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Abstract
We study identity testing for restricted Boltzmann machines (RBMs), and more generally for

undirected graphical models. Given sample access to the Gibbs distribution corresponding to an
unknown or hidden model M∗ and given an explicit model M , can we distinguish if either M =
M∗ or if they are (statistically) far apart? Daskalakis et al. (2018) presented a polynomial-time
algorithm for identity testing for the ferromagnetic (attractive) Ising model. In contrast, for the
antiferromagnetic (repulsive) Ising model, Bezáková et al. (2019) proved that unless RP = NP
there is no identity testing algorithm when βd = ω(log n), where d is the maximum degree of the
visible graph and β is the largest edge weight (in absolute value).

We prove analogous hardness results for RBMs (i.e., mixed Ising models on bipartite graphs),
even when there are no latent variables or an external field. Specifically, we show that if RP 6= NP,
then when βd = ω(log n) there is no polynomial-time algorithm for identity testing for RBMs;
when βd = O(log n) there is an efficient identity testing algorithm that utilizes the structure learn-
ing algorithm of Klivans and Meka (2017). In addition, we prove similar lower bounds for purely
ferromagnetic RBMs with inconsistent external fields, and for the ferromagnetic Potts model. Pre-
vious hardness results for identity testing of Bezáková et al. (2019) utilized the hardness of finding
the maximum cuts, which corresponds to the ground states of the antiferromagnetic Ising model.
Since RBMs are on bipartite graphs such an approach is not feasible. We instead introduce a novel
methodology to reduce from the corresponding approximate counting problem and utilize the phase
transition that is exhibited by RBMs and the mean-field Potts model. We believe that our method is
general, and that it can be used to establish the hardness of identity testing for other spin systems.

1. Introduction

For graphical models, there are several fundamental computational tasks which are essential for
utilizing these models. These computational problems can be broadly labeled as follows: sampling,
counting, structure learning, and testing. Our big picture aim is to understand the relationship
between these problems. The specific focus in this paper is on the computational complexity of the
identity testing problem for undirected graphical models and its connections to the hardness of the
counting problem.
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Identity testing is a basic question in statistics for testing whether a given model fits a dataset.
Roughly speaking, given data D sampled from the posterior or likelihood distribution of an un-
known/hidden model M∗ and given an explicit model M , can we distinguish whether M = M∗?

We study identity testing in the context of undirected graphical models [38], which correspond to
(pairwise) Markov random fields in probability theory and computer vision [22] and to spin systems
in statistical physics [23]. We focus attention on examples of graphical models of particular interest:
the Ising model, the Potts model, and Restricted Boltzmann Machines. The Ising model is the
simplest example of an undirected graphical model, and, in fact, it is one of the most well-studied
models in statistical physics where it is used to study phase transitions. The Potts model is the
generalization of the Ising model from a two state system to an integer q ≥ 3 state system. It is also
well-studied in statistical physics as the nature of the phase transition changes as q increases [15, 16].

Restricted Boltzmann Machines (RBMs) are a simple class of undirected graphical models cor-
responding to the Ising model on bipartite graphs. Originally introduced by Smolensky in 1986 [46],
they have played an important role in the history of computational learning theory. They have two
layers of variables: one layer corresponding to the observed variables and another layer correspond-
ing to the hidden/latent variables, and no intralayer connections so that the underlying graph is
bipartite. Learning was shown to be practical in these restricted models [30, 32] and henceforth
played a seminal role in the development of deep learning [41, 39, 42, 31].

