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Abst rac t :  We present deadlock-free packet (wormhole) routing algorithms 
based on multi-dimensional interval schemes for cert~n multiprocessor inter- 
connection networks and give their analysis in terms of the compactness and 
the size (the maximum number of buffers per node (per link)). The issue of a 
simultaneous reduction of the compactness and the size is fundamental, worth 
to investigate and of practical importance, as interval routing and wormhole 
routing have been realized in INMOS Transputer C104 Router chips. 
In this paper we give an evidence that for some well-known interconnection 
networks there are efficient deadlock-free multidimensional interval routing 
schemes (DFMIRS) despite of a provable nonexistence of efficient deterministic 
shortest path interval routing schemes (IRS). For d-dimensional butterflies we 
give a d-dimensional DFMIRS with constant compactness and size, while each 
shortest path IRS is of the compactness at least 2 d/2. For d-dimensional cube 
connected cycles we show a d-dimensional DFMIRS with compactness and size 
polynomial in d, while each shortest path IRS needs compactness at least 2 ~/2. 
For d-dimensional hypercubes (tori) we present a d-dimensional DFMIRS of 
compactness 1 and size 2 (4), while for shortest path IRS we can achieve the 
reduction to 2 (5) buffers with compactness 2 d-1 (O(,~-1)). 
We also present a nonconstant lower bound (in the form vfd) on the size 
of deadlock-free packet routing (based on acyclic orientation covering) for a 
special set of routing paths on d-dimensional hypercubes. 

1 Introduction 

Interval routing is an attractive space-efficient routing method for communica- 
tion networks which has found industrial applications in INMOS Tg000 trans- 
puter design. Survey of principal theoretical results about interval routing can 
be found in [14, 6]. 

Interval routing is based on compact routing tables, where the set of nodes 
reachable via outgoing links is represented by intervals. The space efficiency can 
be measured by compactness, i.e. the maximum number of intervals per link. 

* This research has been partially supported by the Slovak Research Grant VEGA 
1/4315/97. 
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Previous work mostly concentrated on shortest path interval routing schemes 
(IRS). Shortest path IRS of compactness 1 are known to exist for a number of 
well-known interconnection networks including trees, rings, complete bipartite 
graphs, meshes, and tori. There are however networks that are known to have no 
shortest path IRS even for large compactness, which include shuffle-exchange, 
cube-connected cycles, butterfly, and star graphs. Several generalizations of IRS 
were therefore proposed. 

Multidimensional interval routing schemes (MIRS) were introduced in [5] 
and were used to represent all the shortest paths information. MIRS with low 
memory requirements were proposed for hypercubes, grids, tori and certain types 
of chordal rings [5]. 

Another interesting aspect of the routing problem is related to deadlocks. 
A deadlock refers to a situation in which a set of messages is blocked forever 
because each message in the set occupies buffer in a node or on a link which is also 
required by another message. Deadlock-free routing is relevant in the framework 
of packet and wormhole routing protocols [2, 3, 8, 12, 13]. The first study dealing 
with deadlock-free IRS appeared in [11]. Further results were presented in [10, 
15, 16]. We follow the model of buffered deadlock-free IRS introduced in [4] 
based on the notion of acyclic orientation covering. An s-buffered deadlock-free 
IRS with compactness k is denoted as (k, s)-DFIRS. Some results were already 
presented in [4]. For d-dimensional tori there exists a shortest path (2,2d + 1)- 
DFIRS; the reduction to 5 buffers can be achieved with compactness O(n~-l). 
For d-dimensional hypercubes there is a shortest path (1, d + 1)-DFIRS; the 
reduction to 2 buffers can be achieved with compactness 2 d-1. 

We extend the model in [4] to buffered deadlock-free multi-dimensional inter- 
val routing (MIRS). We show that for some interconnection networks there are 
efficient deadlock-free MIRS even in the case when there does not exist efficient 
shortest path IllS. For butterflies of order d we give a deadlock-free d-dimensional 
MIRS with constant compactness and size, while each shortest path IRS needs 
compactness at least 2 ~/2. For cube connected cycles of order d we present a 
deadlock-free d-dimensional MII~S with compactness and size polynomial in d, 
while each shortest path IRS needs compactness at least 2 ~/2. For d-dimensional 
hypercubes we give a deadlock-free d-dimensional MIRS of compactnes 1 and 
size 2. And for d-dimensional tori we show a deadlock-free d-dimensional MIRS 
of compactness 1 and size 4. 

There exist only few lower bounds on the size of deadlock-free packet routing, 
even for those based on specific strategies. The best lower bound is 3 (see [2]). We 
give the first nonconstant lower bound (in the form x/'d) on the size of deadlock- 
free packet routing (based on acyclic orientation covering) for a special set of 
routing paths on d-dimensional hypercubes. As a consequence, the set of routing 
paths induced by 1-IRS on the hypercube proposed in [1] is not suitable for 
the efficient deadlock-free packet routing based on acyclic orientation covering 
concept. 



