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Abstract
We study the identity testing problem in the context of spin systems or undirected graphical

models, where it takes the following form: given the parameter specification of the model M and a
sampling oracle for the distribution µM∗ of an unknown model M∗, can we efficiently determine if
the two models M and M∗ are the same? We consider identity testing for both soft-constraint and
hard-constraint systems. In particular, we prove hardness results in two prototypical cases, the Ising
model and proper colorings, and explore whether identity testing is easier than structure learning.

For the ferromagnetic (attractive) Ising model, Daskalasis et al. (2018) presented a polynomial
time algorithm for identity testing. We prove hardness results in the antiferromagnetic (repulsive)
setting in the same regime of parameters where structure learning is known to require a super-
polynomial number of samples. Specifically, for n-vertex graphs of maximum degree d, we prove
that if |β|d = ω(log n) (where β is the inverse temperature parameter), then there is no identity
testing algorithm for the antiferromagnetic Ising model that runs in polynomial time unless RP =
NP . We also establish computational lower bounds for a broader set of parameters under the
(randomized) exponential time hypothesis. In our proofs, we use random graphs as gadgets; this is
inspired by similar constructions in seminal works on the hardness of approximate counting.

In the hard-constraint setting, we present hardness results for identity testing for proper col-
orings. Our results are based on the presumed hardness of #BIS, the problem of (approximately)
counting independent sets in bipartite graphs. In particular, we prove that identity testing for col-
orings is hard in the same range of parameters where structure learning is known to be hard, which
in turn matches the parameter regime for NP-hardness of the corresponding decision problem.

Keywords: distribution testing, structure learning, graphical models, Ising model, colorings.

1Extended abstract. Full version appears as [4].
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1. Introduction

We study the identity testing problem in the context of spin systems. Spin systems, also known as
Markov random fields or undirected graphical models, are a general framework in statistical physics,
theoretical computer science and machine learning for modeling interacting systems of simple el-
ements. In this type of model, the identity testing problem, sometimes also called goodness-of-fit
testing, takes the following form: given the parameter specification of the model M and a sampling
oracle for the distribution µM∗ of an unknown model M∗, can we efficiently determine if the two
models M and M∗ are the same?

A spin system consists of a finite graph G = (V,E) and a set S of spins; a configuration
σ ∈ SV assigns a spin value to each vertex v ∈ V . The probability of finding the system in a given
configuration σ is given by the Gibbs (or Boltzmann) distribution

µG,H(σ) =
e−H(σ)

Z
,

where Z is the normalizing factor known as the partition function and the HamiltonianH : SV → R
contains terms that depend on the spin values at each vertex (a “vertex potential”) and at each pair
of adjacent vertices (an “edge potential”).

When µG,H(σ) > 0 for every configuration σ ∈ SV (i.e., the Gibbs distribution has full sup-
port), the spin system is known as a soft-constraint model; otherwise, it is called a hard-constraint
model. This is a fundamental distinction among spin systems, as it determines their application
domains and the computational complexity of several inherent problems. We provide here hardness
results for identity testing for both soft-constraint and hard-constraint models by considering two
prototypical systems: the Ising model and proper colorings.

A naive approach to the identity testing problem is to learn first the unknown model (G∗,H∗)
and then check whether (G,H) = (G∗,H∗). The problem of learning G∗ from samples is known
as structure learning and has received tremendous attention; see, e.g., [16, 18, 43, 2, 46, 7, 9, 6, 55,
38, 42]. Once the graph G∗ is known, it is often a simpler task to estimate H∗ [6]; this is known as
the parameter estimation problem. Hence, one may be inclined to conjecture that identity testing
is in fact easier than structure learning, and we investigate whether or not this is the case. The
main takeaway from our results is evidence that identity testing is as hard as structure learning for
antiferromagnetic (repulsive) systems, as we show that the cases (i.e., parameter regimes) where
these two problems are hard, in both the Ising model and proper colorings, coincide.

Lower bounds for the Ising model. The Ising model is the quintessential example of a soft-
constraint system and is studied in a variety of fields, including phylogeny [27, 19], computer vi-
sion [31, 47], statistical mechanics [32, 28] and deep learning, where it appears under the guise of
Boltzmann machines [1, 50, 49]. The Ising model on a graph G = (V,E) is parameterized by the
inverse temperature β which controls the strength of the nearest-neighbor interactions. Configura-
tions of the model are the assignments of spins S = {+,−} to the vertices of G. The probability of
a configuration σ ∈ SV is given by the Gibbs distribution:

µG,β(σ) =
eβ·A(σ)

ZG,β
, (1)

where A(σ) is the number of edges of G connecting vertices with the same spin and ZG,β =∑
σ∈SV exp(β ·A(σ)) is the partition function; the associated Hamiltonian isH(σ) = −β ·A(σ).

2



LOWER BOUNDS FOR TESTING GRAPHICAL MODELS

In the ferromagnetic case (β > 0) neighboring vertices prefer to align to the same spin, whereas
the opposite happens in the antiferromagnetic setting (β < 0). In more general variants of the
model, one can allow different inverse temperatures βe for each edge e ∈ E, as well as a vertex
potential or external magnetic field. However, in this work, our emphasis will be on lower bounds
for the identity testing problem, and hence we focus on the above mentioned simpler homogeneous
setting (all βe = β) with no external field.

