
DSC 530 Lecture Notes Sep. 25, 2019

Neural-Network-Based Relation Inference
Neural networks have proved effective primarily for learning
to classify images, speech, text and other patterns, but meth-
ods are being investigated for training them to produce more
complex outputs, including answers to questions requiring in-
ference. Only very simplified versions of such tasks can be
realized at present, and they require massive training data, but
there is increased interest in this area

NLP and Relation Inference

Deep neural nets (DNNs) have had a lot of success in “shallow” natural language process-
ing, such as speech recognition, tagging words with their parts of speech (POS), sentiment
analysis, named entity recognition (NER − i.e., identifying names like Genesee River,
Lady Gaga, O’Hare International Airport, etc., in text), constituent and dependency
parsing, machine translation, and more. Tasks requiring actual understanding, such as
conducting meaningful conversations or understanding the intentions behind the actions
of characters in a story, are still largely outside the scope of DNN methods, but activity
in this area is growing. For instance, inferring relations such as that Pablo Picasso’s
citizenship was Spanish, given that he was born in Spain, and given many examples of
individuals born in Spain who have Spanish citizenship, is an example of a simple infer-
ence that is currently possible. Also text summarization is an active area that intuitively
is dependent on some degree of understanding of the text being summarized.

These notes are about a noteworthy 2013 paper from Stanford about relational in-
ference (like the one about Pablo Picasso); and very briefly about a paper on inferential
question answering, based on brief, artificial “stories”.

R. Socher, et al., Reasoning with neural tensor networks ...

Reference: R. Socher, D. Chen, C.D. Manning, and A.Y. Ng, “Reasoning with neural
tensor networks for knowledge base completion”, NIPS 2013.
https://nlp.stanford.edu/pubs/SocherChenManningNg NIPS2013.pdf

Authors’ abstract:

Knowledge bases are an important resource for question answering and other tasks
but often suffer from incompleteness and lack of ability to reason over their discrete
entities and relationships. In this paper we introduce an expressive neural tensor
network suitable for reasoning over relationships between two entities. Previous
work represented entities as either discrete atomic units or with a single entity vec-
tor representation. We show that performance can be improved when entities are

1



represented as an average of their constituting word vectors. This allows sharing of
statistical strength between, for instance, facts involving the “Sumatran tiger” and
“Bengal tiger.” Lastly, we demonstrate that all models improve when these word
vectors are initialized with vectors learned from unsupervised large corpora. We
assess the model by considering the problem of predicting additional true relations
between entities given a subset of the knowledge base. Our model outperforms
previous models and can classify unseen relationships in WordNet and FreeBase
with an accuracy of 86.2% and 90.0%, respectively.

Let’s first take a look at the kinds of inference examples they are targeting. For
example, they want to compute the likelihood of

• (Pablo Picasso, nationality, Spain), using the available Freebase triples,1 not in-
cluding this particular triple but perhaps ones like (Pablo Picasso, place of birth,
Malaga) and (Malaga, located in, Spain) (where the subject and object have unique
identifiers associated with them), and many instances like (Cervantes, nationality,
Spain), (Cervantes, place of birth, Alcala de Henares), (Alcala de Henares, located
in, Spain), etc. In other words, this is a kind of analogy making;

• (German shepherd, hypernym, vertebrate), given the Wordnet relation between
German shepherd and dog, and between dog and vertebrate; it’s unclear if the
latter was given directly or indirectly. WordNet provides a chain from dog to
canine to carnivore to placental mammal to mammal to vertebrate, so the question
is whether the system was provided transitive closure information, or had to figure
this out; probably the former. If so, then the training data may also have contained
transitive closure information such as (beagle, hypernym, vertebrate), which would
greatly simplify analogy-making.