We define first the Potts model, as both the Ising model and RBMs may be viewed as spe-
cial cases of this model. The Potts model is specified by a graph G = (V,E), a set of vertex
labels or spins [q] = {1, . . . , q}, a set of edge weights defined by β : E → R and a set of vertex
weights h : V × [q] → R. Configurations of the Potts model are the collection of vertex labelings
Ω = {1, . . . , q}V . The Gibbs distribution associated with the Potts model is a distribution over all
configurations σ ∈ Ω such that:

µ(σ) = µG,β,h(σ) :=
1

Z
exp

 ∑
{u,v}∈E

β({u, v})1(σ(u) = σ(v)) +
∑
v∈V

h(v, σ(v))

 ,

where Z = ZG,β,h is corresponding the normalizing factor or partition function.
When β(e) > 0 for every e ∈ E, the model is called ferromagnetic and neighboring vertices

prefer to align to the same spin. Conversely, when β(e) < 0 for every e ∈ E the model is called
antiferromagnetic. Models where β is allowed to be both positive or negative for distinct edges are
called mixed models.

The Ising model corresponds to the special case where there are only two spins; i.e., q = 2.
RBMs are mixed Ising models restricted to bipartite graphs; that is, G is bipartite with bipartition
V = L ∪ R. Since the focus in this paper is on lower bounds, we often consider the case of no
external field (h = 0) in order to obtain stronger hardness results.

Given a model specification, that is, a graph G = (V,E), an edge weight function β and an
external field h, the goal in the sampling problem is to generate samples from the Gibbs distribu-
tion µ = µG,β,h (or from a distribution close to µ in total variation distance). The corresponding
counting problem is to compute the partition function Z = ZG,β,h. The (exact) counting problem is
#P-hard [50] even for restricted classes of graphs [26, 49], and hence the focus on the approximate
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counting problem of obtaining an FPRAS (fully-polynomial randomized approximation scheme1)
for Z. For a general class of models, the approximate counting and the approximate sampling prob-
lems are equivalent, i.e., there are polynomial-time reductions between them [34, 47, 36]. A seminal
result of Jerrum and Sinclair [33] (see also [40, 11, 28]) presented an FPRAS for the partition func-
tion of the ferromagnetic Ising model.

Another two fundamental problems for undirected graphical models are structure learning and
identity testing. The structure learning problem is as follows: given oracle access to samples from
the Gibbs distribution µM∗ for an unknown (i.e., “hidden”) modelM∗ = (G∗, β∗, h∗), can we learn
G∗ (i.e., the structure of the model) in polynomial-time with probability at least 2/3? In the case of
no latent variables (so the samples from the Gibbs distribution reveal the label of all vertices V of
G) recent work of Klivans and Meka [35] (see also [6, 52, 29, 51, 53]) learns n-vertex graphs with
O(log n) × exp(O(βd)) samples and O(n2 log n) × exp(O(βd)) time where d is the maximum
degree of G and β := maxe∈E |β(e)| is the maximum edge weight in absolute value; this bound
has nearly-optimal sample complexity from an information-theory perspective [43].

For RBMs with latent variables (thus samples only reveal the labels for vertices on one side
R), structure learning can be done in time O(ndL+1) where dL is the maximum degree of the
latent variables. Recent work of Bresler, Koehler and Moitra [7] proves that there is no algorithm
with running time no(dL) assuming k-sparse noisy parity on n bits is hard to learn in time no(k);
they also show that for the special case of ferromagnetic RBMs with hidden variables there is a
structure learning algorithm with O(log n) × exp(O(βd2)) sample complexity and O(n2 log n) ×
exp(O(βd2)) running time.

In the identity testing problem we are given oracle access to samples from the Gibbs distri-
bution µM∗ for an unknown model M∗ = (G∗, β∗, h∗) (as in structure learning) and we are also
given an explicit model M = (G, β, h). Our goal is to determine, with probability ≥ 2/3, if either
M = M∗ or if the models are (1− ε)-far apart; specifically, if the total variation distance between
their Gibbs distributions is at least 1− ε for a given ε > 0. (Previous works assumed separation≥ ε
in the later case, whereas we prove hardness even when we assume separation ≥ 1− ε.)

