propagation in an NN works, when the NN sees a shifted input at each step. We think of these
steps as occurring at times t = 0, 1, 2, 3, etc. After each shift, the NN does its calculation (from
the input layer all the way to the “top”, the output layer). Now, this means that the calculation of



outputs of the units, if there’s more that one layer, takes place in  less than one time step. But
then, wouldn’t a recurrent unit feed into itself multiple times in a single time step? This puzzle
comes from thinking about  neural  nets  too realistically,  in  terms of signals transmitted  very
rapidly from neuron to neuron – much faster than it takes to read a word. The way to think about
units in a neural net is to assume that they maintain their output value until the next time step.
The outputs  of  all  the  units  in  the  entire  net  are  calculated  “as  if  instantaneously”  (but  the
calculation has to follow the graph structure), and the values thus obtained remain available till
the next time step – and aren’t recalculated till the next time step. Thus a recurrent unit doesn’t
get to “see” its own output till the next time step, when the input has been shifted. This process is
often illustrated by “unrolling” the RNN in time, showing successive time steps – it’s as if we
created  a  new copy of  the  network where  the  recurrent  connections  carry  outputs  from the
previous time step to the target unit (or subnetwork) in the new copy. 

So let’s see how we get from NNs with simple recurrent units to LSTMs (Long Short-Term
Memory networks). The first thing to realize when looking at a schematic diagram of an LSTM
is that all the nodes shown are vector-to-vector operations, and so the directed edges “carry”
vectors forward. Don’t think of the nodes as basic NN units that get a vector of  n inputs and
generate a single output (by forming a weighted sum & thresholding it). But note that if we have
two successive NN layers, each with n units, where each unit of the first layer sends its output to
all units of the second layer, and the second-layer units all use the same thresholding function,
then the second layer is equivalent to applying an  n by  n matrix to the  n-vector of first-layer
output values, yielding another n-vector, and then applying the thresholding function component-
by-component.  So  it’s  quite  reasonable  to  stipulate  matrix-vector  multiplications,  and
component-wise operations on vectors in an NN – and that’s exactly what we see in an LSTM
diagram & its mathematical specification. We can think of the nodes as really representing layers
of NN units.

The  intuition  behind  the  LSTM  proposal  (Hochreiter  &  Schmidhuber  1997,
https://www.bioinf.jku.at/publications/older/2604.pdf) was probably this: A memory cell whose
output is the weighted sum of (a) its current input vector from the preceding node and (b) its own
output vector from the previous time step (i.e.,  fed back into itself),  without thresholding, is
potentially a memory of arbitrary duration. But if the weights of the (a)-inputs is large compared
to  the  weight  of  the  self-input  (b),  that  self-input  is  apt  to  become  quickly  suppressed  by
subsequent (a)-inputs – so the “memory imprint” of an input from several time steps earlier will
be very faint. As a result the derivatives of weights that contributed to (a)-inputs several time
steps back become too small to be computed – the derivatives “vanish”. On the other hand,  if the
weights of (a)-inputs are kept small compared to the weight of the self-input, the memory cell
will  have excellent,  persistent  “recall”.  However,  it  will  barely  take  account  of  new inputs.
(Apparently, this leads to wildly “oscillating” derivatives.)  

So, one key idea behind LSTMs is to allow an input gate to control how heavily those (a)-inputs
are weighted relative to the memory cell’s self-input. The gate receives the same inputs as the
node that supplies the memory cell’s  (a)-inputs,  and it  decides how strongly those (a)-inputs
should affect the memory cell. It’s as if the gate could say to the memory cell, “Hey, this (a)-
input vector is important, remember it!” or conversely, “This is only of passing interest, don’t
pay it  much attention”.  Technically,  the way the input  gate exerts  its  influence on what  the
memory cell sees is by applying its output component-by-component to the (a)-vector headed
towards the memory cell, i.e., forming a Hadamard product. Thus if the gate keeper multiplies an
input  component  by  0,  it  just  won't  get  through.  (If  all  gate-keeper  components  are  0,  the



memory unit is totally protected from memory disruption.) 