To get a sense of their method, let’s first of all review how the operation of a simple
neural unit with d numerical inputs and one output can be written in vector notation.
Suppose an entity (participating in a relation of interest) is represented as a column
vector e1 = (e11, ..., e1d)T of d numerical features. (Since we’ve written down the ele-
ments as a row vector for convenience here, we get the column vector by transposing
it, as indicated by superscript T .) These (so-called embedding) features are typically
based on co-occurrence frequencies of the entity name with other words in large sets of
sentences or in a DB like Freebase (with frequencies of high-frequency words like the
or have deemphasized); d may be very large to begin with, but is typically reduced by
dimensionality reduction methods – the authors used d = 100. In such a vector space,
similar entities tend to be close together (in terms of the cosine between them), as a
result of their tendency to occur in similar contexts (similar nearby words).

The weights applied to the components of e1 can be written as a row vector V , also
of length d. Then the weighted sum of e1-components is

∑d
i=1 vie1i, often written as

1There are nearly 2 billion, extracted from Wikipedia and “curated” by human judges

2



V e1 = (v1, ..., vd)

 e11
...

e1d

 .
We can then add a bias constant b to this weighted sum, and apply a sigmoid function
or the tanh function f to obtain the unit’s output g(e1), also throwing in a final scale
factor u [normalizing the output?], i.e.,

g(e1) = u.f

(v1, ..., vd)

 e11
...

e1d

+ b

 .

This might for example be suitable for classifying the type of a given named entity
(represented in terms of its word co-occurrence features) as being a person or something
else.

Neural tensor networks

So now suppose we’re trying to determine if two named entities e1, e2 are in a particular
relation R (such as nationality, relating Picasso and Spain). The simplest way is just to
apply the above method to the concatenation of e1 and e2, which is a column vector of
length 2d; the (row) weight vector V will now also be of length 2d. So we have (without
writing out elements of the concatenated e1 and e2),

g(e1, R, e2) = u.f

(
(v1, ..., v2d)

[
e1
e2

]
+ b

)
.

But according to the authors, this simple NN, combining the two vectors linearly
before applying nonlinear thresholding, (a) does not sufficiently allow for the relation-
ships among their elements, and (b) does not allow for the fact that two entity names
may share some substrings (Bengal tiger, Sumatran tiger), and therefore in general an
entity should be represented in terms of several vectors, corresponding to separate co-
occurrence behavior for their constituent words. They allow for k vectors per pair of
entities, with k = 4 in their experiments. So this should allow separate modeling of the
interaction beween the words of any 2-word entities (or between a 3- or 4-word entity
and a 1-word entity).

To relate entity vectors more “intimately” than just forming the weighted sum of
their concatenation, they combine them in the following fashion (which in effect allows
for products of components of e1 with components of e2):

eT1 We2,

3



where W is a d by d weight matrix. In vector/matrix algebra the order of multiplication
is generally taken to be rightmost-to-leftmost. So we are applying W to column vector
e2, thus linearly transforming it and obtaining another column vector of length d; then
we’re applying row vector eT1 (i.e., (e11, ..., e1d)) to that result, obtaining a single number.2

Note that if W were the identity matrix (with 1’s on the diagonal and 0’s elsewhere),
eT1 We2 would just be the dot product of e1 and e2, which makes clear that eT1 We2 allows
element-wise interaction between e1 and e2.

That takes care of point (a) above; to allow for (b), the authors use k weight matrices
like W , where each corresponds to two words, one from each of the two entity names (as
mentioned, allowing for up to 4 combinations). In accord with common practice, they
term the resulting d-by-d-by-k array

W [1:k]

a tensor. In ML, a tensor is just an array with more than 2 dimensions. Having a
term distinct from vector and matrix is appropriate because once we have 3 or more
dimensions, a variety of different kinds of products can be defined, beyond those at
lower dimensions. The only products we need here, however, are the matrix products
eT1 W

[i]e2 using each d-by-d “slice” of W [1:k]. The single numbers yielded by each of
these products are regarded as forming a column vector of length k. We write this as
eT1 W

[1:k]e2.

This column vector, eT1 W
[1:k]e2, becomes the first term in the revised expression to

which threshold function f is applied. The second term is like the simpler one worked out
above, based on the concatenation of e1 and e2, but with weight vector V now extended
to have k rows, intuitively intended as an appropriate weighting for each combination of
a word of e1 with a word of e2:

V

[
e1
e2

]
=

 v11...v1,2d
...

vk1...vk,2d





e11
...

e1d
e21
...

e2d


.