The identity testing problem in the context of the Ising model is the following: given a graph
G = (V,E), a real number β and oracle access to independent random samples from an unknown
Ising distribution µG∗,β∗ , can we determine if (G, β) = (G∗, β∗)? If the models are distinct but
their associated Gibbs distributions µG,β and µG∗,β∗ are statistically close, an exponential (in |V |)
number of samples may be required to determine that (G, β) 6= (G∗, β∗). Hence, following a large
body of work on identity testing (see, e.g., [3, 22, 21, 54, 23, 20, 14]), we study this problem in the
property testing framework [48, 36]. That is, we are guaranteed that either (G, β) = (G∗, β∗) or
‖µG,β − µG∗,β∗‖ > ε, for some standard distance ‖ · ‖ between distributions and ε > 0 fixed.

The most common distances for identity testing are total variation distance and Kullback-Leibler
(KL) divergence, and it is known that a testing algorithm for the latter immediately provides one
for the former [20]. Therefore, since our focus is on lower bounds, we work with total variation
distance which we denote by ‖ · ‖TV.

Identity testing for the Ising model is then formally defined as follows. For positive integers n
and d letM(n, d) denote the family of all n-vertex graphs of maximum degree at most d.

Given a graph G ∈ M(n, d), β ∈ R and sample access to a distribution µG∗,β∗ for an
unknown Ising model (G∗, β∗), where G∗ ∈ M(n, d) and β∗ ∈ R, distinguish with
probability at least 3/4 between the cases:

1. µG,β = µG∗,β∗ ; 2. ‖µG,β − µG∗,β∗‖TV >
1

3
.

As usual in the property testing setting, the choice of 3/4 for the probability of success is arbitrary,
and it can be replaced by any constant in the interval (1

2 , 1) at the expense of a constant factor in the
running time of the algorithm. The choice of 1/3 for the accuracy parameter is also arbitrary: we
shall see in our proofs that our lower bounds hold for any constant accuracy ε ∈ (0, 1), provided n
is sufficiently large.

Identity testing for the Ising model was studied first by Daskalakis, Dikkala and Kamath [20]
who provided a polynomial time algorithm for the ferromagnetic Ising model (the β > 0 case).
(We will discuss their results in more detail after further discussion.) In contrast, we present lower
bounds for the antiferromagnetic Ising model (β < 0). Our lower bounds will be for the case when
β∗ = β, which means that they hold even under the additional promise that the hidden parameter
β∗ is equal to β. (For a discussion of the case β∗ 6= β see Remark 3.5).

The structure learning and parameter estimation problems, which, as discussed earlier, can be
used to solve the identity testing problem, have been particularly well-studied in the context of the
Ising model [6, 55, 38, 42]. Recently, Klivans and Meka [42] solved both of these problems for
the Ising model with a nearly optimal algorithm. Their algorithm learns G∗ ∈ M(n, d) and the
parameter β∗ in running time eO(|β∗|d) ×O(n2 log n) and sample complexity eO(|β∗|d) ×O(log n).
Consequently, when |β∗|d = O(log n) this method yields an identity testing algorithm with poly-
nomial (in n) running time and sample complexity. In contrast, when |β∗|d = ω(log n) (i.e.,
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|β∗|d/ log n → ∞), it is known that the structure learning problem cannot be solved in polyno-
mial time [51], and so this approach for identity testing fails.

Our first result is that the identity testing problem for the antiferromagnetic Ising model is
computationally hard in the same range of parameters. Specifically, we show that when |β|d =
ω(log n)—or equivalently when β = β∗ and |β∗|d = O(log n)—there is no polynomial running
time identity testing algorithm for M(n, d) unless RP = NP ; RP is the class of problems that
can be solved in polynomial time by a randomized algorithm.

Theorem 1.1 Suppose n, d are positive integers such that 3 ≤ d ≤ nθ for constant θ ∈ (0, 1). If
RP 6= NP , then for all real β < 0 satisfying |β|d = ω(log n) and all n sufficiently large, there is
no polynomial running time algorithm to solve the identity testing problem for the antiferromagnetic
Ising model inM(n, d).

In contrast to the above result, Daskalakis, Dikkala and Kamath [20] designed an identity testing
algorithm for the Ising model with polynomial running time and sample complexity that works for
arbitrary values of β (positive, negative or even non-homogeneous). This appears to contradict our
lower bound in Theorem 1.1. However, the model in [20] assumes not only sampling access to
the unknown distribution µG∗,β∗ , but also that the covariances between the spins at every pair of
vertices in the visible graph G = (V,E) are given. More precisely, they assume that for every
u, v ∈ V the quantity EµG,β [XuXv] is known, where Xu, Xv ∈ {+1,−1} are the random variables
corresponding to the spins at u and v, respectively.

This is a reasonable assumption when these quantities can be computed (or approximated up
to an additive error) efficiently. However, an immediate consequence of our results is that in the
antiferromagnetic setting when |β|d = ω(log n) there is no FPRAS1 for estimating EµG,β [XuXv]
unless RP = NP . In a related result, Goldberg and Jerrum [35] showed recently that there is
no FPRAS for (multiplicatively) approximating the pairwise covariances for the antiferromagnetic
Ising model unless RP = #P . Further evidence for the hardness of this problem comes from the
fact that sampling is hard in the antiferromagnetic setting [53, 30] and in the ferromagnetic model
in the presence of inconsistent magnetic fields [33] (i.e., the vertex potential of distinct vertices
may have different signs). In summary, the algorithmic results of [20] are most interesting for the
ferromagnetic Ising model (with consistent fields), where there are known polynomial running time
algorithms for estimating the pairwise covariances (see, e.g., [41, 45, 37, 17]).