But  now we may  have  the  opposite  problem that  a  memory  unit  that  remembers  an  input
indefinitely  long may  be  disrupting  its  successors  by  sending  information  to  them which  is
irrelevant at most or all later times. So before passing the memory cell output to the next layer,
we apply another multiplicative gate, an output gate that effectively determines at any time what
gets passed on to the next layer.

The LSTM memory unit design was subsequently improved by Gers, Schmidhuber & Cummins,
2000, by inserting a  forget gate into the memory unit's self-loop, thus controlling what vector
components and how much of them the cell remembers from moment to moment. Later, the idea
was introduced that the current state of the memory might usefully contribute to the decisions of
the gatekeeper units; in other words, the memory unit should “have a say” in what the 3 gates
(input  gate,  output  gate,  and  forget  gate)  do  to  its  inputs,  outputs,  and  memory.  Thus,
connections were added that allow the memory unit to send its output to the three gate-keepers
(as well as to the next NN layer, via the output gate). The result is a “peephole memory cell” and
thus a “peephole LSTM”, as illustrated in the Wikipedia article on LSTMs at    
     https://en.wikipedia.org/wiki/Long_short-term_memory
(also reproduced at 
     http://www.cs.rochester.edu/u/schubert/530/in-order-parsing-excerpts/peephole-lstm-diagram.png). 
Still later, the memory cells were made convolutional by replacing each matrix operation on the
inputs (from the preceding, lower layer) with the convolution of a matrix with the input (again,
see the  Wikipedia  article).  Convolutional  layers  were inspired by the  receptive  fields  (small
regions of the retina, over which some regularity like a dot or edge is detected), observed in
mammalian vision. A convolutional layer is special in that each of its units takes inputs from
only a small segment (a few adjacent units) of the previous layer, where these segments slightly
overlap;  and  further,  the  weights  applied  to  these  inputs  are  the  same  for  all  units  in  the
convolutional layer. This greatly speeds up learning, since far fewer weights need to be learned
than in a layer where each unit receives numerous inputs and applies its own unique weight
vector to them.

   Transition-Based Constituency Parsing Using LSTMs

The algorithm we assume for transition-based phrase-structure parsing is based on the article
       Liu & Zhang, "In-order transition-based constituent parsing", TACL 2017,  
       http://aclweb.org/anthology/Q17-1029; 
see some relevant items in the Supplementary Course Materials section of the course web page.
The essential algorithmic ideas are very much like those in bottom-up shift-reduce parsing, along
with the chart-parsing idea of generating an active arc (or “dotted rule”) whenever a constituent
matching the initial right-hand element of a phrase-structure rule has been found. This is called a
project X action. Instead of representing the dotted rule in a form like X → S1 o S2 S3,  the parser
represents it on the stack as just S1 X, “waiting” for the remaining constituents S2 S3.  When S2 S3

have appeared on the stack to the right of this (rightmost = top of stack), a reduce action replaces
S1 X S2 S3 by X.
 
 We now want to look at the role of LSTMs in this processing. Basically we create an “oracle”
that chooses the right shift, reduce, project, or finish action at each step of the parser’s operation,
using LSTMs that “look at” the buffer, the stack, and the recent parser actions. 

https://en.wikipedia.org/wiki/Long_short-term_memory


Liu & Zhang employ a bidirectional “stack-LSTM” taking the buffer contents at a given moment
as  input,  another  bidirectional  stack-LSTM taking  the  stack  as  input,  and  a  one-directional
“vanilla” (ordinary) LSTM taking some portion of the action sequence so far carried out by the
parser as input. The outputs of the LSTMs are fed into a softmax layer, which thus outputs a
probability distribution over what the next action of the parser should be. In greater detail, the
actions  are  shift  the next  word from the  buffer to  the stack;  project  X (for  various  possible
nonterminal categories X, whose initial constituent is rightmost on the stack); reduce a sequence
of stack elements sj X sj-1 … s0 to a subtree X with children sj, sj-1, …, s0; or finish (just setting a
boolean to true). To the extent that one action choice receives much higher probability than the
others, and in fact corresponds to the correct parse, the NN serves as an effective oracle for the
parser.