So instead of a single number, we now obtain another length-k column vector. We
also double up the bias term b into a k-vector. The sum of these three k-vectors is

2In general, when you multiply two matrices, you take the dot product of row i of the first matrix
with column j of the second matrix, to get the element of the ith row, jth column of the result. (The
dot product is the sum of element-by-element products.) So, multiplying a matrix with m rows and k
columns times a matrix with k rows and n columns, gives an m-by-n matrix. In the two multiplications
at hand, we are first multiplying a d-by-d matrix times a d-by-1 matrix (a column vector), yielding
another d-by-1 matrix, and then multiplying a 1-by-d matrix (a row vector) by a d-by-1 matrix (column
vector), yielding a 1-by-1 “matrix”, i.e., a number.

4



then thresholded element-by-element using f , and finally a scaling vector u of length k
(instead of a single scale factor) is used to obtain the desired result – a weighted decision
whether relation R holds between e1 and e2 (perhaps just the average of the k individual
+1/-1 “decisions” based on the k constituent word combinations):

g(e1, R, e2) = uT .f

(
eT1 W

[1:k]e2 + V

[
e1
e2

]
+ b

)
.

Of course, this particular “neural tensor network (NTN) is aimed at a single relation R,
and the authors actually trained and tested separate NTNs for about a dozen relations
from each of Freebase and WordNet. So in the paper, they subscript the various weight

arrays with R in the above formula: uTR,W
[1:k]
R , VR,, and bR.

Comments

The authors report improvements over earlier methods, moving accuracy scores on pos-
itive and negative relations (the latter restricted to appropriate entity types, exclusive
of ones like (Pablo Picasso, nationality, Rembrandt)) upward from about 86% to more
than 88%. Getting it right for nearly 9 out of 10 “questions” is quite impressive.

The main formula for the neural tensor network above may give the impression that
there’s only one thresholding operation f being applied to a 2-element column vector
– a 2-unit NN, where each unit has 2d weighted inputs! But this is deceptive: The
multiplications in the tensor term form products of the components of the e1 and e2
vectors, and multiplication is not what standard NN units do! So hidden in the tensor
term – if this is really a neural net made up of standard NN units – there must be layers
of units that do the multiplications.

So how could these layers be implemented, using only standard units resembling
those of mammalian brains? Well, this questions seems not to concern researchers in
this area too much, especially given the theoretical knowledge that just about anything
can be done with 2 hidden layers and enough neural units. As long as we’re using op-
erations, including (smoothed) threshold operations, that lead to a differentiable overall
input-output behavior, we can apply learning methods based on gradient descent-like op-
timization or backpropagation. It might be an interesting biological question how brains
implement various complex functions using organic neurons, but for NN developers it
would just make the learning problem harder to replace multiplication units, etc., with
multiple layers of more elementary units.

They regard their results as demonstrating “commonsense reasoning”. This is a bit
of an overstatement. Keep in mind that the information in Freebase is in a very simple,
regularized form. There is nothing enabling an inference like, “John got stuck on his way
to work” given that his car got a flat tire on his way to work, and knowledge such as “If a
car gets a flat tire, it can no longer be driven”, among other necessary items. Essentially
the “reasoning” in the NTN, such as it is, consists of making analogies – i.e., similar

5



entities tend to be related in similar ways. (The ConceptNet system, the main product
of the Open Mind Common Sense project at MIT, has similar capabilities.) Moreover,
a dozen static relations don’t go very far in reasoning about our dynamic world. The
Wordnet relations used were also very simple hierarchy relations, it seems (they don’t
specify).

B. Peng et al., Towards neural network-based reasoning

Reference: B. Peng, Z. Lu, H. Li, K.-F. Wong, “Towards neural network-based reason-
ing”, Aug. 2015, Cornell Univ. Library. (This seems not to have been published in a con-
ference venue or journal, but is frequently cited anyway.) https://arxiv.org/pdf/1508.05508v1.pdf

The authors tackle the bAbI question answering set; each has a few facts, and a
couple of questions, with answers. There are thousands of (algorithmically generated)
instances for various “tasks”. Two examples:

1. The office is east of the hallway.
2. The kitchen is north of the office.
3. The garden is west of the bedroom.
4. The office is west of the garden.
5. The bathroom is north of the garden.