In Theorem 1.1 we assume that |β|d = ω(log n), but our main technical result (Theorem 2.1) is
actually more general. We show that when |β|d ≥ c lnn, where c > 0 is a sufficiently large constant,
if there is an identity testing algorithm with running time T =T (n) and sample complexityL=L(n)
then there is also a randomized algorithm with running timeO(T+Ln) for computing the maximum
cut of any graph with N = nΘ(1) vertices. Theorem 1.1 then follows immediately from the fact that
either T or L ought to be super-polynomial in n, as otherwise we obtain a randomized algorithm
for the maximum cut problem with polynomial running time; this would imply that RP = NP .

Under a stronger (but also standard) computational theoretic assumption, namely that there
is no randomized algorithm with sub-exponential running time for the 3-SAT problem, i.e., the
(randomized) exponential time hypothesis or rETH [40, 13], our main theorem also implies a
general lower bound for identity testing that holds for all β and d satisfying |β|d ≥ c lnn.

1A fully polynomial-time randomized approximation scheme (FPRAS) for an optimization problem with optimal
solution Z produces an approximate solution Ẑ such that, with probability at least 1 − δ, (1 − ε)Ẑ ≤ Z ≤ (1 + ε)Ẑ
with running time polynomial in the instance size, ε−1 and log(δ−1).
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Theorem 1.2 Suppose n, d are positive integers such that 3 ≤ d ≤ nθ for constant θ ∈ (0, 1).
Then, there exist constants c = c(θ) > 0 and α = α(θ) ∈ (0, 1) such that when |β|d ≥ c lnn,
rETH implies that the running time T (n) of any algorithm that solves the identity testing problem
for the antiferromagnetic Ising model inM(n, d) satisfies T (n) ≥ min

{
exp(Ω(nα)), exp(|β|d/c)

30n

}
.

We remark that the bound in this theorem is comparable to the exp(Ω(|β|d)) lower bound for
the sample complexity of structure learning [51], albeit requiring that rETH is true.

The very high level idea of the proof of our main theorem for the Ising model (Theorem 2.1),
from which Theorems 1.1 and 1.2 are derived as corollaries, is as follows: given a graph H and
an integer k, we construct an identity testing instance Λ so that the output of the identity testing
algorithm on Λ can be used to determine whether there is a cut in H of size at least k. A crucial
component in our construction is a “degree reducing” gadget, which consists of a random bipartite
graph and is inspired by similar random gadgets in seminal works on the hardness of approximate
counting [52]. One of the main technical challenges in the paper is to establish precise bounds on
the edge expansion of these random gadgets. A detailed overview of our proof is given in Section 2.

Lower bounds for proper q-colorings. The proper q-colorings of a graph G = (V,E) consti-
tute a canonical hard-constraint spin system, with multiple applications in statistical physics and
theoretical computer science. In this model, the vertices of graph G are assigned spins (or colors)
from {1, . . . , q}, and the Gibbs distribution µG becomes the uniform distribution over the proper
q-colorings of the graphG. The identity testing problem for this model inM(n, d) is defined as fol-
lows: given q, a graphG ∈M(n, d) and sample access to random q-colorings of an unknown graph
G∗ ∈M(n, d), distinguish with probability at least 3/4 whether µG = µG∗ or ‖µG − µG∗‖ > 1/3.

We establish lower bounds for this problem, thus initiating the study of identity testing in the
context of hard-constraint systems. While identity testing does not seem to have been studied for
hard-constraint models before, the related structure learning problem has received some attention [8,
5]. For proper colorings, it is known that when q ≥ d + 1 the hidden graph G can be learned from
poly(n, d, q) samples, whereas when q ≤ d then the problem is non-identifiable, i.e., there are
distinct graphs with the same collection of q-colorings [5]. Moreover, for d ≥ dc(q) = q +

√
q +

Θ(1), it was also established in [5] that the easier equivalent structure learning problem (learning
any graph with the same collection of q-colorings as the unknown graph) is computationally hard in
the sense that the sample complexity is exponential in n. The threshold dc(q) is very close to the one
for polynomial time/NP-completeness for the problem of determining if G is q-colorable [26, 44].

We prove here that the identity testing for proper q-colorings is also hard when d ≥ dc(q), thus
establishing another connection between the hardness of identity testing and structure learning. For
this we use the complexity of #BIS, which is the problem of counting independent sets in bipartite
graphs. #BIS is believed not to have an FPRAS and has gained considerable interest in approximate
counting as a tool for proving relative complexity hardness; see [24, 34, 25, 11, 15, 12, 29].

Theorem 1.3 Suppose n, d and q are positive integers such that q ≥ 3 and d ≥ dc(q). If #BIS
does not admit an FPRAS, then there is no polynomial running time algorithm that solves the identity
testing problem for proper q-colorings inM(n, d).

In the proof of this theorem we reduce the #BIS-hard problem of counting 3-colorings in bi-
partite graphs to identity testing for q-colorings. The high level idea of our proof is as follows:
given a bipartite graph H and an approximation Ẑ for the number of 3-colorings Z3(H) of H , we
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construct an identity testing instance that depends on both H and the value of Ẑ. We then show
how to use an identity testing algorithm on this instance to check whether Ẑ is an upper or lower
bound for Z3(H). By adjusting Ẑ and repeating this process we converge to a good approximation
for Z3(H). A crucial element in our construction is again the design of a degree reducing gadget; in
this case, our gadget is inspired by similar constructions in [26, 44, 5] for establishing the computa-
tional hardness of the decision and (equivalent) structure learning problems for d ≥ dc(q). Finally,
we mention that for 3-colorings, dc(3) = 4 and thus our hardness result holds for all graphs with
maximum degree at least 4.