275 

2 Definit ions 

An interconnection network is modeled by an undirected graph G = (V,A), 
where V is a set of nodes and A is a set of links of the network. Assume IV I = n. 
Each node has a finite set of buffers for temporarily storing messages. The set 
of all buffers in the network G is denoted as B. 

A communication request is a pair of nodes in G. A communication pattern 
is a set of communication requests. We will consider certain significant com- 

munication patterns in G. A static one-to-all communication pattern is a set 
{(v, w) [ w G V} for a given source node v. A dynamic one-to-all communication 
pattern is a set {(v, w) [ w G V} for some (not given in advance) source node v. 
An all-to-all communication pattern is a set {(v, w) ] v, w E V}. A collection 7 ~ 
of paths in G satisfies the communication pattern ~ if there is at least one path 
in G beginning in u and ending in v for each communication request (u, v) G 7~. 

The routing problem for a network G and a communication pattern 7~ is 
a problem of specifying a path collection P satisfying 7~. A path collection is 
simple if no path contains the same link more than once, and it is a shortest 
path collection if for each (u, v) G 7~ only shortest paths from u to v in G are 
considered. Satisfying a communication request consists of routing a message 
along a corresponding path in P.  In this paper, the routing problem is solved by 
a path collection induced by interval routing schemes. In what follows we shall 
consider all-to-all communication patterns only unless otherwise specified. 

An Interval Labeling Scheme (ILS) is given by labeling each node in a graph 
G by a unique integer from the set {1, 2, ..., n} and each link by an interval 
[a, b], where a, b G {1, 2, ...,n}. We allow cyclic intervals [a, b] such that  [a, b] = 
{a, a + 1, ..., n, 1, ..., b} for a > b. The set of all intervals associated with the links 
incident with a node must form a partition of the set {1,2, ..., n}. Messages to a 
destination node having a label l are routed via the link labeled by the interval 
[a, b] such that  ! G [a, b]. An ILS is valid if the set of paths specified by this ILS 
satisfies the all-to-all communication pattern. (Thus, if, for all nodes u and v 
in G, messages sent from u to v reach v correctly, not necessarily via shortest 
paths.) A valid ILS is also called an Interval Routing Scheme (IRS). An II=tS thus 
specifies for each pair of distinct nodes u and v in G a (unique) path from u to 
V. 

In a k-ILS each link is labeled with up to k intervals, always under the as- 
sumption that  at every node, all intervals associated with links outgoing from the 
node form a partition of {1, ..., n}. At any given node a message with destination 
node labeled I is routed via the link labeled by the interval containing I. If k-ILS 
does not use cyclic intervals, the k-ILS is called linear or simply k-LILS. Valid 
k-ILS and k-LILS are called k-IRS and k-LIRS respectively. A k-IRS (k-LIRS) 
is said to be optimal if it represents a shortest path collection containing exactly 
one shortest path between any pair of nodes. 

Multi-dimensional interval routing schemes (MIRS for short) are an extention 
of interval routing schemes. In (k,d)-MIRS every node is labeled by a unique d- 
tuple (11, ..., ld), where each li is from the set {1, ..., hi} (1 < ni <_ n). Each link 
is labeled by up to k d-tuples of cyclic intervals (I1,1, ..., Id,1), ..., (/1,~, ..., Id,k). 
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In any node a message with destination (!1, ..., ld) is routed along any outgoing 
link containing a d-tuple of cyclic intervals (/1, ..., Id) such that li E Ii for all i. 
In this case, multiple paths are represented by the scheme, so the intervals on 
the links of a given node may overlap, i.e. they do not form a partition of the 
nodes in V. 

We intend to model the packet routing, i.e. the so called store-and-forward 
message passing in which the message from u to v passing via w has to be stored 
at the node w before it is sent further towards v. We shall assume each node 
contains a finite number of buffers. For a message to pass via a link (z, y) it 
means, that it has to be moved from a buffer at node z to a buffer at node y. 
This assumes the existence of an available (i.e., empty) buffer at y. 

We follow the notions introduced in [4]. In packet routing, each message is 
represented by its source-destination pair. For a given message m = (u, v) and 
a buffer b containing m, a controller C : V x V x B ~ 2 B specifies the subset 
C(u, v, b) of buffers which can contain m in the next step along the path to its 
destination v. We say that  a controller C is deadlock-free if it does not yield 
any deadlock configuration. This property can be guaranteed if the resulting 
buffer dependencies graph is acyclic. In buffer dependencies graph [8] , each 
node represents a buffer and there is a directed edge between bi and bj if there 
is at least one message m = (u, v) such that bj 6 C(u, v, hi). 

