
DSC 530, Module 1 Sept. 18, 2019

Neural Networks1

Neural networks have proved very effective for learning to clas-
sify images, speech, text and other patterns, but also to trans-
duce such patterns into other patterns, for example mapping
one language to another, mapping images to captions, generat-
ing possible continuations of given partial stories, etc. However,
they require massive training data, whereas people learn from
far fewer examples.

1 Evolution of Neural Net Technology towards
“Deep Learning”

What are neural nets?

(Artificial) Neural Networks (ANNs, or just NNs), as understood in AI, are networks
of computational units that resemble networks of neurons in the brain. I.e., the units
compute a weighted sum of their inputs, and apply a “threshold function” (also called an
“activation function”) to produce a single output. This output is 0 or low if the weighted
sum of inputs is below threshold, while it is high (typically close to 1) if the weighted
sum of inputs is above threshold. The weights applied to the inputs received by a unit
can be altered in the course of learning. They can be thought of either as (modifiable)
properties of the unit receiving the inputs, or of the unit-to-unit connections.

Each neuron-like unit has a number of input connections to it and a number of output
connections leading away from it. Typically, units are arranged into layers, and function
either as input units, hidden units, or output units. Input units have a single input or
multiple inputs (which could be discrete or continuous) supplied from the outside, where
each input represents an element of the pattern to be processed; input units (typically)
transmit their output to multiple hidden units in the next layer via connections to those
units. Hidden units receive inputs from the previous layer, and transmit their output
through multiple connections to the next layer. Output units receive their inputs from
the previous layer, and their output represents an element of the NN’s final output. For
simple binary classification tasks, there might be just one output unit, supplying a choice
between the two classes.

A note about counting layers: There can be some ambiguity about how many layers a
NN has. Suppose that each unit of the initial “layer” sees the value of just one element
of the input pattern and neither applies a weight to it nor does any thresholding; i.e., it

1Caveat: This an overview by a non-expert on this topic; For an up-to-date reference see Jurafsky &
Martin’s Speech and Language Processing, ch. 7, https://web.stanford.edu/∼jurafsky/slp3/7.pdf

1



simply transmits the given value to some number of units in the next layer. But then
that next layer is not hidden – its inputs are known; so we may well discout the layer
of transmission points as a layer of NN units. If, on the other hand, the input units
do weight and threshold their inputs, then even if each input unit just sees one element
of the input pattern and transmits its output to just one successor unit, it would be
counted as an input layer. In general, we can properly count any layer of units that
perform computations (other than identity) on their inputs as NN layers, even if the
weights applied to inputs are not adjustable, or no thresholding is done.

Some types of NNs

Networks in which signal propagation is unidirectional from layer to layer (in effect,
an acyclic directed graph) are called feed-forward NNs. Networks allowing cyclic signal
pathways are called recurrent networks. Important kinds of recurrent networks include
Hopfield nets and Boltzman machines, in which connections are bidirectional (and thus
certainly “loopy”). In Boltzman machines activation of units is probabilistic, rather
than rigidly determined by the inputs. Such networks can model associative access, in
the sense of approximately reproducing a complete learned pattern based on inputting
parts of the pattern. In effect they sparsely encode the learned patterns in the hidden
layer(s). In natural language processing, recurrent neural nets with loops serving as
memory, particularly LSTMs (Long Short-Term Memory neural networks) play a key
role.

The simplest kind of NN, a perceptron, has just one unit, accepting some set of
inputs and thresholding their weighted sum. Perceptrons were shown to be able to learn
to classify inputs (e.g., handwritten characters) by training them on labeled examples.
Training involves use of classification successes and errors to modify the weights of the
connections from the inputs to the thresholding function, “rewarding” those connections
that contributed to correct outputs and “punishing” those that contributed to incorrect
outputs.

