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Abstract
We consider the problem of sampling from the Potts model on random regular graphs. It is
conjectured that sampling is possible when the temperature of the model is in the so-called
uniqueness regime of the regular tree, but positive algorithmic results have been for the most
part elusive. In this paper, for all integers q ≥ 3 and ∆ ≥ 3, we develop algorithms that produce
samples within error o(1) from the q-state Potts model on random ∆-regular graphs, whenever
the temperature is in uniqueness, for both the ferromagnetic and antiferromagnetic cases.

The algorithm for the antiferromagnetic Potts model is based on iteratively adding the edges
of the graph and resampling a bichromatic class that contains the endpoints of the newly added
edge. Key to the algorithm is how to perform the resampling step efficiently since bichromatic
classes can potentially induce linear-sized components. To this end, we exploit the tree uniqueness
to show that the average growth of bichromatic components is typically small, which allows us to
use correlation decay algorithms for the resampling step. While the precise uniqueness threshold
on the tree is not known for general values of q and ∆ in the antiferromagnetic case, our algorithm
works throughout uniqueness regardless of its value.

In the case of the ferromagnetic Potts model, we are able to simplify the algorithm signific-
antly by utilising the random-cluster representation of the model. In particular, we demonstrate
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that a percolation-type algorithm succeeds in sampling from the random-cluster model with para-
meters p, q on random ∆-regular graphs for all values of q ≥ 1 and p < pc(q,∆), where pc(q,∆)
corresponds to a uniqueness threshold for the model on the ∆-regular tree. When restricted
to integer values of q, this yields a simplified algorithm for the ferromagnetic Potts model on
random ∆-regular graphs.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and dis-
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Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2018.33

Related Version The full version is available at https://arxiv.org/abs/1804.08111. The
theorem numbering here matches the full version.

1 Introduction

Random constraint satisfaction problems have been thoroughly studied in computer science in
an effort to analyse the limits of satisfiability algorithms and understand the structure of hard
instances. Analogously, understanding spin systems on random graphs [22, 23, 28, 3, 21, 7, 8]
gives insights about the complexity of counting and the efficiency of approximate sampling
algorithms. In this paper, we design approximate sampling algorithms for the Potts model
on random regular graphs.

The Potts model is a fundamental spin system studied in statistical physics and computer
science. The model has two parameters: an integer q ≥ 3, which represents the number of
states/colours of the model, and a real parameter B > 0, which corresponds to the so-called
“temperature”. We denote the set of colours by [q] := {1, . . . , q}. For a graph G = (V,E),
configurations of the model are all possible assignments of colours to the vertices of the
graph. Each assignment σ : V → [q] has a weight wG(σ) which is determined by the number
m(σ) of monochromatic edges under σ; namely, wG(σ) = Bm(σ). The Gibbs distribution µG
is defined on the space of all configurations σ by

µG(σ) = Bm(σ)/ZG, where ZG =
∑
σ B

m(σ).

We also refer to µG as the Potts distribution; the quantity ZG is known as the partition
function. Well-known models closely related to the Potts model are the Ising and colourings
models. The Ising model is the special case q = 2 of the Potts model, while the q-colourings
model is the “zero-temperature” case B = 0 of the Potts model, where the distribution is
supported on the set of proper q-colourings.

The behaviour of the Potts model has significant differences depending on whether B is
less or larger than 1. When B < 1, configurations where most neighbouring vertices have
different colours have large weight and the model is called antiferromagnetic; in contrast,
when B > 1, configurations where most neighbouring vertices have the same colours have
large weight and the model is called ferromagnetic. One difference between the two cases
that will be relevant later is that the ferromagnetic Potts model admits a random-cluster
representation – the details of this representation are given in Section 2.1.

Sampling from the Potts model is a problem that is frequently encountered in running
simulations in statistical physics or inference tasks in computer science. To determine the
efficiency and accuracy of sampling methods, it is relevant to consider the underlying phase
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transitions, which signify abrupt changes in the properties of the Gibbs distribution when
the underlying parameter changes. The so-called uniqueness phase transition captures the
sensitivity of the state of a vertex to fixing far-away boundary conditions. As an example, in
the case of the ferromagnetic Potts model on the ∆-regular tree, uniqueness holds when root-
to-leaves correlations in the Potts distribution vanish as the height of the tree goes to infinity;
it is known that this holds iff B < Bc(q,∆), where Bc(q,∆) is the “uniqueness threshold”
(cf. (2) for its value). Connecting the uniqueness phase transition with the performance
of algorithms is a difficult task that is largely under development. This connection is well-
understood on the grid, where it is known that the mixing time of local Markov chains, such
as the Glauber dynamics, switches from polynomial to exponential at the corresponding
uniqueness threshold, see for example [18, 17, 27, 1, 19, 2].

For random ∆-regular graphs or, more generally, graphs with maximum degree ∆, the
uniqueness threshold on the ∆-regular tree becomes relevant. For certain two-state models,
such as the ferromagnetic Ising model and the hard-core model, it has been proved that
Glauber dynamics mixes rapidly when the underlying parameter is in uniqueness and that
the dynamics mixes slowly otherwise, see [22, 23, 8]. The same picture is conjectured to
hold for the Potts model as well, but this remains open. More generally, there has been
significant progress in understanding the complexity of sampling from the Gibbs distribution
in two-state systems, but for multi-state systems progress has been slower, especially on the
algorithmic side.