An algorithm for the ferromagnetic Ising model. We provide an improved algorithm for the
ferromagnetic Ising model. As mentioned, by combining the algorithm in [20] with previous re-
sults for sampling [41, 45, 37, 17], one obtains a polynomial running time algorithm for identity
testing in the ferromagnetic setting. This algorithm works for symmetric-KL divergence which is
a stronger notion of distance. We show that if one considers instead total variation distance, then
there is a polynomial running time algorithm that solves the identity testing problem with sample
complexity Õ(n2d2ε−2). This is an improvement over the Õ(n2d2β2ε−2) bound in [20], as there
is no dependence on the inverse temperature β. A precise statement and proof of this result are
provided in the full version of this paper [4].

The rest of the paper is organized as follows. In Section 2, we sketch the key ideas in the proof
of our result for the Ising model (Theorem 1.1); the actual proof is given in Section 3. The main
ideas in the proof of our testing lower bound for proper colorings (Theorem 1.3) are summarized in
Section 4. The complete proof of this theorem is provided in [4].

2. Lower bounds for the Ising model: proof overview

To establish our lower bounds for the antiferromagnetic Ising model, we use the computational
hardness of the maximum cut (MAXCUT) problem. Recall that in the decision problem, given a
graph H and an integer k > 0, the goal is to determine whether there is a cut of size at least k in H .
Our main technical result, from which Theorems 1.1 and 1.2 are derived, is the following.

Theorem 2.1 Suppose n and d are positive integers such 3 ≤ d ≤ n1−ρ for some constant ρ ∈
(0, 1). Then, for all n sufficiently large, there exist c = c(ρ) > 0 and an integerN = Θ(nmin{ ρ

4
, 1
14
})

such that when |β|d ≥ c lnn, any identity testing algorithm forM(n, d) for the antiferromagnetic
Ising model with running time T (n) and sample complexity L(n) ≤ exp(|β|d/c)

30n provides a random-
ized algorithm for MAXCUT on any graph with N vertices. This algorithm outputs the correct
answer with probability at least 11/20 and has running time O(T (n) + n · L(n)).

In words, this theorem says that under some mild assumptions for d and L(n), when |β|d ≥
c lnn, any identity testing algorithm with running time T =T (n) and sample complexity L=L(n)
provides a randomized algorithm for MAXCUT on graphs of poly(n) size with running timeO(T +
Ln). Hence, under the assumption that there is no polynomial running time randomized algorithm
for MAXCUT (i.e., RP 6= NP ), either T or L ought to be super-polynomial, and Theorem 1.1 from
the introduction follows. Theorem 1.2 is also a direct corollary of Theorem 2.1. To see this, note that
for α = min{ρ4 ,

1
14}, under the assumption that rETH is true, there is no randomized algorithm

for MAXCUT in graphs with N = Θ(nα) vertices with running time exp(o(nα)). Thus, either
T = exp(Ω(nα)) or the assumption L ≤ exp(|β|d/c)

30n cannot hold, which implies T ≥L> exp(|β|d/c)
30n .

6



LOWER BOUNDS FOR TESTING GRAPHICAL MODELS

Proof sketch for Theorem 2.1. To establish Theorem 2.1 we construct a class N of n-vertex
graphs of maximum degree at most d and show how an algorithm that solves identity testing for
N ⊂ M(n, d) can be used to solve the MAXCUT problem on graphs with N = Θ(nα) vertices,
where α ∈ (0, 1) is a constant. (The exact value for α depends on d: if d = O(1), then we can take
α = 1/14; otherwise, we set α = ρ/4.)

Suppose we want to solve the MAXCUT problem for a graph H = (V,E) and k ∈ N. For this,
we add two vertices s and t to H and connect both s and t to every vertex in V with N = |V |
edges (adding a total of 2N2 edges); we also add w edges between s and t. Let Ĥw be the resulting
multigraph. (In our proofs we will convert Ĥw into a simple graph, but it is conceptually simpler
to consider the multigraph for now.) The cut ({s, t}, V ) in Ĥw is of size 2N2. We consider the
following variant of the MAXCUT problem.

Definition 2.2 In the TWOLARGECUTS problem, given the graph H and w ∈ N, the goal is to
determine whether there are at least two cuts in Ĥw of size at least 2N2.

MAXCUT can be reduced to TWOLARGECUTS by treating w, the number of edges between s
and t, as a parameter. Observe that if (S, V \ S) is a cut of size k in the original graph H , then
(S ∪ {s}, (V \ S) ∪ {t}) is a cut of size

w + k +N |S|+N |V \ S| = w + k +N2

in Ĥw. Hence, ({s, t}, V ) is the unique large cut (i.e., cut of size ≥ 2N2) if and only if

w + MAXCUT(H) +N2 < 2N2,

where MAXCUT(H) denotes the size of the maximum cut of H . Therefore, to solve MAXCUT for
H and k, it is sufficient to solve the TWOLARGECUTS problem for Ĥw with w = N2 − k. This
yields that the TWOLARGECUTS problem is NP-complete and the following useful lemma. (We
refer the reader to the full version of this paper [4] for detailed proofs of these facts.)

Lemma 2.3 Let H = (V,E) be an N -vertex graph and let δ ∈ (0, 1/2]. Suppose there exists a
randomized algorithm that solves the TWOLARGECUTS problem on inputs H and w ≤ N2 with
probability at least 1/2 + δ and running time R. Then, there exists a randomized algorithm to solve
MAXCUT for H and k ∈ N with running time R+O(N2) and success probability at least 1/2 + δ.