Let us by su denote the number of buffers used by a controller C at the node 
u. For a network G = i V, A) and a controller C for G, we define the size s of C 
as s = mazu~v(su). 

Assume a path re = vl, ..., v~ connecting vl to v~. We say that the controller 
C covers re if there exist r buffers bl, ..., br such that  for each i, 1 < i < r, b~ 
belongs to vi and for each i, 1 < i < r -  1, bi+l E C(vl,vr,bi). 

We need to extend the standard k-IRS to deadlock-free k-IRS. Notice that  
each k-IRS uniquely induces the set of simple paths, one for each pair of nodes 
in G. A (k, s)-DFIRS (deadlock.free IRE) for a graph G is a k-IRS for G together 
with a deadlock-free routing controller of size s for G which covers the set of 
paths represented by the k-IRS. The (k, s)-DFIRS is optimal if the k-IRS is 
optimal. 

All controllers considered in this paper are based on the concept of an acyclic 
orientation covering. An acyclic orientation of a graph G = (V, A) is an acyclic 
directed graph DG = ( V, DA) obtained by orienting all links in A. Let ~ = 
(DG1,..., DGs) be a sequence of (not necessarily distinct) acyclic orientations of 
a graph G and let re = vl, ..., vr be a simple path in G. We say that  G covers re 
if there exists a sequence of positive integers j l ,  -.., j r -1 such that  1 < Jl < ..- _< 
jr-1 < s and for every i, 1 < i < r - 1, (vi, vi+l) belongs to DGj,. 

Note that  a path re need not be covered by G in a unique way. There could be 
different sequences kl, ..., kr-1 such that  (vi, vi+l) belongs to DGk~. But there 
exists a unique sequence such that  the corresponding ( r -  1)-tuple (kl, ..., kr-1) 
is minimal (w.r.t. the lexicographical ordering). We assume that the deadlock- 
free controller based on ~ works with minimal tuples. Such a controller is called 
greedy. 
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Let P be a set of simple paths connecting every pair of nodes in G. A sequence 
of orientations ~ = (DG1, ..., DGs)  is said to be an acyclic orientation covering 
for P of size s if ~ covers at least one path ~" E :P for each pair of nodes in G. A 
((k,  d), s) - D F M I R S  (deadlock-free MIR5)  for a graph V is a (k, d) - M I R S  
for G together with a deadlock-free controller of size s for G which covers the 
set of paths induced by the (k, d) - M I R S .  

The main problem covered is to design the deterministic packet routing pro- 
tocol based on a possibly nondeterministic (k, d) - M I R S  with a deadlock-free 
routing controller (based on acyclic orientation covering G = (DG1, . . . ,  D G , ) )  of 
size s for G. In this paper we solve this problem by applying the greedy mode. 
At the source node, the message destined for the node labeled l is routed via a 
link e having the interval containing I and satisfying e E DG1. Only if such a 
possibility does not exist it chooses the next orientation DG2. Generally, at an 
arbitrary node, the protocol first chooses a link in the current orientation DGj  
according to (k, d) - M I R S  and only if such a link does not exist, it switches to 
the next acyclic orientation DGj+I  in ~. We call this strategy a greedy one. All 
((k, d), s) - D F M I R S  in this paper are working with the greedy strategy. 

The importance of acyclic orientation coverings is stated by the following 
classical result (see [11]) formulated for all-to-all communication patterns: given 
a network G and a set of simple paths :P connecting all pairs of nodes in G, if an 
acyclic orientation covering of size s for P exists, then there exists a deadlock-free 
packet routing controller of size s for G which covers :P. 

3 R e s u l t s  

The size of deadlock-free controllers for the optimal (shortest paths) packet rout- 
ing on arbitrary networks strongly depends on the structure of communication 
patterns. The following fact for all-to-all communication patterns can be found 
e.g. in [11]: for any network G and a set of n.(n  - 1) shortest paths connecting 
every pair of nodes in G, there is a deadlock-free controller (based on an aeyclic 
orientation covering) of size D + 1, where D is the diameter of G. The best lower 
bound on the size of deadlock-free controllers is 3 [2]. 

Considering all-to-all communication patterns on arbitrary networks, the 
problem is to determine nonconstant lower bound on the size of a deadlock- 
free controller (based on acyclic orientation covering concept) necessary for the 
optimal packet routing. 

However, if we assume static one-to-all communication patterns, the require- 
ments for the size of deadlock-free controllers are much lower. Namely, for any 
network G and a set of n - 1  shortest paths connecting a node with all other nodes 
in G, there is a deadlock-free controller (based on acyclic orientation covering) 
of size 1. 

For other types of communication patterns the problems are again unsolved. 
What is the number of buffers sufficient to realize dynamic one-to-all or per- 
mutation communication patterns? Can we do better than D + 1 buffers per 
node? 
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We shall concentrate on specific networks. We shall study the relationship 
between the size and the compactness of deadlock-free packet routing, based on 
interval routing schemes, for certain interconnection networks including hyper- 
cubes, tori, butterflies and cube connecting cycles. 