In this paper, for all integers q ≥ 3 and ∆ ≥ 3, we design approximate sampling algorithms
for the q-state Potts model on random ∆-regular graphs (regular graphs with n vertices
chosen uniformly at random), when the parameter B lies in the uniqueness regime of the
regular tree, for both the ferromagnetic and antiferromagnetic cases. Our algorithms are
not based on a Markov chain approach but proceed by iteratively adding the edges of the
graph and performing a resampling step at each stage. As such, our algorithms can produce
samples that are within error 1/nδ from the Potts distribution for some fixed constant δ > 0
(which depends on B, q,∆).

I Remark. There are certain “bad” ∆-regular graphs where the algorithms will fail to produce
samples with the desired accuracy; saying that the algorithms work on random ∆-regular
graphs means that the number of these “bad” graphs with n vertices is a vanishing fraction
of all ∆-regular graphs with n vertices for large n. Moreover, we can recognise the “good”
graphs (where our algorithms will successfully produce samples with the desired accuracy) in
polynomial time.

Our approach is inspired by Efthymiou’s algorithm [6, 7] for sampling q-colourings on
G(n, d/n); the algorithm there also proceeds by iteratively adding the edges of the graph
and exploits the uniqueness on the tree to show that the sampling error is small. However,
for the antiferromagnetic Potts model, the resampling step turns out to be significantly
more involved and we need substantial amount of work to ensure that it can be carried out
efficiently, as we explain in detail in Section 3. Nevertheless, for the ferromagnetic case, we
manage to give a far simpler algorithm by utilising the random-cluster representation of the
model (see Section 2.1). In particular, we demonstrate that a percolation-type algorithm
succeeds in sampling approximately from the random-cluster model with parameters p, q on
random ∆-regular graphs for all values of q ≥ 1 and p < pc(q,∆), where pc(q,∆) corresponds
to a uniqueness threshold for the model on the ∆-regular tree. When restricted to integer
values of q, this yields a simple algorithm for the ferromagnetic Potts model on random
∆-regular graphs.
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To conclude this introductory section, we remark that, for many antiferromagnetic
spin systems on random graphs, typical configurations in the Gibbs distribution display
absence of long-range correlations even beyond the uniqueness threshold, up to the so-called
reconstruction threshold [20, 12]. Note that uniqueness guarantees the absence of long-range
correlations under a “worst-case” boundary, while non-reconstruction only asserts the absence
of long-range correlations under “typical” boundaries; it is widely open whether this weaker
notion is in fact sufficient for sampling on random graphs. On an analogous note, for the
ferromagnetic Potts model on random regular graphs, the structure of typical configurations
can be fairly well understood using probabilistic arguments for all temperatures (see, e.g.,
[5, 11]) and it would be very interesting to exploit this structure for the design of sampling
algorithms beyond the uniqueness threshold.

2 Definitions and Main Results

To formally state our results, we first review in Section 2.1 the definition of the random-cluster
model. In Section 2.2, we state results from the literature about uniqueness on the regular
tree for the Potts and random-cluster models. Then, in Section 2.3, we state our algorithmic
results for the ferromagnetic Potts and random-cluster models and, in Section 2.4, our result
for the antiferromagnetic Potts model.

2.1 The random-cluster model
The random-cluster model has two parameters p ∈ [0, 1] and q > 0; note that q in this case can
take non-integer values. For a graph G = (V,E), we denote the random-cluster distribution
on G by ϕG; this distribution is supported on the set of all edge subsets. In particular, for
S ⊆ E, let k(S) be the number of connected components in the graph G′ = (V, S) (isolated
vertices do count). Then,

ϕG(S) = p|S|(1− p)|E\S|qk(S)

Zrc
G

, where Zrc
G =

∑
S⊆E

p|S|(1− p)|E\S|qk(S).

Following standard terminology, each edge in S will be called open, while each edge in E\S
closed. For integer values of q, the random-cluster and ferromagnetic Potts models are
connected as follows.

I Lemma 1 (see, e.g., [13]). Let q ≥ 2 be an integer, B > 1, and p = 1− 1/B. Then, the
following hold for any graph G = (V,E).

Let S ⊆ E be distributed according to the RC distribution ϕG with parameters p, q.
Consider the configuration σ obtained from S by assigning each component in the graph
(V, S) a random colour from [q] independently. Then, σ is distributed according to the
Potts distribution µG with parameter B.
Conversely, suppose that σ : V → [q] is distributed according to the Potts distribution
µG with parameter B. Consider S ⊆ E obtained by adding to S each monochromatic
edge under σ with probability p independently. Then, S is distributed according to the RC
distribution ϕG with parameters p, q.