To determine if ({s, t}, V ) is the unique large cut in Ĥw we can use the antiferromagnetic Ising
model on Ĥw as follows. Every Ising configuration of Ĥw determines a cut: all the “+” vertices
belong to one side of the cut and the “−” vertices to the other (or vice versa). Observe that for every
cut of Ĥw there are exactly two Ising configurations. The intuition is that the maximum cut of Ĥw

corresponds to the two configurations of maximum likelihood in the Gibbs distribution. Indeed,
when |β| is sufficiently large, the distribution will be well-concentrated on the two configurations
corresponding to the maximum cut. Therefore, a sample from the Gibbs distribution would reveal
the maximum cut of Ĥw with high probability.

To simulate large magnitudes of β, we strengthen the interactions between neighboring vertices
of Ĥw by replacing every edge by 2` edges. However, sampling from the antiferromagnetic Ising
distribution on the resulting multigraph Ĥw,` is also a hard problem, and we would need to provide
a sampling procedure. For this, we use the identity testing algorithm as follows. We construct
a simpler Ising model M∗ with two key properties: (i) we can easily generate samples from M∗
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and (ii) M∗ is close in total variation distance to the Ising model M = (Ĥw,`, β) if and only if
({s, t}, V ) is the unique large cut of Ĥw. Then, we give Ĥw,`, the parameter β and samples from
M∗ as input to the tester. If the tester outputs YES, it means that it regarded the samples from M∗

as samples from M and so ({s, t}, V ) must be the unique large cut of Ĥw. Conversely, if the tester
outputs NO, then the total variation distance between µM and µM∗ must be large, in which case
({s, t}, V ) is not the unique large cut of Ĥw.

In summary, this argument implies that an identity testing algorithm for n-vertex multigraphs
gives a polynomial time randomized algorithm for MAXCUT on graphs with n− 2 vertices. How-
ever, the maximum degree of Ĥw,` depends on `, N and w and could be much larger than d. Hence,
this argument does not apply for small values of d, even if we overlook the fact that we would be
using identity testers for multigraphs instead of graphs. To extend the argument to simple graphs in
M(n, d) for all 3 ≤ d ≤ n1−ρ, we introduce a “degree reducing” gadget, which is reminiscent of
gadgets used in works concerning the hardness of approximate counting [52, 53].

Every vertex of Ĥw,` is replaced by a random bipartite graph G = (L ∪ R,EG); see Section 3
for the precise random graph model. The graph G has maximum degree at most d, and some of
its vertices, which we call ports, will have degree strictly less than d, so that they can be used for
connecting the gadgets as indicated by the edges of Ĥw,`. The resulting simple graph, which we
denote by ĤΓ

w, will have maximum degree d. (Γ is the set of parameters of our random graph model;
see Section 3 for the details.) In similar manner as described above for Ĥw,`, the antiferromagnetic
Ising model on ĤΓ

w can be used to determine whether ({s, t}, V ) is the unique large cut of Ĥw. This
would involve sampling from the Gibbs distribution µĤΓ

w,β
, which is hard but can be done using the

identity testing algorithm. Since ĤΓ
w has maximum degree at most d, Theorem 2.1 follows.

Finally, we mention that the main technical challenge in our approach is to establish that in
every gadget, with high probability, either every vertex of L is assigned “+” and every vertex of R
is assigned “−” or vice versa. To show this, we require very precise bounds on the edge expansion of
the random bipartite graphG. When d→∞, these bounds can be derived in a fairly straightforward
manner from the results in [10]. However, the case of d = O(1) is more difficult, and it requires us
to define the notion of edge expansion with respect to the ports of the gadget and extend some of the
ideas in [39]. Our bounds for the edge expansion of random bipartite graphs may be of independent
interest and are provided in the full version of this paper [4].

3. Proof of main result for the Ising model: Theorem 2.1

The Ising gadget. Suppose m, p, d, dIN, dOUT ∈ N+ are positive integers such that m ≥ p, d ≥ 3
and dIN + dOUT = d. Let G = (VG, EG) be the random bipartite graph defined as follows:

1. Set VG = L ∪R, where |L| = |R| = m and L ∩R = ∅;
2. Choose P ⊂ VG uniformly at random among all the subsets such that |P ∩L| = |P ∩R| = p;

3. Let M1, . . . ,MdIN be dIN random perfect matchings between L and R;

4. Let M ′1, . . . ,M
′
dOUT

be dOUT random perfect matchings between L\P and R\P ;

5. Set EG =
(⋃dIN

i=1Mi

)
∪
(⋃dOUT

i=1 M
′
i

)
and make G simple by removing repeated edges.

We use G(m, p, dIN, dOUT) to denote the resulting distribution; i.e., G ∼ G(m, p, dIN, dOUT). Vertices
in P are called ports. Every port has degree at most dIN while every non-port has degree at most d.
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In our proofs, we use instances of this random graph model with two different choices of pa-
rameters. For the case when d is such that 3 ≤ d = O(1), we choose p =

⌊
m1/4

⌋
, dIN = d− 1 and

dOUT = 1; otherwise we take p = m (i.e., every vertex is a port), dIN = bθdc and dOUT = d− bθdc
for a suitable constant θ ∈ (0, 1). For both parameter choices we establish that the random graph G
is a good expander with high probability. Using this, we can show that there are only two “typical”
configurations for the Ising model on G, even in the presence of an external configuration (i.e., a
boundary condition) exerting influence on the configuration of G via its ports.