3.1 H y p e r c u b e s  

A d-dimensional hypercube Ha is the cartesian product of d complete graphs 
K2. 

L e m m a  1. There exists a deadlock-free controller of size 2 for the optimal packet 
routing on a d-dimensional hypercube. 

Proof. A hypercube Hd is a node symmetric graph, so we can fix an arbitrary 
node as the initiator of Hd and assign it the string 0 a. Let the unique string of 
the nodes in Ha be from {0, 1} a such that two nodes are neighbors if and only 
if their strings differ in exactly one bit. Define the acyclic orientation covering 

= (DH1, DH2) of a hypereube such that in DH1 all links are oriented from 
all the nodes towards the initiator and in DH2 the orientation is opposite. 

It is easy to verify that G forms a greedy deadlock-free controller of size 2 
for Ha. There exists a collection of shortest paths between all pairs of vertices 
in Hd, covered by G. Given any two nodes u and v in Ha with corresponding 
strings a and/?, a shortest path from u to v follows 

- in the first place links (in arbitrary order) changing bit 1 to 0 in all positions 
in which a has 1 and/3 has 0, and 

- later on links (in arbitrary order) changing bit 0 to 1 in all positions in which 
has 0 and ~ has 1. 

13 

When we consider dynamic one-to-all communication patterns instead of all- 
to-all communication patterns, we get the following consequence of the previous 
lemma. 

Corol la ry  2. There exists a deadlock-free controller of size 2 for the optimal 
packet routing on a d-dimensional hypercube with dynamic one-to-all communi- 
cation patterns. 

The next two results are from [4]. When we consider linear interval routing 
schemes, the size d + 1 can be obtained with compactness 1, and the reduction 
to the size 2 can be achieved with the compactness 2 d-1. 

L e m m a 3 .  For every i (1 < i < d) there exists a (2/-1, rd/i] + 1) - D F L I R S  
for a d-dimensional hypercube. 

Coro l la ry4 .  There ezists a (1, d+ 1 ) - D F L I R S  on a d-dimensional hypercube. 
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We now show that using d-dimensional interval routing schemes (see [5]) the 
size 2 can be achieved with compactness just  1. 

T h e o r e m b .  For every i (1 < i < d) there exists a ((2 ' -1,  [d/i]),  2 ) - D F M I R S  
for  a d-dimensional  hypercube. 

Proof. Consider a d-dimensional hypercube Hd = (V, A), given as the product of 
[d/iJ subcubes of dimension i and a subcube of dimension d moil i. For simplicity, 

assume d mod i = 0. Observe that each of these d / i  subcubes H~ j) = (Vj, Aj), 
1 < j < d/ i ,  of dimensions i admits a ([2i -1/ i] ,  1)-MIRS. 

We label each node in V by the d-tuple 

(11,1,-.., ll,i, 12,1,..., 12,i, ..., ld/i,1, ..., ld/i,i) 

(Ip,q e {0, 1}, 1 < p < d / i ,  1 < q < i) where for each j ,  (lj,1,..., li,i) is the label 

of a node in V/ in the ( [2 ' - I / i ] ,  1)-MIRS of HI j). 
We label each link e = ((ll, ..., lh, ..., ld), (ll, ..., [h, ..., ld)) in A, lh = 1 -- lh, by 

r2i-1/i] d / i - tuples  

(I1,1, ..-, Ii,d/i) .... , (Ir:,-,/i1,1, " " ,  Ir2,-V l,a/i) 
where ( k -  1). i+ 1 < h < k.i  (for some k E {1, .... d/ i} ) ,  and for each m such that 
either m < (k - 1).i + 1 or m > k.i, II,rrn/i] -" I2,frn/i] = ... = Ir2,-i/q,rrn/i 1 is 
the interval containing the [m/ i ] - th  dimensional component of all node labels, 
and I i , [h/ i] , . . . , I r2 , -Vq, fh /O are the r2i-1/iq intervals associated at the node 

(11, ..., lh .. . .  , ld) to the link ((ll, ..., lh, ..., ld), (11,..., [h .... , Id)) in the ( [2i -1/ i ] ,  1)- 
MIRS for ~(J)  1 < j < d/ i .  

It is easy to verify that  the described scheme correctly transmits messages via 
shortest paths. At each link the number of intervals is at most [2i-1/i] ,  hence it 
can be no worse than 2/-1 for each i. The dimension of the product cube Ha is 
clearly the sum of dimensions of all the subcubes, i.e. d/ i .  Following the proof of 
Lemma I we get a deadlock-free controller of size 2 working in the greedy mode 
for the optimal packet routing on Hd. r~ 

C o r o l l a r y 6 .  There is a ((1, d), 2)-D F M I R S  on a d.dimensional  hypercube. 