2.2 Uniqueness for Potts and random-cluster models on the tree
In this section, we review uniqueness on the tree for the Potts and random-cluster models.
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We start with the Potts model. For a configuration σ and a set U , we denote by σU the
restriction of σ to the set U ; in the case of a single vertex u, we simply write σu to denote
the colour of u. Denote by T∆ the infinite (∆− 1)-ary tree with root vertex ρ and, for an
integer h ≥ 0, denote by Th the subtree of T∆ induced by the vertices at distance ≤ h from
ρ. Let Lh be the set of leaves of Th.

I Definition 2. Let B > 0 and q,∆ ≥ 3 be integers. The q-state Potts model with parameter
B > 0 has uniqueness on the infinite (∆− 1)-ary tree if, for all colours c ∈ [q], it holds that

lim sup
h→∞

max
τ :Lh→[q]

∣∣∣µTh

(
σρ = c | σLh

= τ
)
− 1
q

∣∣∣ = 0. (1)

For the ferromagnetic q-state Potts model (B > 1), it is known that uniqueness holds on
the (∆− 1)-ary tree iff B < Bc(q,∆), where

Bc(q,∆) = 1 + inf
y>1

h(y), where h(y) := (y − 1)(y∆−1 + q − 1)
y∆−1 − y

. (2)

For the antiferromagnetic Potts model (B < 1), the uniqueness threshold on the tree is not
yet known in full generality. It is known that the model does not have uniqueness when
B < ∆−q

∆ [10] and therefore B ≥ (∆− q)/∆ is a necessary condition for uniqueness to hold.
It is also conjectured that this condition is sufficient but this has only been established for
small values of q and ∆ [9]. In the case q = 3, [9] also established the uniqueness threshold
for all ∆: for ∆ ≥ 4, uniqueness holds iff B ∈ [(∆ − 3)/∆, 1) and, for ∆ = 3 uniqueness
holds iff B ∈ (0, 1). For the q-colourings model (B = 0), Jonasson [16], building on work of
Brightwell and Winkler [4], established that the model has uniqueness iff q > ∆.

Uniqueness for the random-cluster model on the tree is less straightforward to define.
Häggström [14] studied uniqueness of random-cluster measures on the infinite (∆− 1)-ary
tree where all infinite components are connected “at infinity” – we review his results in more
detail in Section 7.1 of the full version. He showed that, for all q ≥ 1, a sufficient condition
for uniqueness is that p < pc(q,∆), where pc(q,∆) is given by4:

pc(q,∆) = 1− 1
1 + infy>1 h(y) , where h(y) := (y − 1)(y∆−1 + q − 1)

y∆−1 − y
. (3)

Note that the critical values in (2) and (3) are connected for integer values of q via pc(q,∆) =
1− 1

Bc(q,∆) . Häggström [14] also conjectured that uniqueness for the random-cluster model
holds on T∆ when p > q

q+∆−2 for all q ≥ 1; this remains open but progress has been made
in [15].

2.3 Sampling ferro Potts and random-cluster models on random
regular graphs

We begin by stating our result for the random-cluster model on random regular graphs.

I Theorem 6. Let ∆ ≥ 3, q ≥ 1 and p < pc(q,∆). Then, there exists a constant δ > 0 such
that, for all sufficiently large n, the following holds with probability 1− o(1) over the choice
of a random ∆-regular graph G = (V,E) with n vertices.

There is a polynomial-time algorithm which, on input the graph G, outputs a random
set S ⊆ E whose distribution νS is within total variation distance O(1/nδ) from the RC
distribution ϕG with parameters p, q, i.e., ‖νS − ϕG‖TV = O(1/nδ).

4 In [14], pc(q,∆) is defined in a different way, but the two definitions are equivalent for all q ≥ 1.
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For integer values of q, Theorem 6 combined with the translation between the random-cluster
and Potts models (cf. Lemma 1) yields a sampling algorithm for the ferromagnetic q-state
Potts model on random regular graphs. Since uniqueness for the ferromagnetic Potts model
holds iff B < Bc(q,∆) and pc(q,∆) = 1− 1

Bc(q,∆) , we therefore have the following corollary
of Theorem 6.

I Corollary 7. Let ∆ ≥ 3, q ≥ 3 and B > 1 be in the uniqueness regime of the (∆− 1)-ary
tree. Then, there exists a constant δ > 0 such that, for all sufficiently large n, the following
holds with probability 1− o(1) over the choice of a random ∆-regular graph G = (V,E) with
n vertices.

There is a polynomial-time algorithm which, on input the graph G, outputs a random
assignment σ : V → [q] whose distribution νσ is within total variation distance O(1/nδ) from
the Potts distribution µG with parameter B, i.e., ‖νσ − µG‖TV = O(1/nδ).

2.4 Sampling antiferro Potts on random ∆-regular graphs
The algorithm of Corollary 7 for the ferromagnetic Potts model does not extend to the
antiferromagnetic case since there is no analogous connection with the random-cluster model
in this case. Nevertheless, we are able to design a sampling algorithm on random regular
graphs when the parameter B is in uniqueness via a far more elaborate approach which
consists of recolouring (large) bichromatic colour classes.

I Theorem 8. Let ∆ ≥ 3, q ≥ 3 and B ∈ (0, 1) be in the uniqueness regime of the (∆−1)-ary
tree with B 6= (∆− q)/∆. Then, there exists a constant δ > 0 such that, for all sufficiently
large n, the following holds with probability 1− o(1) over the choice of a random ∆-regular
graph G = (V,E) with n vertices.