It is known that identity testing cannot be solved in polynomial time for general graphical mod-
els in the presence of hidden variables unless RP = NP [4] . In this paper we assume there are no
hidden variables and hence the samples from µM∗ reveal the label of every vertex in the graph G;
this setting is more interesting for hardness results. We explore a more refined picture of hardness
of identity testing vs. polynomial-time algorithms.

It is known that identity testing can be reduced to sampling [14] or structure learning [1]: given
an efficient algorithm for the associated sampling problem or an efficient algorithm for structure
learning, then one can efficiently solve the identity testing problem. Hence, identity testing is (com-
putationally) easier than sampling and structure learning. (To be precise, one needs to solve both
the structure learning and the parameter estimation problems to solve identity testing; the algorithm
of Klivans and Meka [35] does in fact provide this.) This raises the question of whether identity
testing can be efficiently solved in cases where sampling and structure learning are known to be
hard. We prove (for the models studied here) that when sampling and structure learning are hard,
then identity testing is also hard.

1. A fully polynomial-time randomized approximation scheme (FPRAS) for an optimization problem with optimal
solution Z produces an approximate solution Ẑ such that, with probability at least 1− δ, (1− ε)Ẑ ≤ Z ≤ (1+ ε)Ẑ
with running time polynomial in the instance size, ε−1 and log(δ−1).
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1.1. Our results

The ε-identity testing problem for the Ising and Potts models is formally defined as follows. For
positive integers n and d, and positive real numbers β and h, let MRBM(n, d, β, h) denote the
family of RBMs on n-vertex bipartite graphs G = (V,E) of maximum degree at most d, where the
absolute value of all edge interactions is at most β and the field |h(v, i)| ≤ h for all v ∈ V and
i ∈ [q]; see Definition 4. We defineMPOTTS(n, d, β, h) analogously for the family of Potts models,
without the restriction of G being bipartite.

Given an RBM M ∈ MRBM(n, d, β, h), and sample access to a distribution µM∗ for an un-
known RBM M∗ ∈MRBM(n, d, β, h), distinguish with probability ≥ 3/4 between the cases:

1. µM = µM∗ ; 2. ‖µM − µM∗‖TV ≥ 1− ε.

The choice of 3/4 for the probability of success is arbitrary, and it can be replaced by any constant
in the interval (1

2 , 1) at the expense of a constant factor in the running time of the algorithm. The
ε-identity testing problem for the Potts model is defined in the same manner, but assuming that both
M and M∗ belong toMPOTTS(n, d, β, h) instead.

Our first result concerns the identity testing problem on MRBM(n, d, β, 0); that is, (mixed)
RBMs without external fields: h(v, i) = 0 for all v ∈ V , i ∈ [q]. We show that for RBMs
the approach utilizing structure learning is essentially best possible. In particular we prove that
when βd = ω(log n) there is no poly-time identity testing algorithm, unless RP = NP. Note that
when βd = O(log n), the algorithm of Klivans and Meka [35] for structure learning and parameter
estimation provides an identity testing algorithm with poly(n) sample complexity and running time.

Theorem 1 Suppose n, d are positive integers such that 3 ≤ d ≤ nθ for constant θ ∈ (0, 1) and
let ε ∈ (0, 1). If RP 6= NP, then for all real β > 0 satisfying βd = ω(log n) there is no polynomial
running time algorithm to solve the ε-identity testing problem for the class MRBM(n, d, β, 0) of
mixed RBMs without external fields.

In contrast to the above result, Daskalakis, Dikkala and Kamath [14] provided a poly-time iden-
tity testing algorithm for all ferromagnetic Ising model with consistent fields (the external field is
consistent if it only favors the same unique spin at every vertex; otherwise it is called inconsistent).
Their algorithm crucially utilizes the known poly-time sampling methods for the ferromagnetic
Ising model [33, 40, 11, 28]. On the hardness side, super-polynomial lower bounds were recently
established for identity testing for the antiferromagnetic Ising model on general (not necessarily
bipartite) graphs when βd = ω(log n) [1]. This previous result utilizes the hardness of the max-
imum cut problem, since maximum cuts correspond to the “ground states” (maximum likelihood
configurations) of the antiferromagnetic model; this is not the case for RBMs, and new insights are
required (see Section 1.2 for a more detailed discussion). In particular we show a new approach to
reduce from the counting problem.