In Lemma 1 we proved that there exists a deadlock-free controller, for packet 
routing on a hypercube, which uses only two buffers in each node and allows 
messages to be routed via shortest paths. G. Tel [11] posed the question whether 
it is possible to obtain the set of the paths used by means of a (linear) inter- 
val routing scheme. We argue that there is no (1,2)-DFLIRS (based on acyclic 
orientation controller) on a d-dimensional hypercube. (It is sufficient to show 
the nonexistence of (1, 2) - D F L I R S  on d-dimensional hypercubes for a small 
constant dimension.) 

There exists an acyclic orientation covering of size d q- 1 for the set of all 
shortest paths between all pairs of nodes in Ha. We show that the relevant lower 
bound is V~. 



280 

The d-dimensional hypercube has a node set consisting of all binary strings 
of length d with two nodes being connected if and only if they differ in exactly 
one bit. Thus every path in the hypercube corresponds to a sequence of changes 
of some bits. If the bits are changed in order from left to right then the path is 
called monotone. 

T h e o r e m T .  Let 7 ~ be a path system of a d-dimensional hypercube such that 
each path between any node v and its complement ~ in 7 ~ is monotone. Every 
acyclic orientation covering for 7 ~ has size at least v/d. 

Proof. A movement of a message along the monotone path connecting a node v 
and its complement ~ can be simulated by a device consisting of a tape with d 
cells and a cursor which can be positioned either between any two neighboring 
cells or at the two ends of the tape. Initially the tape contains the string v and 
the cursor is on the left end of the tape. Moving a message along one link of the 
path corresponds to moving the cursor over one cell to the right and inverting 
the content of that  cell. Reaching the destination is equivalent to reaching the 
right end of the tape. If we are given some acyclic orientation of the hypercube 
then we allow the cursor to advance only if the corresponding link is properly 
oriented in the current orientation. 

If a sequence (DG1, ..., DG,) of acyclic orientations of the hypercube is an 
acyclic orientation covering for P then if we start the device on any node v 
and move the cursor according to DG1, ..., DG, (in this order, using the greedy 
strategy) then the cursor reaches the right end of the tape. 

Let us assume we shall start  the device on all 2 d nodes simultaneously and 
consider the positions of cursors following the use of each acyclic orientation. An 
important  observation is that  for any acyclic orientation only few cursors can 
make long movements. For any positions of cursors a, b E {0, ..., d}, a < b and 
any acyclic orientation there are at most 2a/(b-a+l)  cursors that  move between 
positions a and b in this orientation. For the sake of contradiction suppose that  
for some a, b there are more than 2a/(b-  a + 1) cursors moving between positions 
a and b. From now on we consider only these cursors and their devices. For each 
device for each of the b - a + 1 cursor positions between a and b the tape of the 
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In the 1-LIRS of the hypercube proposed in [1] every path between node and 
its complement is monotone. The consequence of the previous theorem is that  
this 1-LIRS is not suitable for the efficient deadlock-free packet routing (based 
on acyelic orientation covering). 

One can observe that  there exists a general deadlock-free controller of con- 
stant size covering the set of routing paths :P from Theorem 7. 

3.2 Tor i  

A d-dimensional torus T,~ 1 ..... nd is the cartesian product of d rings R1, ..., Ra, in 
which each Ri has ni nodes. 

L e m m a 8 .  There exists a deadlock-free controller of size 4 for the optimal packet 
routing on a d-dimensional ~orus. 

Proof. For simplicity, we will assume the case of 2 dimensions. The case of d 
dimensions is handled in a similar fashion. Fix an arbitrary node w of an n x m 
torus Tn,m. For simplicity, consider n, m even. Say w = (n/2, m/2). Define the 
acyclic orientation covering G = (DT1, DT2, DT1, DT2) of a 2-dimensional tori 
Tn,m such that  in DT1 the links are oriented from (i,j) to (i + 1,j)  for i = 
1 ,2 , . . . , n / 2 -  2, n/2, . . . ,n  and 1 < j < m and from ( i , j )  to ( i , j  + 1) for 1 < 
i < n, j = 1, 2, ..., m/2 - 2, m/2, ..., m and the links are oriented from (n/2, j) 
to ( n / 2 -  1,j) for 1 < j < m and from ( i ,m/2)  to ( i , m / 2 -  1) for 1 < i < n. 
In DT2 all links are in opposite orientation. Edges ((n/2 - 1, j), (n/2,j)) for 
1 < j < m and ( ( i ,m/2  - 1), (i, m/2)) for 1 < i _< n form row and column 
frontiers, respectively. 