There is a polynomial-time algorithm which, on input the graph G, outputs a random
assignment σ : V → [q] whose distribution νσ is within total variation distance O(1/nδ) from
the Potts distribution µG with parameter B, i.e., ‖νσ − µG‖TV = O(1/nδ).

Note, the algorithm in the antiferromagnetic case works throughout uniqueness apart from
the single point (∆− q)/∆, where uniqueness on the tree is expected to hold but the model
is conjectured to be at criticality.

3 Proof Approach

In this section, we outline the main idea behind the algorithms of Theorems 6 and 8, and
the key obstacles that we have to address. We focus on the antiferromagnetic Potts model
where the details are much more complex and discuss how we get the simplification for the
ferromagnetic case via the random-cluster model later.

I Definition 9. For an n-vertex graph G = (V,E) with maximum degree ∆, a cycle is short
if its length is at most 1

5 log∆−1 n, and is long otherwise.

Let G be a uniformly random ∆-regular graph with n vertices. Following the approach
of Efthymiou [7], our algorithm starts from the subgraph of G consisting of all short cycles,
which we denote by G′. It is fairly standard to show that, with probability 1 − o(1) over
the choice of G, the subgraph G′ is a disjoint union of short cycles, see Lemma 12. It is
therefore possible to sample a configuration σ′ on G′ which is distributed according to the
Potts distribution µG′ (exactly). This can be accomplished in several ways; in fact, since the
cycles are disjoint and each cycle has logarithmic length, this initial sampling step can even
be done via brute force in polynomial time (though it is not hard to come up with much
faster algorithms).
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After this initial preprocessing, the algorithm then proceeds by adding sequentially the
edges that do not belong to short cycles. At each step, the current configuration is updated
with the aim to preserve its distribution close to the Potts distribution of the new graph
(with the edge that we just added). Key to this update procedure is a resampling step which
is performed only when the endpoints of a newly added edge {u, v} happen to have the
same colours under the current configuration; intuitively, some action is required in this case
because the weight of the current configuration reduces by a factor of B < 1 in the new graph
(because of the added edge). The resampling step consists of recolouring a bichromatic class.

I Definition 10. Let G = (V,E) be a graph and σ : V → [q] be a configuration. For colours
c1, c2 ∈ [q], let σ−1(c1, c2) be the set of vertices that have either colour c1 or colour c2 under
σ. For distinct colours c1, c2 ∈ [q], we say that U = σ−1(c1, c2) is the (c1, c2)-colour-class of
σ and that U is a bichromatic class under σ. We refer to a connected component of G[U ] as
a bichromatic component.

In the proper colourings case (B = 0), Efthymiou [7] demonstrated that the resampling
step when adding an edge e = {u, v} can be done by just flipping the colours of a bichromatic
component chosen uniformly at random among those containing one of the vertices u and
v (say u). The rough idea there is that, when the colourings model is in uniqueness, the
bichromatic components on a random graph are typically small in size. At the same time,
by the initial preprocessing step, the edge e = {u, v} does not belong to a short cycle and
therefore u and v are far away in the graph without e. Hence, u and v are unlikely to belong
to the same bichromatic component and the flipping step will succeed in giving u and v

different colours with good probability.
Unfortunately, this flipping method does not work for the antiferromagnetic Potts model.

It turns out that when q < ∆ and even when the Potts model is in uniqueness, bichromatic
components can be large and therefore u and v may belong to the same bichromatic component.
To make matters worse, these bichromatic components can be quite complicated (with many
short/long cycles) and we need a more elaborate approach in our setting to succeed in giving
u and v different colours without introducing significant bias to the sampler.

The key to overcoming these obstacles lies in the observation that the assignment of the
two colours in a bichromatic component follows the Ising distribution, see Observation 22 for
the precise formulation. Hence we can hope to use an approximate sampling algorithm for
the Ising model in the resampling step. The natural implementation of this idea however
fails: known algorithms for the antiferromagnetic Ising model, based on correlation decay,
work as long as B > (∆− 2)/∆, where ∆ is the maximum degree of the graph [25, 29]. In
general, this inequality is not satisfied for us, i.e., there exist B in the uniqueness regime
such that B < ∆−2

∆ .
Fortunately, we can employ fairly recent technology for two-state models [22, 26, 24]

which demonstrates that the graph parameter that matters is not actually the maximum
degree of the graph but rather the “average growth” of the graph. While we cannot apply any
of the existing results in the literature directly, adapting these ideas to the antiferromagnetic
Ising model is fairly straightforward, using results from Mossel and Sly [22]. The more
difficult part in our setting is proving that the average growth of the bichromatic components
that we consider for resampling is indeed small for “typical” configurations σ (note that in
the worst case, the whole graph can be a bichromatic class which has large average growth
for our purposes, so a probability estimate over σ is indeed due). Let us first formalise the
notion of average growth that we use.
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I Definition 11. Let M, b be positive constants and G = (V,E) be a graph with n vertices.
We say that G has average growth b up to depth L = dM logne if for all vertices v ∈ V the
total number of paths with L vertices starting from v is less than bL.