Ferromagnetic and antiferromagnetic RBMs are equivalent models; that is, there is a one-to-one
correspondence between configurations with the same weight. Hence, the results in [14] solve the
identity testing problem for both ferromagnetic and antiferromagnetic RBMs with no latent vari-
ables, even in the presence of a consistent external field. Moreover, Klivans and Meka’s algorithm
from [35] together with the hardness results of Theorem 1 provides a fairly complete picture of the
computational complexity of identity testing for (mixed) RBMs with no external field (h = 0).
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Our next result concerns the hardness of identity testing for purely ferromagnetic RBMs with
an inconsistent magnetic field; that is, a field that favors one spin for some of the vertices and
the other spin for the rest. For this we utilize the complexity of #BIS, which is the problem of
counting the independent sets in a bipartite graph. #BIS is believed not to have an FPRAS, and it
has achieved considerable interest in approximate counting as a tool for proving relative complexity
hardness [17, 25, 18, 8, 10, 9, 20]. Let M+

RBM(n, d, β, h) be set of all ferromagnetic RBMs in
MRBM(n, d, β, h).

Theorem 2 Suppose n, d are positive integers such that 3 ≤ d ≤ nθ for constant θ ∈ (0, 1) and let
ε ∈ (0, 1). If #BIS does not admit an FPRAS, there exists h = O(1) such that when βd = ω(log n)
there is no polynomial running time algorithm that solves the ε-identity testing problem for the class
M+

RBM(n, d, β, h) of ferromagnetic RBMs with inconsistent external fields.

Given the efficient identity testing algorithm for ferromagnetic Ising models [14, 33], we may
ask whether there are other (ferromagnetic) models that allow efficient testing algorithms. A prime
candidate is the ferromagnetic Potts model. Both the ferromagnetic Ising and Potts models have
a rich structure; for instance, their random-cluster representation [27] enables sophisticated (and
widely-used) sampling algorithms such as the Swendsen-Wang algorithm [48]. However, while
there are efficient samplers for the ferromagnetic Ising model for all graphs G and all edge inter-
actions β [33, 11, 28], the case of the ferromagnetic Potts model (i.e., q > 2 spins) looks less
promising. In fact, it is unlikely that there is an efficient sampling/counting algorithm for general
ferromagnetic Potts models since this is a known #BIS-hard problem [25, 21]; this is due to a phe-
nomena called phase co-existence, which we will also exploit; see Section 2.2.1. Given the weaker
hardness of sampling and approximate counting for the ferromagnetic Potts model, the hardness of
the identity problem was less clear.

We prove that identity testing for the ferromagnetic Potts model is in fact hard in the same
regime of parameters where sampling and structure learning are known to be hard. Specifically, we
observe that the structure learning algorithm from [35] applies to the Potts model, and hence implies
a testing algorithm when βd = O(log n); we establish lower bounds when βd = ω(log n) that hold
even for the simpler case of models with no external field.

Theorem 3 Suppose n, d, q ≥ 3 are positive integers such that 3 ≤ d ≤ nθ for constant θ ∈ (0, 1)
and let ε ∈ (0, 1). If #BIS does not admit an FPRAS, then there is no polynomial running time al-
gorithm that solves the ε-identity testing problem for the classM+

POTTS(n, d, β, 0) of ferromagnetic
q-state Potts models without an external field. Moreover, our lower bound applies restricted to the
class of ferromagnetic Potts models on bipartite graphs inM+

POTTS(n, d, β, 0).

1.2. Our techniques

Our proof is a general approach that allows us to obtain hardness results for several models of in-
terest. Specifically, we devise a novel methodology to reduce the problem of approximate counting
(i.e., approximating partition functions) to identity testing. For this we consider a decision ver-
sion of approximate counting and prove that this variant is as hard as the standard approximation
problem; this first step of our reduction applies to many other models of interest (see Theorem 7).