It is easy to verify that  G forms a deadlock-free controller of size 4 for Tn,m. 
There is a collection of shortest paths between all pairs of nodes in Tn,,n that  
can be covered by ~. Given any two nodes u and v in Tn,m with coordinates 
(i, j )  and (k, l), respectively, there exists a shortest path from u to v that  can be 
partitioned into four subpaths (where some of them may be empty) such that  
these subpaths are contained in coverings DT1, DT2, DT1, DT2, respectively. If 
the shortest path from u to v does not cross frontiers, the routing from u to v 
can be done using DT1, DT2. If the shortest path from u to v crosses one or two 
frontiers, the routing from u can reach frontiers using either DTt or DT1, DT2, 
then routing through frontiers can be performed with the next orientation in 
and finally routing to v can be done with the next orientation in ~. O 

The question remains whether it is possible to induce the set of paths achieved 
by deadlock-free controllers of size 4 by means of efficient interval routing schemes. 

The next two results are from [4]. When we consider linear interval rout- 
ing schemes, the size 2d + 1 can be obtained with the compactness 2, and the 
restriction to the size 5 can be achieved with the compactness O(nd-1). 
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L e m m a  9. There exists a (2, 2d + 1)-DFLIRS for a d-dimensional torus. 

L e m m a l 0 .  For every n and i (1 < i < d) there ezists a ([n~/2q,2.rd/i] + 1)- 
DFI~IRS on a d-dimensional torus. 

On the other hand, when using d-dimensional interval routing schemes (see 
[5]) the size 4 can be achieved with compactness of only 1. 

T h e o r e m l l .  For every n and i (1 < i < d) there exists a ((n i-x, [d/i]),4) - 
D F M I R S  on a d-dimensional torus. 

Proof. Consider a d-dimensional torus, given as the product of [d/iJ subtori 
of dimension i and a subtorus of dimension d rood i. For simplicity, assume 
d mod i = 0. Observe that each of these d/i  subtori of dimension i admits 
(n i - l ,  1)-MIRS. Now, the proof follows in a similar way as the proof of Theo- 
rem 5 for hypercubes. Following the proof of Lemma 8 we get a deadlock-free 
controller of size 4 working in the greedy mode for the optimal packet routing 
on d-dimensional tori, based on (n i-1 , [d//])-MIRS. [] 

Coro l la ry  12. There exists a ((1, d), 4 ) -  D F M I R S  on a d-dimensional torus. 

3.3 But te r f l i e s  

The d-dimensional butterfly network (BFd for short) has (d + 1).2 d nodes and 
d.2 d+l links. The nodes correspond to pairs (a,p), where p E {0, ..., d} is the 
position of the node and cr is a d-bit binary number. The two nodes (a,p)  and 
(al,p,) are connected by a link if and only if p' = p-4- 1 and either ~ and ~' are 
identical or a and a '  differ only in the pith bit. 

L e m m a  13. There exists a deadlock-free controller of size ~ for the optimal 
packet routing on a d-dimensional butterfly. 

Proof. Let u = (ad-1...ao,p) and v = (b4-1...bo, q), p > q, be two nodes in SFd. 
The distance d(u, v) is d(u, v) = p -  q if a~ = bi for i = 0, 1, ..., d -  1 and d(u, v) = 
rmaz - rrnin + IP -- rmaz[ + [q -- rrnin[ + C, where c = 0 for p > rrna=, otherwise 
c = 2, and where rmaz = maz{ i  ] ai # bi, 0 < i < d -  1} and rrnin = min{ i  [ 
ai ~ hi, 0 < i < d -  1}. In order to reach the length d(u, v), take the shortest 
path in BFa from (ba-1...bo, q) to (ba-1...bo, r,~i,) following Irmi, - q l  links, 
then the shortest path from (bd-x...bo, rrnin) to (aa-1...ao, rma= + 1) following 
Irma= - rmi,~l links and finally the shortest path from (ad-1...ao, r,~= + 1) to 
(aa-x...ao, p) following Irma= - P l -  1 links when p > rrn~=, and [rm~= - P l  + 1 
links otherwise. 

Now, it is easy to verify that each shortest path between two nodes in BFd can 
be partitioned into three subpaths such that each subpath either continuously 
increases or decreases the position parameter p. Hence, there is a deadlock-free 
controller of size 4 on BFa. [] 

It was shown in [7] that there does not exist efficient IRS for d-dimensional 
butterflies. 
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L e m m a  14. Each oplimal k-IRS for a d.dimensional butterfly needs k = /2 (2  d/2) 
intervals. 

However, there are efficient MIRS on d-dimensional butterflies, with deadlock- 
free controllers of size only 4. 

L e m m a 1 5 .  There is a ((2,3),4)-DFMIt~S on a d-dimensional butterfly. 