We present some notation next that will allow us to formally state these facts. Let σ+(G) be the
configuration of G = (L ∪ R,EG) where every vertex in L is assigned “+” and every vertex in R
is assigned “−”; similarly, define σ−(G) by interchanging “+” and “−”. Suppose G is an induced
subgraph of a larger graph G′ = (VG′ , EG′). Let ∂P = VG′ \ VG. Assume that every vertex in
P ⊆ VG is connected to up to dOUT vertices in ∂P and that there are no edges between VG \ P and
∂P in G′. We use {∂P = τ} for the event that the configuration in G′ of ∂P is τ ∈ {+,−}∂P .
We can show that for any τ , with high probability over the choice of the random graph G, the Ising
configuration of VG on G′ conditioned on {∂P = τ} will likely be σ+(G) or σ−(G).

Theorem 3.1 Suppose β < 0, 3 ≤ d = O(1), dIN = d − 1, dOUT = 1 and p = bmαc, where α ∈
(0, 1

4 ] is a constant independent of m. Then, there exists a constant δ > 0 such that with probability
1−o(1) over the choice of the random graphG the following holds for every configuration τ on ∂P :

µG′,β({σ+(G), σ−(G)} | ∂P = τ) ≥ 1− 2m

eδ|β|d
.

A similar theorem is also established for the case when p = m, dIN = bθdc and dOUT = d−bθdc.
The proofs of these theorems are provided in [4].

Testing instance construction. Let H = (V,E) be a simple N -vertex graph and for integer
w ≤ N2 let Ĥw be the multigraph defined in Section 2. We use an instance of the random bipartite
graph G(m, p, dIN, dOUT) as a gadget to define a simple graph ĤΓ

w, where Γ = {m, p, dIN, dOUT, `};
` > 0 is assumed to be an integer divisible by dOUT. The graph ĤΓ

w is constructed as follows:

1. Generate an instance G = (L ∪R,EG) of the random graph model G(m, p, dIN, dOUT);

2. Replace every vertex v of Ĥw by a copy Gv = (Lv ∪Rv, EGv) of the generated instance G;

3. For every edge {v, u} ∈ Ĥw, choose `/dOUT unused ports in Lv and `/dOUT unused ports in
Lu and connect them with a simple bipartite dOUT-regular graph;

4. Similarly, for every edge {v, u} ∈ Ĥw, choose `/dOUT unused ports in Rv and `/dOUT unused
ports in Ru and connect them with a simple bipartite dOUT-regular graph.

Observe that our construction requires:

(i) dIN + dOUT = d ≤ m (ii) dOUT | ` (iii) `(N2 + w) ≤ p · dOUT (iv) d2
OUT ≤ `. (2)

To see that condition (2)(iii) is necessary, note that the maximum degree of Ĥw is N2 +w (this
is the degree of vertices s and t), and so the total out-degree of the ports should be large enough to
accommodate `(N2 + w) edges. Observe also that when condition (2)(iv) holds, there is always a
simple bipartite dOUT-regular graph with `/dOUT vertices on each side for steps 3 and 4.

The number of vertices in ĤΓ
w is 2m(N + 2) and its maximum degree is d = dIN + dOUT; thus,

ĤΓ
w ∈M(2m(N + 2), d). Let I be the empty graph with N vertices. By setting H = I and w = 0,

9
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we can analogously define the graphs Î0 and ÎΓ
0 so that ÎΓ

0 ∈ M(2m(N + 2), d). Let M and M∗

denote the Ising models (ĤΓ
w, β) and (ÎΓ

0 , β), respectively. We show next that the models M and
M∗ are statistically close if and only if ({s, t}, V ) is the unique large cut of Ĥw. To formally state
this fact we require some additional notation.

For a configuration σ on ĤΓ
w, we say that the gadget Gv =(Lv ∪ Rv, EGv) is in the plus (resp.,

minus) phase if all the vertices in Lv (resp., Rv) are assigned “+” in σ and all the vertices in Rv
(resp., Lv) are assigned “−”. Let Ωgood be the set of configurations of ĤΓ

w where the gadget of
every vertex is either in the plus or the minus phase. The set of Ising configurations of ĤΓ

w and ÎΓ
0 is

the same and is denoted by Ω. We use ZM , ZM∗ for the partition functions of M , M∗, and ZM (Λ),
ZM∗(Λ) for their restrictions to a subset of configurations Λ ⊆ Ω. That is, ZM =

∑
σ∈ΩwM (σ)

and ZM (Λ) =
∑

σ∈ΛwM (σ) where wM (σ) := eβA(σ) is called the weight of the configuration σ
in M ; see (1). When β < 0, wM (σ) = e−|β|A(σ). The models M and M∗ are related as follows:

Lemma 3.2 Let N ≥ 1, w ≥ 0 be integers and let β < 0. Let Γ = (m, p, dIN, dOUT, `) be such
that |β|(` − d) ≥ N and the conditions in (2) are satisfied. If for the Ising models M = (ĤΓ

w, β)
and M∗ = (ÎΓ

0 , β) we have ZM (Ωgood) ≥ (1 − ε)ZM and ZM∗(Ωgood) ≥ (1 − ε)ZM∗ for some
ε ∈ (0, 1), then with probability 1−o(1) over the choice of the random graphG the following holds:

1. If ({s, t}, V ) is the unique large cut of Ĥw, then ‖µM − µM∗‖TV ≤ 2(ε+ e−2|β|d).

2. If ({s, t}, V ) is not the unique large cut of Ĥw, then ‖µM − µM∗‖TV >
1
2 − ε− e−2|β|d.

The next lemma shows that we can easily generate samples from the simpler model M∗.