In the second step of our reduction, given a hard counting instance, we use insights about the
phase transition of the models to construct a testing instance whose output allows us to solve the

5



HARDNESS OF IDENTITY TESTING FOR RBMS

decision version of approximate counting. The actual reduction is generic (see Theorem 9), but
the insights about each model are needed to build a suitable testing instance; this construction is
the only part of our proof that is model specific, whereas every other step in the proof applies to
more general spin systems. Our approach is nicely illustrated in the context of the ferromagnetic
Potts model; that is, in the proof of Theorem 3 in Section 2. There, we utilize the phase transition
phenomenon in the associated mean-field Potts model which corresponds to the complete graph.
In particular, there is a phase co-existence corresponding to a first-order phase transition which we
utilize to approximate the partition function of the input graph; see Section 2.

In the third and final step of the reduction, we reduce the maximum degree of the graph in the
testing instance by using random bipartite graphs as gadgets, as has been done in seminal hardness
results for approximate counting [44, 45], and more recently in [1] for the hardness of testing for
the antiferromagnetic Ising model. This step is also generic and applies to a large class of models;
see [3]. One interesting implication of our approach is that our gadget and reduction yields always
bipartite graphs, and hence we immediately get hardness results for bipartite graphs for all of the
models studied in this paper.

We pause to briefly contrast the above proof approach with that in [1], where it was established
hardness of identity testing for the antiferromagnetic Ising model. As mentioned earlier, in the
antiferromagnetic Ising model, the configurations with the highest weight or likelihood (i.e., the
ground states) correspond to the maximum cuts of the original graph. Hence, it is natural to prove
hardness of identity testing for the antiferromagnetic Ising model using a reduction from the max-
imum cut problem. The ground states of ferromagnetic systems, on the other hand, correspond to
the monochromatic configurations, so there is no hard optimization problem in the background to
utilize in the reduction. (The similar obstacle for RBMs is that the maximum cut problem is trivial
in bipartite graphs, so we cannot hope to use it to prove hardness.) We use the hardness of approx-
imating the partition function instead and utilize the unique nature of the phase transition in these
models in an essential way.

To reduce the degree of the graphs in our construction we do utilize insights and certain technical
lemmas from [1]. Specifically, those concerning the expansion of random near-regular bipartite
graphs. We note that the models we consider on these random graphs are different than those in [1];
in particular, we consider mixed models and allowed external fields, whereas in [1] these gadgets
are purely antiferromagnetic and there is no external field.

We present our proof approach in the context of the ferromagnetic Potts model, specifically in
Section 2 we sketch the prove Theorem 3. The complete proof of Theorem 3 and the proofs for
RBMs, i.e., Theorems 1 and 2 which follow the same approach, are provided in the full version [3].

2. Testing ferromagnetic Potts models

In this section we prove Theorem 3, our lower bound for identity testing for the ferromagnetic Potts
model. To prove this theorem, we introduce a new methodology to reduce approximate counting
(i.e., the problem of finding an FPRAS for the partition function of a model), to identity testing. We
believe our methods could be used to establish the hardness of identity testing for other models.

We introduce some useful notation next. Recall that in the introduction we define the families
of modelsMRBM,M+

RBM,MPOTTS andM+
POTTS. We formalize and extend this notation as follows.

Definition 4 For integers n, d ≥ 3 and β, h ∈ R, let MPOTTS(n, d, β, h, q) denote the family of
q-state Potts models on n-vertex graphs G = (VG, EG) of maximum degree at most d with edge
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interactions βG : EG → R such that for every edge {u, v} ∈ EG, |βG({u, v})| ≤ β, and external
field hG : VG × [q]→ R such that for every vertex v ∈ VG and spin i ∈ [q], |hG(v, i)| ≤ h.