Perceptrons can learn to compute classifications only where the classes of inputs are
linearly separable. For example, in two dimensions (say, 2 input units with continuous
inputs), this implies straight-line separability of clusters of points in the Cartesian plane
corresponding to distinct classes; in three dimensions, it implies separability by a plane,
and in higher dimensions it implies separability by hyperplanes. Examples of classifi-
cation problems unsolvable by perceptrons are input parity (whether there is an even
or odd number of binary inputs) and connectedness (whether or not the “black” pixels
in a square binary array of black and white pixels are connected pixel-to-pixel or not).
The discovery of these limitation by Minsky & Papert in the late 1960s put a damper on
the initial hype that had accompanied the prior literature on perceptrons. Remarkably,
however, it was shown in later work that NNs with just one hidden layer (thus, 3 lay-
ers) could in principle compute any boolean function, could approximate any bounded,
continuous function, and implement any decision boundary; and with two hidden layers,

2



any function could be approximated. However, these results are not necessarily practi-
cal, because an exponential number of hidden units may be required for a given level
of approximation. In practice, adding more layers (possibly dozens) has been found to
improve NN performance. Also, note that function computation is intuitively inadequate
for reasoning over a knowledge base, which may involve a number of steps with no fixed
upper limit, and the knowledge base may be continually added to.

Types of learning methods in NNs

In the 1960s and 70s, an obstacle to effective use of multilayer NNs was a lack of good
methods for training such networks using labeled examples: How can one assign “credit”
or “blame” to connection strengths of inputs to hidden units? This problem was solved
by using differentiable threshold functions and backpropagation. Essentially, this involves
taking the derivative of the (squared) output error (for a given NN input pattern) with
respect to each connection weight in the NN, and adjusting the weight in a positive or
negative direction depending on whether that derivative is negative or positive respec-
tively. In the original conception of perceptrons, threshold functions were discontinuous
step functions, and as such not differentiable. It was the introduction of continuous
sigmoid functions or hyperbolic tangent functions as threshold functions (see below) that
made backpropagation possible. The mathematics of backpropagation was already de-
veloped in the 1960s, but it was not until the 1970s that the applicability to NN learning
began to be appreciated, and it was only in 1986 that an experimental demonstration of
the technique by Rumelhart, Hinton, and Williams firmly established the utility of the
method.

Even with backpropagation, successes in training multilayer NNs were limited by the
need for huge numbers of training examples, and by the tendency of iterative learning
to settle into local minima, instead of finding weights that globally minimize errors. NN
developers generally had to be quite clever in engineering good “features” of an input,
for a given classification task, that would ease the learning problem for the NN. This
detracted from the idea of NNs as a means of learning arbitrary classification tasks.
A technique apparently due to Bourlard and Kamp (1988) was “auto-association” or
“autoencoding”. A basic autoencoder has at least an input layer, called an encoder
(think of it as having a large number of units, allowing for complex input patterns),
a hidden layer with fewer units (think of it as representing the input in an efficient
“code”), and an output layer, called the decoder (with the same number of units as the
input layer), which is intended to reproduce the input as nearly as possible. To learn to
reproduce its inputs (based on numerous input examples), the system is forced to learn
an efficient encoding (one of “lower dimensionality”) of its inputs. The important point
is that these efficient encodings are learned in a unsupervised manner, i.e., the inputs
needn’t be labeled with desired outputs, because the desired outputs are the inputs! The
encoding/decoding idea is key to many other tasks. For example, in language modeling
a NN may learn to encode fixed-length segments of text in such a way as to optimize

3



its prediction of the following word or words. In machine translation, an NN learns
to encode source language sentences in such a way as to optimize generation of the
corresponding sentence in the target language. (Of course the latter is an example of
supervised learning – we need to have the example translations from which to learn.)