Proof. Consider the following machine. It has a working tape [ala2...ai[ai+l...ad] 
with d cells containing bits "ai" and a head "[" which can be positioned between 
cells or at any end of the tape. In one step the head moves to the left or to 
the right and writes 0 or 1 to the cell over which it has passed. The graph with 
vertices corresponding to states of this machine and links corresponding to steps 
is exactly the d-dimensional butterfly graph. This allows us to consider nodes of 
BF4 to be the states of the machine described. 

Given BFa and a node w of the form [u~lv], then there exist shortest paths 
from w to the nodes 

- of the form (A): [fll[/~], [fill >_ [ua[, ua is not a prefix of ill 
- or of the form (B): [flz lfl20v] 

starting with the link e corresponding to moving the head to the left and writing 
0. These are the only such nodes in BFd. 

We have to show that  for BFd there exists a (2, 3)-MIRS. Let us label the 
nodes in the three dimensions as follows: 

- 1st dimension: The number written on the tape. 
- 2nd dimension: The number written on the tape read backwards. 
- 3rd dimension: The position of the head. 

For each node w and a link e described above it is possible to select the nodes 
of the form (A) and (B) using two triples of intervals. The first triple selects the 
nodes not starting with ua (these form a cyclic interval in the 1st dimension) 
and not having the head to the left of w's head (these form a cyclic interval in 
the 3rd dimension). The second triple selects the nodes ending with 0v (these 
form a cyclic interval in the 2nd dimension) and having the head to the left of 
w's head. The construction is similar for the other types of links. 

Define G -" (DBF1, DBF2, DBF1, DBF21, where in DBF1 the orientation of 
links is from [al...ai[ai+l...ad] to [al...ai+l [ai+2...ad] and from [al...ai[ai+l...ad] 
to [al...di+l[ai+2...ad] for 0 < i < d -  1 (where the head in position 0 means 
[[al...ad] and a = 1 - a) and in DBF2 the orientation is opposite. It is easy to 
verify that  each shortest path induced by a ((2, 3), 4 ) -  M I R S  on BF~ can be 
covered by ~. [] 

3.4 C u b e  c o n n e c t e d  cycles  

Let u = (ao...ad-l,p) be a tuple consisting of a binary string and a cursor 
position from {0, ..., d -  1}. The operations of shifting cursor cyclically to the 
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left and to the right on u are denoted as L(u) and R(u), respectively, and the 
shuffle operation is defined as S(u) = (ao...i*p...ad-1, p), where d p =  1 - ap. 

A d-dimensional cube connected cycles (denoted as CCCa) is a network 
(V,A), where V = {u I u e {0,1} 6 x { 0 , . . . , d -  1}} and A = {(u,v) I R(u) = 
v or L ( u )  = v or  S ( u )  = v }  

Lemma 16. There exists an acyclic orientation covering of size 2d + 6 for the 
system of all shortest paths between all pairs of nodes in CCCd. 

Proof. Consider the following acyclic orientation DCI: for each binary string 
= ao...aa_l the cycle (~, 0), ..., (c~,d- 1) is  oriented (a, 0) ~ ... ~ (a,  d -  1) 

and (a, 0) --+ (a, d -  1); the remaining links are oriented arbitrarily provided 
that  the resulting orientation is acyclic. The covering G consists of an alternating 
sequence of DC1 and its opposite DC~ of length 2d + 6. 

Consider an arbitrary shortest path ~r = (a0,P0), ..., (a~,p~). It clearly con- 
tains at most d S-links (such that  pi = pi+l). By cycle segment we mean maximal 
subpath of a- that  contains no S-link. If a cycle segment does not contain a link 
(c~, 0), (c~, d -  1) for some a then the entire segment is covered either by DC1 or 
by DC~. Call this segment as non-zero segment. Each zero segment consists of 
at most three paths such that  each of them is covered either by DC1 or by DC2. 

Because each shortest path contains at most two vertices (~1, P), (~2, i0) with 
the same cursor position p, there are at most two zero segments. 

Thus ~r consists of at most 2d+5 parts (i.e. d S-links, d - 1  non-zero segments 
and two zero segments each of three paths) all of which are covered either by 
DC1 or by DC2. Hence ~r is covered by ~. [:3 

C o r o l l a r y  17. There exists a deadlock-free controller of size 2d + 6 for the op- 
timal packet routing on a d-dimensional cube connected cycles network. 

It was shown in [7] that  there does not exist an efficient shortest paths I R S  
for CCCa (superpolynomial compactness in d is required !). 

L e m m a  18. Each optimal k-[RS for a d.dimensional cube connected cycles net- 
work needs k = I2(2d/2). 

Now we show that  there are efficient d-dimensional I R S  on CCCd with 
compactness and size polynomial in d. 

T h e o r e m  19. There exists a ((2d 3, d), 2d+  6 ) -  D F M I R S  on CCC~. 