Remark 5 We omit q from the notation above as it is usually clear from context. For the special
case of q = 2, i.e., the Ising model, we use MISING; when q = 2 and the underlying graph is
bipartite we useMRBM. In addition, we add “+” or “−” as a superscript to the notation to denote
the corresponding ferromagnetic or antiferromagnetic subfamilies; e.g.,M+

POTTS(n, d, β, h) denotes
the subset of ferromagnetic Potts models inMPOTTS(n, d, β, h). Finally, we add a circumflex, e.g.,
M̂+

POTTS(n, d, β, h), for the subfamily of models where every edge weight is exactly equal to β.

2.1. Step 1: Decision version of approximate counting

Our starting point is always a known hard approximate counting instance. For the ferromagnetic
Potts model, we consider the problem of approximating its partition function on a graph G. As
mentioned, this problem is known to be #BIS-hard, even under the additional assumptions that all
edges have the same interaction parameter 0 < βG = Θ(1) and that there is no external field (i.e.,
h = 0) [25, 21]. Our goal is to design an FPRAS for the partition function ZG,βG := ZG,βG,0 using
a poly-time algorithm for identity testing, thus establishing the #BIS-hardness of this problem.

Our first step is to reduce the problem of approximating ZG,βG to a natural decision variant of
the problem. This decision version will be more naturally solved by the testing algorithm and is
more generally defined as follows:

Definition 6 (Decision r-approximate counting) Given a Potts model (G,βG,hG), an
approximation ratio r > 1 and an input Ẑ ∈ R, distinguish with probability at least
5/8 between the cases: (i) ZG,βG,hG ≤ 1

r Ẑ and (ii) ZG,βG,hG ≥ rẐ.

We show that the decision version of approximate counting is as hard as the standard problem
of approximating ZG,βG,hG . Our proof of this theorem is provided in the full version [3].

Theorem 7 Let n, d ≥ 1 be integers and let β, h ≥ 0 be real numbers. Suppose that there is no
FPRAS for the counting problem for a family of Potts modelsM, whereM is any of the models
M̂+

POTTS(n, d, β, h), M̂−ISING(n, d, β, h) or M̂+
ISING(n, d, β, h). Then, for any c > 0 there is no

polynomial-time algorithm for the decision version of nc-approximate counting forM.

2.2. Step 2: Testing instance construction

We first construct a hard instance for the identity testing problem for the ferromagnetic Potts model
on general graphs, with no restriction on the maximum degree and with a constant upper bound on
the edge interactions. We prove first that identity testing is #BIS-hard in this setting.

Theorem 8 Consider a ferromagnetic Potts model with no external field (h = 0) where the inter-
action on every edge is ferromagnetic and bounded from above by a constant β0 > 0. Then, there
is no polynomial-time identity testing algorithm for the model unless there is an FPRAS for #BIS.

To establish this theorem, we construct an identity testing instance that allows us to solve the de-
cision variant of approximate counting. This theorem does not immediately imply Theorem 3 from
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the introduction because we allow the degree to be unbounded; specifically, Theorem 8 establishes
hardness forM+

POTTS(n, n, β, 0). The final step of the proof uses this result and a degree-reducing
gadget to establish Theorem 3 (see Section 2.3). Our main gadget in the proof of Theorem 8 will be
a complete graph; this is known as the mean-field case in statistical physics.

2.2.1. THE FERROMAGNETIC MEAN-FIELD q-STATE POTTS MODEL

Let H = Km be a complete graph on m vertices and let βH be the interaction strength on the edges
of H . By symmetry, the q-state Potts configurations on a complete graph can be described by their
“signature”—by “signature” we mean the vector (σ1, . . . , σq) ∈ Zq where σi ≥ 0 is the number of
vertices that have spin i; note that

∑q
i=1 σi = m.