The notion of average growth is similar to the notion of connective constant for finite graphs
used in [26, 24], the reason for the slightly different definition is that we will need an explicit
handle on the constant M controlling the depth. Note that since we only consider paths
with a fixed logarithmic length, this places a lower bound on the accuracy of the sampling
algorithm. Nevertheless, by choosing the constant M sufficiently large, this will still be
sufficient to make the error of our sampler polynomially small. In particular, as long as
the inequality b 1−B

1+B < 1 is satisfied, for all sufficiently large M , we obtain an approximate
sampler for the antiferromagnetic Ising model with parameter B on graphs of average growth
b up to depth L = dM logne, see Theorem 24 for details.

The next stage is to bound the average growth of bichromatic classes. Here, we utilise
the tree uniqueness and the tree-like structure of random ∆-regular graphs (cf. Lemma 15)
to provide an upper bound on the probability that a path is bichromatic. For paths of
logarithmic length L, we show in Lemma 31 that this probability is bounded above by KL,
where K is roughly (1 + B)/(B + q − 1). Since in a ∆-regular graph there are at most
∆(∆− 1)L−2 paths with L vertices, we therefore obtain that, in most configurations σ, the
average growth b of bichromatic components is bounded above by (∆ − 1)K. When B is
in uniqueness, we have that B > (∆− q)/∆, and therefore the inequality b 1−B

1+B < 1 that is
required for the Ising sampler to work is satisfied (quite tightly in fact).

The final piece is to bound the error that is introduced by the resampling steps; note
that, even if the resampling steps were perfect, some error is always introduced as a result of
the placement of the new edge which reweights the probability that u and v have different
colours. The idea now is to use the correlation decay properties on bichromatic components
to show that, in the graph without the edge {u, v}, the correlation between the colours of u
and v is relatively small since in that graph they are far apart (recall that {u, v} does not
belong to a short cycle in G). In Lemma 25, we show that the correlation between u and
v can be upper bounded as a weighted sum over paths connecting u and v. Unfortunately,
it is not possible to ensure that the correlation is small for each step separately since the
natural union bound does not work. The right way to control the error of the sampler is
to aggregate over all steps; we thus obtain a bound on the error via a weighted sum over
logarithmically long cycles of the random graph G. Using a simple expectation argument of
this latter quantity (and Markov’s inequality), we obtain that the error will be small with
probability 1− o(1) over the choice of the graph G.

The algorithm that we described for the antiferromagnetic Potts model can actually
be adapted to the ferromagnetic case as well. However, as mentioned earlier, we follow a
different (and surprisingly simpler) route using the random-cluster representation of the
model. At a very rough level, the reason behind the simplification is that the components
in the random-cluster model provide a much better grip on capturing the properties of the
Potts distribution than the bichromatic-component proxy we used earlier. Indeed, just as we
described in the antiferromagnetic case, bichromatic components for the ferromagnetic Potts
model can also be linear-sized. However, once we translate the Potts configuration to its
random-cluster representation (cf. Lemma 1), the components in the latter are small in size
(when the model is in the uniqueness region p < pc(q,∆)) and therefore vertices that are far
away do not belong to the same component. This allows us to perform the resampling step
in the random-cluster model by a simple percolation procedure. The details can be found in
Section 5.
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4 Properties of random regular graphs

In this section, we state and prove structural properties of random ∆-regular graphs which
ensure that our algorithms for the random-cluster and Potts models have the desired accuracy
(cf. Remark 1). The proofs of these lemmas are fairly standard and are obtained by working
in the well-known configuration model (see full version for details). The following lemma
guarantees that short cycles are disjoint in a random ∆-regular graph.

I Lemma 12. Let ∆ ≥ 3 be an integer. Then, with probability 1 − o(1) over the choice
of a uniformly random ∆-regular graph with n vertices, any two distinct cycles of length
≤ 1

5 log∆−1 n are disjoint, i.e., they do not share any common vertices or edges.

The next lemma guarantees that certain weighted sums over cycles are small; this bound will
be used to show that the aggregate error of our samplers is small (cf. Section 3).

I Lemma 13. Let ∆ ≥ 3. Then, for any constant W > ∆ − 1 and any constant `0 > 0,
there exists a constant δ > 0 such that the following holds with probability 1 − O(1/nδ)
over the choice of G ∼ Gn,∆. Let C` denote the number of cycles of length `. Then,∑

`≥`0 logn`C`/W
` ≤ 1/(2nδ).

Our next lemma captures the tree-like structure of random ∆-regular graphs that will be
relevant for us. In particular, we give a description of the neighbourhood structure around a
path. To do this accurately, we will need a few definitions. Let G = (V,E) be a graph. For a
vertex v ∈ V and integer h ≥ 0, we denote by Γh(G, v) the set of vertices at distance ≤ h

from v.