Lemma 3.3 Let N ≥ 1 be an integer and let β < 0. Let Γ = (m, p, dIN, dOUT, `) be such that
|β|(`N − d) ≥ N and the conditions in (2) are satisfied. If for the Ising model M∗ = (ÎΓ

0 , β) we
have ZM∗(Ωgood) ≥ (1 − ε)ZM∗ for some ε ∈ (0, 1), then there exists a sampling algorithm with
running time O(mN) such that with probability 1 − o(1) over the choice of the random graph G,
the distribution µALG of its output satisfies ‖µM∗ − µALG‖TV ≤ ε+ e−2|β|d.

The proofs of Lemmas 3.2 and 3.3 are deferred to the full version of this paper [4]. We are now
ready to prove Theorem 2.1.

Proof of Theorem 2.1 Let us assume first that 3 ≤ d = O(1) and let N = bn1/14c − 2 and
m = bn13/14

2 c. If bn1/14c and bn13/14

2 c are integers, then n = 2m(N + 2). For simplicity and
without much loss of generality, we assume that this is indeed the case. For some brief remarks on
how to extend the current proof to the case when bn1/14c or bn13/14

2 c are not integers the reader is
referred to the full version [4].

Let H = (V,E) be an N -vertex graph. We show that an identity testing algorithm forM(n, d)

with running time T = T (n) and sample complexity L = L(n) ≤ exp(|β|d/c)
30n , henceforth called the

TESTER, can be used to solve TWOLARGECUTS on inputs H and w ≤ N2 in O(T + Ln) time.
We recall that in the TWOLARGECUTS problem the goal is to determine whether ({s, t}, V ) is

the unique large cut of the graph Ĥw; see Section 2 and Definition 2.2. For this, we construct the
two Ising models M = (ĤΓ

w, β) and M∗ = (ÎΓ
0 , β) as described at the beginning of this section.

When 3 ≤ d = O(1), we choose p = bm1/4c, dIN = d− 1, dOUT = 1 and ` = Θ(n9/112). That is,
Γ = {m, bm1/4c, d− 1, 1,Θ(n9/112)}. Recall that ` is an integer divisible by dOUT by assumption.
Moreover, dIN + dOUT = d and ĤΓ

w, ÎΓ
0 have exactly n vertices; hence, ĤΓ

w, Î
Γ
0 ∈M(n, d).

10
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Suppose σ is sampled according to µM . Theorem 3.1 implies that with probability 1 − o(1)
over the choice of the random gadget G, if the configuration in the gadget Gv for vertex v of Ĥw

is re-sampled in σ, conditional on the configuration of σ outside of Gv, then the new configuration
in Gv will be in either the plus or minus phase with probability at least 1 − 2m

eδ|β|d
, for a suitable

constant δ > 0. A union bound then implies that after re-sampling the configuration in every gadget
one by one, the resulting configuration σ′ is in the set Ωgood with probability 1− 2m(N+2)

eδ|β|d
. Thus,

µM (Ωgood) =
ZM (Ωgood)

ZM
≥ 1− 2m(N + 2)

eδ|β|d
. (3)

The same is true if σ were sampled from µM∗ instead, and so µM∗(Ωgood) ≥ 1− 2m(N+2)

eδ|β|d
.

Let µ⊗LM , µ⊗LM∗ and µ⊗LALG be the product distributions corresponding to L independent samples
from µM , µM∗ and µALG respectively. Let γ = min{2, δ} and suppose c > 1/γ. Since in our
reduction from MAXCUT to TWOLARGECUTS we only need consider w’s such that w ≤ N2, our
choices for N and Γ satisfy the conditions in (2), and |β|(` − d) ≥ N when |β|d ≥ c lnn. The
following fact then follows from (3) and Lemmas 3.2 and 3.3; its proof is provided in [4].

Fact 3.4 If ({s, t}, V ) is the unique large cut of Ĥw, then ‖µ⊗LM − µ⊗LALG‖TV
≤ 1

5 .

Our algorithm for TWOLARGECUTS inputs the Ising modelM andL samples S={σ1, . . . , σL}
from µALG to the TESTER (i.e., σi ∼ µALG and S ∼ µ⊗LALG) and outputs the negation of the TESTER’s
output. By Fact 3.4, when ({s, t}, V ) is the unique large cut of Ĥw the set of samples given as input
to the TESTER (i.e., S) is distributed according to µ⊗LM with probability at least 4/5. Let FS be the
event that this is indeed the case. Recall that the TESTER makes a mistake with probability at most
1/4. Moreover, if FS occurs and the TESTER does not make a mistake, then the TESTER would
output YES. Therefore, Pr [TESTER outputs NO] ≤ Pr [¬FS ] + Pr [TESTER makes a mistake] ≤
9/20. Hence, the TESTER returns YES with probability at least 11/20 in this case.

When ({s, t}, V ) is not the unique large cut of Ĥw, (3) and part 2 of Lemma 3.2 imply that
‖µM − µM∗‖TV > 1/3 for sufficiently large n. Moreover, by Lemma 3.3, ‖µ⊗LM∗ − µ⊗LALG‖TV ≤
L‖µM∗−µALG‖TV ≤ 1/15. Thus, with probability at least 14/15 the samples in S have distribution
µ⊗LM∗ . Let F∗S be the event that this is the case. Then, Pr [TESTER outputs YES] ≤ Pr [¬F∗S ] +
Pr [TESTER makes a mistake] < 1/3. Hence, the TESTER returns NO with probability at least 2/3.