In 2006, Hinton et al. showed how to make the autoencoding technique practical.
In effect they trained layers of restricted Boltzman machines so that each layer (with
fewer units than the previous layer) learns the inputs to the previous layer (thus the first
hidden layer learns the external inputs, and its outputs serve as inputs to be learned by
the next, sparser, layer, etc.). The final (output) layer consists of units fully connected
to all units of the previous layer, and only the last one or two layers of the NN are
trained in supervised fashion, i.e., the NN seeks to obtain the given, correct outputs for
a set of training inputs. In this training phase, the weights of the previously trained
“autoencoder” levels are held fixed. In effect this kind of network discovers for itself
what features of an input to derive in order to be able to compactly encode the inputs;
the successive levels learn more and more abstract features, and these generally serve
well for miscellaneous learning tasks, as inputs to the last layer or two.

This work again caused much excitement, and the term “deep learning”, was increas-
ingly used in the literature about such multilayer NNs. Ultimately, it turned out that the
availability of web-scale training data made Hinton et al.’s autoencoder approach unnec-
essary for learning from “big data” (though not for modest-size datasets). For example,
a multi-layer feed-forward network trained in supervised fashion on many millions of im-
ages labeled with objects occurring in those images could be used almost as-is for many
other tasks. One just needed to retrain the last couple of layers on labeled examples
for the task at hand (e.g., skeletal joint positions on people in an image – as recently
implemented by a local grad student, Iftekar Tanveer). Interestingly, in an NN trained
on “big data” for a sufficiently diverse task the earlier hidden layers automatically learn
to encode the inputs efficiently in a more or less task-independent way, at successive
greater levels of abstraction, just as if autoencoding had been used for training.

Convolutional neural networks

It should be added that the successes of the above deep-learning systems have also been
aided by a particular way the earlier layers are organized: Each of several initial hidden
layers consist of identical units with identical input weights, each taking inputs from
a small (say, 9-element) local ”patch” of the input (where patches slightly overlap).
Computing the weighted sum of the elements of each input patch, performed uniformly
over identical, slightly overlapping patches that “tile” (cover) the entire input pattern,
amounts to mathematical convolution. Another way to think about it is as matching
a template to each patch of the input, and measuring the quality of the match; the
match results are then the outputs of the convolutional layer. The use of convolutional
templates was inspired by the “receptive fields” that play a key role in mammalian
(including human) vision. Often the convolutional layers are followed by “pooling”

4



layers, which again take their inputs from ”patches” of the outputs of a convolutional
layer, but in this case they use adjacent, nonoverlapping patches and each computes the
maximum value in a patch. This ensures a degree of insensitivity to exactly where the
convolution values (template matches) were highest in a local region.

The uniformity of the convolutional and pooling layers in convolutional NNs (CNNs)
significantly eases the learning problem, since only one set of weights, used by each unit
in a convolutional layer, needs to be learned for such layers, and pooling layers implement
fixed max-functions. CNNs have been successfully applied to image and video processing,
various NLP tasks (speech recognition, query-based document retrieval, syntactic and
semantic parsing, machine translation, etc.), drug discovery, and the game of Go, in
particular Google’s AlphaGo (this defeated a 9-dan Go player 4 games to 1; the program
also used special move prediction networks, board-value networks, and Monte Carlo
game-tree search); the later AlphaGo Zero program was even stronger, playing well above
human levels.

These recent successes (along with the “Watson” Jeopardy win and many news items
about self-driving cars) have led to much hype about imminent human-level AI. However,
NNs don’t yet understand language, or learn to reason, plan, or engage in dialogue
the way people do. They are still totally dependent on huge amounts of data for any
particular task in order to learn that task, whereas people learn from relatively few
examples. Currently the most advanced systems for reasoning, planning, or engaging in
dialogue are still ones based on symbolic representations, rather than NNs.