I Definition 14. Let G be a graph and P be a path in G with vertices u1, . . . , u`. Let G\P
be the graph obtained from G by removing the edges of the path P . Then, for an integer
h ≥ 0, the h-graph-neighbourhood of the path P is the subgraph of G\P induced by the
vertex set

⋃
i∈[`] Γh(G\P, ui). A connected component of the h-graph-neighbourhood will be

called isolated if it contains exactly one of the vertices u1, . . . , u`.

I Lemma 15. Let ∆ ≥ 3. Then, for any constant integer h ≥ 0 and any ε > 0, there exists
a constant `1 > 0 such that the following holds for all sufficiently large n.

With probability 1 − O(1/n2) over the choice of G ∼ Gn,∆, every path P in G with `
vertices with `1 ≤ ` ≤ n9/10 has an h-graph-neighbourhood with at least (1− ε)` isolated tree
components.

To conclude this section, we clarify a small point relevant to Remark 1. We will only
utilise Lemma 15 for paths of logarithmic length (despite that the lemma is stated for
convenience for much longer paths) and therefore the property can be checked in polynomial
time. Similarly, the sum in Lemma 13 will only be considered for cycles of logarithmic length
and hence the (restricted) inequality can also be checked in polynomial time.

5 Algorithm for the random-cluster model

Theorem 6 is obtained by analysing the following algorithm when the input is a random
∆-regular graph G = (V,E). The detailed description of the algorithm is given in Figure 1
of the full version.

Theorem 21 of the full version details the performance of the algorithm when the input is
a random ∆-regular graph; the statement is analogous to that of Theorem 6 so we omit it
from this short version.



33:10 Sampling the Potts model on Random Regular Graphs

E′ := {e ∈ E | e belongs to a short cycle}
if G′ = (V,E′) contains a component which is neither a cycle nor an isolated vertex then
Fail
else { Sample an RC configuration S′ ⊆ E′ on G′ (according to ϕG′);
Add to S′ each edge in E\E′ independently with probability p/(q + (1− p)q);
Output the resulting set S ⊆ E }

To motivate the algorithm, we first display how to update an RC configuration when we
add a single edge {u, v}. In fact, to control the effect of adding an edge, we need a bound
on the probability of the event that there is an open path between u and v; we denote this
event by u↔ v.

I Lemma 17. Let p ∈ (0, 1) and q ≥ 1, and consider arbitrary ε ∈ (0, 1/q).
Let G = (V,E) be a graph and u, v be two vertices such that {u, v} 6∈ E and ϕG(u↔ v) ≤ ε.

Consider the graph G′ = (V,E′) obtained from G by adding the edge {u, v}. Sample a random
subset of edges Y ⊆ E′ as follows: first, sample a subset of edges X ⊆ E according to the
RC measure ϕG and, then, set Y = X ∪ {e} with probability p/(q + (1− p)q), and Y = X

otherwise.
Then, the distribution of Y , denoted by νY , is within total variation distance 2qε from

the RC distribution ϕG′ on G′ with parameters p, q, i.e., ‖νY − ϕG′‖TV ≤ 2qε.

To give the intuition behind the sampling procedure of Lemma 17, suppose that u and v were
in distinct components of G. Then ϕG(u↔ v) = 0 and the sampling procedure in Lemma 17
would actually produce an exact sample from ϕG′ . In the setting of Lemma 17, we do not
have this ideal situation but we have a close analogue, i.e., the probability of the event that
u and v belong to the same component in a random-cluster configuration is less than ε.

To utilise Lemma 17, we need to upper bound the probability that two vertices belong to
the same component in a RC configuration. In turn, it suffices to bound the probability that
there is an open path between the vertices. To this end, we utilise the uniqueness and the
tree-like structure around paths (cf. Definition 14) to show the following.

I Lemma 18. Let ∆ ≥ 3 be an integer, q ≥ 1 and p < pc(q,∆). There exist constants
K < 1/(∆− 1) and ε > 0 such that the following holds for all sufficiently large integers ` and
h. Let G be a ∆-regular graph and P be a path with ` vertices whose h-graph-neighbourhood
contains (1−ε)` isolated tree components. Let ϕG be the RC distribution on G with parameters
p, q. Then, ϕG(path P is open) ≤ K`.

The proof of Lemma 18 is the most intricate part of our analysis for the random-cluster
model algorithm. The difficulty is that the random-cluster model cannot be treated as a
spin system due to the dependence of the model on the number of components. The rough
intuition behind the proof is that, in the graph without the edges of the path P , the tree-like
structure combined with uniqueness on the tree imply that (most) vertices in P belong to
distinct components. As a result, when we add the edges of the path P , the trees decorating
the path P do not have a significant effect on the number of components that vertices in P
belong to and can be treated essentially as “not being there” in the analysis. Of course, the
actual argument needs to account for all these effects quite carefully, see also Section 7.2 of
the full version.

Using monotonicity properties of the random-cluster model (see Lemma 19 in the full
version), we can extend the bound in Lemma 18 to arbitrary subgraphs of a target graph
G. In particular, suppose that G,P are as in Lemma 18 and that G′ is a subgraph of G
which contains the path P . Then it also holds that ϕG′(P is open) ≤ K`. Using this and
Lemma 13, we obtain the following.
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I Lemma 20. Let ∆ ≥ 3 be an integer, q ≥ 1 and p < pc(q,∆). Then, there exists a constant
δ > 0 such that, for all sufficiently large n, the following holds with probability 1− o(1) over
the choice of a uniformly random ∆-regular graph G = (V,E) with n vertices.