Therefore, our algorithm can solve the TWOLARGECUTS problem on Ĥw in O(T + Ln) time
with probability at least 11/20. The result then follows from Lemma 2.3 and the fact that |V | =

N = bn1/14c − 2 ≥ bnmin{ ρ
4
, 1
14
}c − 2. The case when d is such that d ≤ n1−ρ and d→∞ follows

in similar fashion; see [4] for the details of this case.

Remark 3.5 Our hardness results for identity testing for the Ising model require |β|d ≥ c lnn for a
suitable constant c > 0. We further assume that β∗ = β; namely, our lower bounds hold even under
this additional promise. Our proof extends without any significant modification to the case where
max{|β|, |β∗|}·d ≥ c lnn. As mentioned, there are polynomial running time algorithms for identity
testing when either |β∗|d = O(log n) (via structure learning methods), or when |β| = O(d−1) in
the so-called “tree uniqueness region” where we can sample efficiently. Therefore, when β 6= β∗, β
is in the tree non-uniqueness region (specifically, Ω(1) = |β|d < c lnn) and |β∗|d = ω(log n), the
computational complexity of identity testing is open, as there is no known polynomial running time
algorithm, and our lower bound does not apply to this combination of parameter regimes.
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4. Lower bounds for proper colorings: proof overview

In Theorem 1.3 we establish that when d ≥ dc(q) = q +
√
q + Θ(1) there is no polynomial time

identity testing algorithm for proper q-colorings in M(n, d) unless there is an FPRAS for #BIS.
As mentioned, #BIS is the problem of counting independent sets in bipartite graphs; a standard
complexity-theoretic assumption in approximate counting is that #BIS does not admit an FPRAS.

In our proof, we crucially use the hardness of #BIP-3-COL, the problem of counting proper
3-colorings in bipartite graphs. It is known that if there is an FPRAS for #BIP-3-COL, then
there is also one for #BIS [24]. We show that when d ≥ dc(q), an identity testing algorithm
for proper q-colorings in M(n, d), with running time T (n) and sample complexity L(n), can be
turned into a randomized algorithm for #BIP-3-COL on graphs of poly(n) size with running time
poly(T (n), L(n)). Theorem 1.3 follows from the fact that if T (n) and L(n) were both polynomials
in n, then we would obtain an FPRAS for #BIP-3-COL.

To derive an algorithm for #BIP-3-COL we proceed as follows. Let H be an N -vertex con-
nected bipartite graph, and suppose we want to compute an ε-approximation for the number of
3-colorings Z3(H) of H . Let B be the complete N -vertex bipartite graph with the same bipartition
as H , and let Z3(B) denote the number of 3-colorings of B. Then, Z3(H) ∈ [Z3(B), 3N ]. We con-
verge to an ε-approximation of Z3(H) via binary search in the interval [Z3(B), 3N ]. Specifically,
for Ẑ ∈ [Z3(B), 3N ] we construct a suitable identity testing instance and run the identity testing
algorithm to determine whether we should consider larger or smaller values than Ẑ.

The testing instance is constructed as follows. For integers k, ` ≥ 1, we define the graph Ĥk,`

that consists of k copies H1, . . . ,Hk of the original graph H and a complete (q−3)-partite graph J
in which each cluster has ` vertices. In addition to the edges in J and in the k copies ofH , Ĥk,` also
contains edges between every vertex in J and every vertex inHi for i = 1, . . . , k. (Our definition of
Ĥk,` requires q ≥ 4; the case when q= 3 requires a slightly more complicated construction which
is provided in [4].) For any Ẑ ∈ [Z3(B), 3N ], we choose k and ` in a way so that the output of the
identity testing algorithm on Ĥk,` can be interpreted as feedback on whether or not Ẑ > Z3(H).

We set k = dN/εe where ε is the accuracy parameter. The choice of ` is more subtle. There are
only two types of colorings for Ĥk,`: (i) those where J uses q−3 colors and (ii) those where J uses
q − 2 colors. It can be easily checked that there are |Ω1| = Θ(Z3(H)k) colorings of the first type
and |Ω2| = Θ(2`+k) of the second type. Hence, the choice of ` will determine which of these two
types of colorings dominates in the uniform distribution µk,` over the proper colorings of Ĥk,`.

To compare Ẑ and Z3(H), we could set ` so that Ẑk= |Ω2|=Θ(2`+k) and draw a sample from
µk,`. If we get a coloring of the first kind, we may presume that |Ω1| � |Ω2|, or equivalently that
Z3(H)>Ẑ. Conversely, if the coloring is of the second kind, then it is likely that |Ω1| � |Ω2| and
Z3(H)<Ẑ. Sampling from µk,` is hard, but we can emulate this approach with a testing algorithm.

Specifically, we construct a simpler graph B̂k,` such that: (i) we can easily generate samples
from µ̂k,`, the uniform distribution over the proper q-colorings B̂k,`; and (ii) µk,` and µ̂k,` are close
in total variation distance if and only if the dominant colorings in the Gibbs distributions are those
of the second type. Then, we pass q, Ĥk,` and samples from µ̂k,` as input to the tester. Its output
then reveals the dominant color class and hence whether Ẑ is larger or smaller than Z3(H).

Our final obstacle is that the maximum degree of the graph Ĥk,` depends on N , k and `, and
could be much larger than d. To reduce the degree of Ĥk,` so that it belongs toM(n, d), we design
a degree reducing gadget, which is inspired by the gadgets used to establish the hardness of the
decision and structure learning problems [26, 44, 5]. The full proof of Theorem 1.3 is given in [4].
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