How do you go from the kitchen to the garden? south, east; relies on 2 and 4.
How do you go from the office to the bathroom? east, north; relies on 4 and 5.

1.The triangle is above the pink rectangle.
2.The blue square is to the left of the triangle.

Is the pink rectangle to the right of the blue square?
Yes; relies on 1 and 2.
Is the blue square below the pink rectangle?
No; relies on 1 and 2.

The approach here looks interesting. It makes use of many seemingly separate NNs.
The words of a fact or sentence are represented as feature vectors (as in the above
paper). At the base level, a given question is represented, alongside the entire se-
quence of known facts. The word sequence corresponding to the question and each
fact is processed by a type of recurrent NN (RNN) called a “ gated recurrent unit”
(GRU), which like an LSTM uses Hadamard gates (component-by-component multipli-
cation) to enable long-term memory without “vanishing or exploding gradients”, and
seems to require fewer training data than LSTMs. (For some details on GRUs, see e.g.,
https://en.wikipedia.org/wiki/Gated recurrent unit.) Each fact RNN provides its out-
put, paired with the output of the question RNN, to a separate DNN, yielding an altered
representation of the question paired with an altered representation of the fact. (Each
has to some extent influenced the other – this is thought of as some sort of tacit infer-
ence process). Then the altered question representations (one for each fact) are pooled

6



into a single altered question representation, using a “softmax” operation; this is again
combined via a DNN with each (now altered) fact, etc. This process of combining the
altered question with each altered fact, followed by question pooling, continues over sev-
eral “inference” layers. The final pooled question representation is fed to a (separately
trained) answering module.

Comments

They seem to do very well in “end to end” reasoning [as opposed to step-by-step su-
pervised training? Haven’t really tried to understand]. As always, the NN methods use
alternating linear operations (using matrices or tensors on the vectors “passing through”
the successive layers) and element-wise nonlinear operations (softmax, e.g., for a 3-vector
x, y, z this is ex/S, ey/S, ez/S, where S normalizes the vectors to sum to 1, allowing their
interpretation as probabilities; or tanh – the hyperbolic tangent, which goes from -1 at
−∞, through 0 at 0, and to 1 at +∞. These are differentiable, as required for imple-
menting backprop.

Of course, the simple, artificial facts used in these experiments are quite restrictive,
and we can’t tell the system any general facts. Indeed, the idea of bAbI is that the sys-
tem should automatically internalize general rules based on thousands of closely related
examples. But it’s unclear whether rules in any sense are actually learned, e.g., when x
goes from place y to place z, then x ends up at z and is no longer at y; or that if x is to
the left of y then y is to the right of x. For all we know, the system is again just making
analogies between “patterns of examples” and the corresponding questions and answers.

As a final note, the 2018 and 2019 NIPS conferences featured such papers as the
following (2019 had over 1000 papers, very few on reasoning):

Puneet Agrawal et al., “A Deep Learning Based Conversational Social Agent” (2018)

Schlag & Schmidhuber, “Learning to Reason with Third Order Tensor Products” (2018)

Robert Ness, Kaushal Paneri, & Olga Vitek, “Integrating mechanistic and structural
causal models enables counterfactual inference in complex systems” (2019)

Wang-Zhou Dai, Qiuling Xu, Yang Yu, & Zhi-Hua Zhou, “Bridging Machine Learning
and Logical Reasoning by Abductive Learning” (2019)

Vaishak Belle & Brendan Juba, “Implicitly learning to reason in first-order logic” (2019).

Drew Hudson & Christopher Manning, “Learning by Abstraction: The Neural State
Machine for Visual Reasoning” (2019)

Meng Qu & Jian Tang, “Probabilistic Logic Neural Networks for Reasoning” (2019)

So the field is moving forward, attempting to capture more of human understanding
and reasoning. However, the only truly competent (though generally specialized) dia-
logue systems and reasoning systems in AI remain those based on symbolic semantic
representations and knowledge representations.

7