Let’s try to figure out the purpose and operation of a  stack-LSTM, borrowed from Dyer et al.,
2016 (https://www.aclweb.org/anthology/P15-1033). The problem with applying a vanilla LSTM
to the parser stack is that reduce actions make the reduced material (the child nodes) invisible to
the LSTM by popping that material  — but it may well be that this reduced material  should
influence the next choices of parser actions. For example, a sentence starting with “it” allows for
certain continuations that are unlikely for other sentence subjects (compare  “it is possible that
he’s sick” with the faulty *“Something is possible that he’s sick”). But if we’ve reduced “it” to
NP, we won’t be able to distinguish these cases. So the idea of a stack LSTM is to retain the
popped material, and still add pushed elements on the right, but somehow identifying popped
items, so that we can skip over them in moving a Top (of stack) marker backward to simulate
pop actions. Now, in an algorithm using such a stack, we would have to individually mark each
popped item as such — they needn’t form a contiguous sequence. For example,  suppose we
repeatedly  (a)  push  two items,  and  (b)  pop  one  item;  then  you  can  verify  that  we’ll  get  a
sequence  of  alternating  popped  and  non-popped  items.  Given  this  possibility,  Dyer  et  al.’s
explanation seems a bit unclear. They say,

“Like a conventional LSTM, new inputs are always added in the right-most position, but in stack LSTMs,
the current location of the stack pointer determines which cell in the LSTM provides c t−1 [the output of
the central memory cell in an LSTM configuration] and ht−1 [the output after gating] when computing the
new memory cell contents… In addition to adding elements to the end of the sequence, the stack LSTM
provides  a  pop operation  which  moves  the  stack  pointer  to  the  previous  element  (i.e.,  the  previous
element that was extended, not necessarily the right-most element).”

Note that the stack-LSTM sees the stack as its input, and somehow performs those push and pop
operations. What seems unclear is how the stack-LSTM “knows” where the previously added
element  is  in  the  stack  (or  “stack  summary”,  as  they  term the  stack  representation  with  all
popped elements still visible) — as just noted, we can have alternating popped and unpopped
elements in the stack (summary). Perhaps the point is for the stack-LSTM to learn how to move
the Top marker?

Putting that aside, we should also note what is meant by a bidirectional LSTM. As the name
suggests, it is really two LSTMs, one of which processes the sequence portion it is looking at
from left  to  right,  while  the  other  processes  it  from right  to  left.  The two outputs  are  then
concatenated to produce the output of the bidirectional LSTM. Why does using such bi-LSTMs
for the stack and the buffer provide better information about what action should be done next by
the parser? This seems to call  for further explanation;  and why isn’t it  also advantageous to
process the most recent set of actions forward and backward as well?



Anyway, you can see that once the parser has learned a good oracle, providing probabilities for
possible next actions, we can not only produce a single likely parse, but also other plausible
possibilities. A single likely parse might be produced by always picking the most probable action
at each time step. More often multiple likely parses are produced, and then a re-ranker is applied
to try to put the parses in an order where the correct parse is likely to be among the first 2 or 3.
The re-ranker is separately trained on the same “gold” data that provided the original training set.
                                                                   -=-=-=-=-=-=-=-=-=-=-=-=-

Your second assignment will be to code an “oracle” for training an in-order constituent parser.
You won’t need to actually train a parser, but just provide the oracle: This is given a phrase
structure tree as input (in Treebank style, with words at the leaves), and outputs the sequence of
actions that assign the correct parse tree to the words of the sentence. It should already be fairly
clear what to do; you’ll receive some more comments about the assignment.