Let e1, . . . , et be the edges of G that do not belong to short cycles. For j ∈ [t], let
ej = {uj , vj} and Gj be the subgraph G\{e1, . . . , ej}. Then, it holds that

∑t
j=1 ϕGj

(uj ↔
vj) ≤ 1/nδ.

Combining Lemmas 17 and 20, the proof of Theorem 6 is concluded in Section 5.3 of the full
version.

6 Algorithm for the antiferromagnetic Potts model

In this section, following the outline of Section 3, we give some more precise technical details
for the algorithm in the case of the antiferromagnetic Potts model (see also the relevant
Section 6 of the full version).

6.1 Connection between Potts on bichromatic classes and the Ising
model.

Our sampling algorithm for the Potts model uses an approximate sampler for the Ising model
as a subroutine. Recall that the Ising model is the special case q = 2 of the Potts model; to
distinguish between the models, we will use πG to denote the Ising distribution on G with
parameter B. Sometimes we will need to replace the binary set of states {1, 2} in the Ising
model by other binary sets to facilitate the arguments; we use πc1,c2

G to denote the Ising
distribution with binary set of states {c1, c2} (we will have that c1, c2 ∈ [q]). For vertices
u, v, we also write πc1,c2

G,u,v to denote the Ising distribution on G conditioned on u taking the
state c1 and v the state c2. The following observation details the connection between the
distribution of the Potts model on bichromatic classes and the Ising model.

I Observation 22. Let q ≥ 3 and B > 0. Let G = (V,E) be a graph, U be a subset of
V and c, c′ be distinct colours in [q]. Then, for any configuration η : U → {c, c′}, it holds that
µG
(
σU = η | σ−1(c, c′) = U

)
= πc,c

′

G[U ](η), i.e., conditioned on U being the (c, c′)-colour-class
in the Potts distribution µG, the marginal distribution on U is the Ising distribution πG[U ]
(with set of states {c, c′}).

Adapting results of [22], we show the following algorithm for the Ising model in Section 9 of
the full version.

I Theorem 24. Let B ∈ (0, 1) and b > 0 be constants such that b 1−B
1+B < 1, and let ∆ ≥ 3 be

an integer. Then, there exists M0 > 0 such that the following holds for all M > M0.
There is a polynomial-time algorithm that, on input an n-vertex graph G with maximum

degree at most ∆ and average growth b up to depth L = dM logne, outputs a configuration
τ : V → {1, 2} whose distribution ντ is within total variation distance 1/n10 from the Ising
distribution on G with parameter B, i.e., ‖ντ − πG

∥∥
TV ≤ 1/n10.

Moreover, the algorithm, when given as additional input two vertices u and v in G,
outputs a configuration τ : V → {1, 2} such that τu = 1 and τv = 2, and whose distribution ντ
satisfies

∥∥ντ − πG,u,v(·)
∥∥

TV ≤ 1/n10, where πG,u,v is the Ising distribution on G conditioned
on u having state 1 and v having state 2.

In addition, we will use the following spatial mixing result to analyse the accuracy of our
algorithm for the antiferromagnetic Potts model. The proof is given in Section 9.3 of the full
version.
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I Lemma 25. Let B ∈ (0, 1) and b > 0 be constants such that b 1−B
1+B < 1. Then, there exists

M ′0 > 0 such that the following holds for all M > M ′0. Let G be an n-vertex graph with
average growth b up to depth L = dM logne, and let u, v be distinct vertices in G. Then

∣∣∣πG(σu = 1 | σv = 1)− πG(σu = 1 | σv = 2)
∣∣∣ ≤ 1

n10 +
L∑
`=1

P`(G, u, v)
(1−B

1 +B

)`
where P`(G, u, v) is the number of paths with ` vertices in G that connect u and v.

6.2 Average growth of bichromatic components in the Potts
distribution

To utilise the algorithm of Theorem 24 for our Potts sampler, we will need to bound the
average growth of bichromatic classes in a typical Potts configuration on a random regular
graph. Our key lemma to achieve this will bound the probability that a path is bichromatic5
when the parameter B is in uniqueness, provided that the local neighbourhood around the
path (in the sense of Definition 14) has a tree-like structure. The following lemma quantifies
this probability bound and is proved in Section 8 of the full version. The proof technique
resembles that of Lemma 18: uniqueness on the tree guarantees that, on the graph G\P , the
colour of most vertices on the path P is roughly uniformly distributed on [q] and therefore,
when we attach the edges of the path P back, the hanging trees can essentially be ignored
and we can just focus on the edges of the path.

I Lemma 31. Let ∆, q ≥ 3 be integers, and B ∈ (0, 1) be in the uniqueness regime of the
(∆− 1)-ary tree with B 6= (∆− q)/∆. Then, for any ε′ > 0, there exists a positive constant
K < 1+B

B+q−1 + ε′ and ε > 0 such that the following holds for all sufficiently large integers `
and h.