2 Some Specifics

The behavior of individual units

As noted, standard NN units are thought of as “threshold units” because, in analogy
with organic neurons, their output may be close to 0 until the net value of the inputs
reaches a certain threshold, and will then rather abruptly become much higher. More
precisely, suppose that unit i receives inputs from units 1, 2, ..., n; (normally unit i itself
won’t be one of these, unless it feeds its own output back to itself as an input). Suppose
further that the outputs of those units are s1, s2, ..., sn respectively; (below we’ll write
them as si1, si2, ..., sin to make clear that units 1, 2, ..., n are the ones with connections
to unit i; the point is that each unit in general receives inputs from a distinct set of prior
units). The connections from units 1, 2, ..., n that transmit their outputs to unit i are
assumed to have weights (connection strengths) wi1, wi2, ..., win. These can be positive
or negative, and we can think of a signal transmitted over a connection with a positive
weight as “excitatory” (it tends to make the target unit “fire”) and one transmitted over
a connection with negative weight as “inhibitory” (it tends to prevent the target unit
from firing). The net input neti to unit i is taken to be the weighted sum of the signals
received from units 1, 2, ..., n:

5



neti =
n∑

j=1

wijsij .

This is the value that feeds into the threshold function (activation function) f of unit i,
causing the unit to produce a 0 output or very low output when neti is below threshold,
and an output near 1 when neti is above threshold:

si = f(net i), where, e.g.,

f(x) =
1

1 + e−x
(a sigmoid function).

You can see that for very negative x, f(x) is close to 0, for x = 0 it is 0.5, and for x > 0,
it rises to 1. Thus 0 is in effect the threshold value. There are other sigmoid functions,
i.e., differentiable functions with this sort of shape. An advantage of the above version,
called the logistic function, is that its derivative is expressible in terms of itself:

f ′(x) = f(x)(1− f(x)).

This makes the derivation of the backpropagation rules easier.

Backpropagation

First you should note that since we have a mathematical expression for the input-output
behavior of each unit of an NN, we can also derive a mathematical expression for the
output of each unit (including the NN output units) of the NN for any given input.
Thus we can conceptualize the problem of finding the optimal weights wij , given a set
of training examples, as a problem of minimizing the average output error over all the
examples. This is a mathematical problem that can be tackled, for example, by gradient
descent methods, since our functions are all differentiable.

However, from a learning perspective it is more convenient to use a method that learns
example-by-example, and that is what backpropagation enables. We won’t go through
that derivation (which is based on the chain rule of differentiation, whose general form
is δf(g(...))/δw = f ′(g(...))δg(...)/δw, where w is some parameter whose influence on
f(g(...)) we are trying to determine). Backpropagation makes weight adjustments in
proportion to the derivatives of output error terms at each layer, working backward
from the final layer. The algorithm is simple enough to be stated here for a feed-forward
network:

Consider a particular training example;

1. Compute the output si for each unit i, in a forward sweep from the input layer to
the output layer;

2. For each output unit i, compute its error term,
δi ← si(1− si)(ti − si),
where ti is the correct (desired) output value at output unit i. Note the resemblance

6



of si(1−si) to the derivative of the logistic sigmoid function; and of course (ti−si)
is the error at output unit i;

3. For each layer whose successor layer has already been processed:

For each unit i in the layer, compute its error term,
δi ← si(1− si)

∑
k∈outputs (wkiδk);

note that wki is the weight of the connection from unit i to successor unit k –
whose error term δk we have already computed;

4. Increment each network weight
wij ← wij + ηδisij ,
where η is a constant called the learning rate (which should be small enough not
to give excessive importance to a single input-output example); recall that sij is
the output of unit j, but indicating that it is connected to unit i; (we could have
just written sj).

We can’t expect to get an optimal set of weights after a single pass through the training
set; rather, we iterate until weights no longer change significantly. Often a momentum
term is added to the increment in step 4, which is just a constant ≤ 1 times the increment
added at the previous iteration. This can accelerate convergence and help avoid local
minima.

As noted earlier, in applications to language modeling and other “sequence modeling”
tasks, we generally use recurrent NNs (RNNs), such as LSTMs, which contain feedback
loops that enable “remembering” and using features of input segments seen earlier in
the processing. We’ll discuss such RNNs separately.

7