Proof. Let us define a machine whose state diagram is the d-dimensional cube- 
connected-cycles graph. Its working tape is a circular strip consisting of d cells. 
The head can be positioned above any cell. Each cell can contain one binary 
digit. In one step the head can change the content of the cell read or move one 
position to the left or to the right. Again we consider nodes being the states of 
the machine described. 
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Let u, v be two nodes of the CCC~. Take u X O R  v (the tape is unwinded 
on the picture): 

v' s head u' s head 

T 
Denote a, b and a' the lengths of the longest runs of consecutive zeros in parts 
A, B and A~(= A without  the r ightmost  cell) respectively and b ~ the length of 
the run of consecutive zeros in part B starting immediately to the right of the 
position of u's head. There exists a shortest path from u to v starting with the 
left arc e if and only if either: 

A: a' = a and 2(l + b -  a) < d 
o r  

B: b ~ = b and 2(l + b - a) ~ d and u, v do not differ in the cell scanned by u's 
head. 

The condition for the existence of a shortest path starting with the right arc 
is symmetric. There exists a shortest path from u to v starting with the shuffle 
arc if and only if u and v differ in the cell scanned by u's head. Now we briefly 
describe the (2d 3, d) - M I R S  of CCCd. 

The vertices in the i-th dimension (i e {1, ..., d}) have numbers 1, ..., d ac- 
cording to the following lexicographic ordering: 

- the first criterion is the position of the head 
- the second criterion is the number written on the tape after the cyclic rota- 

tion by i bits to the left 

In this labeling the vertices having the same position of the head form a block 
in each dimension. Another important property of the labeling is that  selecting 
vertices having the head at any given position and containing (resp. not contain- 
ing) any given binary substring at any given position of the tape can be done 
using at most two intervals in one block of one dimension. The dimension in 
which intervals are used is determined by the position of the substring. 

Let u be any vertex of the CCCd graph. Labeling the shuffle arc emanating from 
u is easy, as exactly messages to the vertices having a different symbol at the 
position of u's head are to be routed along it. As there exists a dimension such 
that  in each of its blocks such vertices form a cyclic interval, we need only d 
intervals per dimension. 

Labeling the left arc is more complicated. We select vertices whose messages are 
to be routed along this arc for each position of their head independently. If for 
each given position we need at most q intervals per dimension to select such 
vertices then in total we need at most dq intervals per dimension. 

Vertices satisfying the rule A and having the head at a given position are to be 
selected as follows: 
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- We choose the length a t of the longest run of consecutive zeros in the part 
A t of u X O R  v ( len(A')  + 1 possibilities) 

- We choose the position of this run ( len(A t) - a t + 1 possibilities) 
- Given a t and the position of the run, vertices 

�9 having run of a t zeros at the choosen position 
�9 not having longer run of zeros in the part A 

d - 2 1  �9 not having run of zeros in the part  B longer than a + �9 2 
can be selected using two intervals per dimension, because we can fulfill these 
conditions by selecting the vertices having, or not having certain substrings 
at different positions. 

Vertices satisfying the rule B and having the head at a given position are to be 
selected as follows: 

- We choose the length b t of the run of consecutive zeros in the part B starting 
immediately to the right of the position of u's head. ( len(B)  + 1 possibilities) 

- Given b t, vertices 
�9 having run of b t zeros in the part  B starting immediately to the right of 

the position of u's head 
�9 not having longer run of zeros in the part B 
�9 not having run of zeros in the part  A longer than b + 2t-d 2 
�9 not differing from u in the cell scanned by u's head 

can be selected using two intervals per dimension, using the same reasoning 
as in the previous case. 

It holds ( l en(A  t) + 1)( len(A')  + 1) + len(B)  + 1 < d 2, therefore we have used in 
total  at most 2d 3 intervals per dimension which gives us the (2d 3, d) - M I R S .  
[] 

4 C o n c l u s i o n s  

We have presented efficient deadlock-free MIRSs on hypercubes, tori, butterflies 
and cube connected cycles. These results can be transformed also to an analo- 
gous wormhole routing model (as formulated in [4]). The main question remains 
whether there are efficient deadlock-free MIRS also for wider classes of graphs, 
e.g. vertex symmetric graphs, planar graphs etc. 

We have also presented a nonconstant lower bound on the size of deadlock- 
free controllers (based on acyclic orientation covering) for a special set of rout- 
ing paths in d-dimensional hypercubes. This is the first nontrivial lower bound 
on specific controllers. Moreover, this set of routing paths can be covered by 
general deadlock-free controllers of constant size, thus giving the first example 
of differences between sizes of general and specific controllers. The question is 
to determine nonconstant lower bounds on the size of deadlock-free controllers 
for general networks and to give size differences between general and specific 
deadlock-free controllers. 
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There are still many  unresolved questions concerning DFMIRS (some of them 
are mentioned in Section 3). I t  would be nice to have a trade-off between com- 
pactness and size for deadlock-free MIRS on general graphs. 
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