Let G be a graph of maximum degree ∆ and P be a path with ` vertices whose h-graph-
neighbourhood contains (1− ε)` isolated tree components. Let µG be the Potts measure on G
with parameter B. Then, µG(path P is bichromatic) ≤ K`.

Recall that for a random ∆-regular graph G, paths do have the tree-like structure of Lemma 31
(cf. Lemma 15), and hence we can aggregate over all paths emanating from an arbitrary
vertex (roughly (∆− 1)` of them) and get a bound of roughly (∆− 1)K < (∆−1)(1+B)

B+q−1 for
the average growth of bichromatic components in a typical configuration σ. This will allow
us to use the ReSample subroutine from Section 6.3.

6.3 The resampling subroutine
In Section 3, we discussed that key to the algorithm for the antiferromagnetic case is the
resampling subroutine which is invoked when we add a new edge. Here, we give more details
about this subroutine and highlight the crucial steps in its analysis.

Let us first abstract somewhat the setting. In particular, let G = (V,E) be a graph and
suppose that u, v are vertices in G such that {u, v} 6∈ E. Consider the graph G′ = (V,E′)
obtained from G by adding the edge {u, v}. Given σ distributed according to µG, our goal is
to produce σ′ distributed according to µG′ , perhaps with some small error.

5 Let G = (V,E) be a graph and σ : V → [q]. We call a path P bichromatic under σ if there exist colours
c1, c2 ∈ [q] such that every vertex u of P satisfies σu ∈ {c1, c2}.
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We consider the following procedure. If σu 6= σv, we set σ′ = σ. Otherwise, we flip a coin
with heads probability qB

B+q−1 . If the coin comes up heads, we set σ′ = σ. Otherwise, suppose
that σu = σv = c for some colour c ∈ [q]. Then, we choose uniformly at random a bichromatic
class U containing u and v, i.e., we pick uniformly at random a colour c′ ∈ [q]\c and set
U = σ−1(c, c′). Then, we resample the colours on U using a sample from the distribution
πc,c

′

G[U ],u,v (recall that the latter distribution is the Ising distribution with states {c, c′} on the
subgraph G[U ], conditioned on u taking the colour c and v taking the colour c′).

Our key lemma shows that the procedure produces σ′ whose distribution νσ′ is close to
µG′ , provided that the “average correlation” between u and v in a random bichromatic class
containing them is small. To make this precise, for a set U ⊆ V such that u, v ∈ U , let

CorrG(U, u, v) =
∣∣∣πG[U ]

(
ηu = 1, ηv = 1

)
πG[U ]

(
ηu = 1, ηv = 2

) − 1
∣∣∣.

i.e., CorrG(U, u, v) measures the correlation between u and v in the Ising distribution with
parameter B on the subgraph G[U ]. For a configuration σ, we let Uσ ⊆ V be a bichromatic
class under σ which contains u and v, chosen uniformly at random among the set of all
such classes if there is more than one. Then, the term “average correlation” refers to
E[CorrG(Uσ, u, v)] where the expectation is over the choice of σ ∼ µG and the choice of the
bichromatic class Uσ containing u and v under σ. If this quantity is small, we show in Lemma
29 of the full version that the distance between the distributions νσ′ and µG′ is also small.

At this stage, there are two points we need to address. First, the procedure assumed
that sampling from the distribution πc,c

′

G[U ],u,v can be done efficiently which is not always
the case. The way to rectify efficiency is the following: once we are given σ, we first check
whether all bichromatic classes in σ have average growth less than b = (∆− 1)K up to depth
L = dM logne, where K is the constant in Lemma 31 and M is a sufficiently large constant.
Using Lemma 31, we can show that this will be the case with very high probability and
therefore we can use the algorithm of Theorem 24 to sample from the distribution πc,c

′

G[U ],u,v;
since the sampler is approximate, this introduces a small sampling error (≤ 1/n10), which can
be safely ignored. (In the unlikely event where σ contains a bichromatic class with average
growth larger than b, we can just set σ′ to be a configuration chosen uniformly at random).
A detailed description of the algorithm can be found in Figures 3 and 4 of the full version.

The second point we need to address is how to bound the complicated-looking quantity
E[CorrG(Uσ, u, v)] which is relevant for the accuracy of the algorithm. To do this, we first
show that, for any U containing u and v, the quantity CorrG(U, u, v) is within a constant
factor from the quantity

ĈorrG(U, u, v) :=
∣∣πG[U ]

(
ηu = 1 | ηv = 1

)
− πG[U ]

(
ηu = 1 | ηv = 2

)∣∣.
We can bound the latter quantity by Lemma 25, using the number of paths connecting
u and v in G[U ]. In particular, for σ ∼ µG, we can upper bound the (random variable)
ĈorrG(Uσ, u, v) by a sum, ranging over paths P of logarithmic length, of indicator functions
that P is bichromatic. Then, Lemma 31 allows us to upper bound the expectation of this
sum. We thus obtain an upper bound on E[CorrG(Uσ, u, v)] by a weighted sum over the
paths P connecting u and v in the graph G.

The proof of Theorem 32 in the full version gives the formal details behind these arguments.
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