In the complete graph, the ferromagnetic Potts model is known to undergo an “order-disorder”
phase transition. Specifically, there exists a critical value βH = Bo/m such that when βH <
Bo/m, long-range correlations do not exist; the system is then said to be in a “disordered” state
as the typical configurations have signature ≈ (m/q, . . . ,m/q) where each spin has roughly the
same density (up to lower order terms). In contrast, when βH > Bo/m, typical configurations
have a dominant spin and the remaining spins are uniformly distributed. These configurations
are thus referred to as “majority” configurations. More precisely there exists a constant α =
α(βH) > 1/q and, with high probability, configurations from the Gibbs distribution have signa-
ture ≈

(
αm, (1−α)m

q−1 , . . . , (1−α)m
q−1

)
up to permutations and lower order terms.

When q ≥ 3, the phase transition is known to be of first-order, which means that at the critical
point βH = Bo/m both disordered and majority configurations occur with constant probability.
This phenomena is referred to as phase co-existence, and it is known (or conjectured) to be present
in a variety of graphs, being the root reason for the hardness of sampling and counting for the
ferromagnetic Potts model. In contrast, in the Ising model (i.e., when q = 2), there is a second-
order phase transition and the majority density α(Bo) is 1/q at the critical point; hence these two
phases – disordered and majority – coincide at this point.

We now formalize the notion of the majority phase M , the disordered phase D, and the remain-
ing configurations S with their corresponding partition functions ZM

H , ZD
H , and ZS

H . The majority
phase is defined with respect to a fixed constant α̂ = α̂(Bo) which is the density of the dominant
color at the phase coexistence point Bo/m. Let ΩH denote the set of Potts configurations on H and
for σ ∈ ΩH , let (σ1, . . . , σq) ∈ Zq denote its signature. Consider the following sets:

M :=

{
σ ∈ ΩH

∣∣ ∃j ∈ [q] : |σj − α̂m| ≤ m3/4 and
∣∣∣∣σi − 1− α̂

q − 1
m

∣∣∣∣ ≤ m3/4 for i ∈ [q] \ {j}

}
,

D := {σ ∈ ΩH

∣∣ ∀i ∈ [q] : |σi −m/q| ≤ m3/4}, and S := ΩH \ (M ∪D).

For a configuration σ on H , let wσH(βH) = exp
(∑

{u,v}∈E(H) βH1(σ(u) = σ(v))
)

denote the
weight of σ in the mean-field model (H,βH). Consider the contributions of each type of configura-
tion to the partition function. That is, ZM

H (βH) :=
∑

σ∈M wσH(βH), ZD
H(βH) :=

∑
σ∈D w

σ
H(βH),

and ZS
H(βH) :=

∑
σ∈S w

σ
H(βH). Hence, the partition function of (H,βH) is given by ZH(βH) =

ZM
H (βH) + ZD

H(βH) + ZS
H(βH). We note that in our reduction later, we will choose a specific

βH > 0 depending on the instance of the approximate counting problem and the parameters of the
identity testing algorithm; hence, to emphasize the effect of βH , we parameterize ZM

H (and other
functions in this section) in terms of βH .
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The next two lemmas concern the mean-field Potts model near the critical point Bo/m. We note
that as a consequence of the first-order phase transition, there is a critical window around Bo/m
where the non-dominant phase (i.e., disorder or majority) is still much more likely than any other
type configurations; this phenomena is known as metastability and will also be crucial for us.

First we establish that in the critical window around Bo/m the majority M and disordered D
configurations are exponentially more likely than the remaining configurations S. Several variants
of this result have been proved in some fashion before, e.g., [5, 37, 25, 13, 24, 19, 2]; however, the
precise bound we require in our proofs does not seem to be available in the literature.

Lemma 1 There exists constants c, c′>0 such that for any βH satisfying |βH−Bo/m| ≤ c′m−3/2,
we have ZS

H(βH) ≤ min{ZM
H (βH), ZD

H(βH)} exp(−c
√
m).

In addition, we show that we can find in poly(m) time a value for the parameter βH in the
critical window to achieve a specified ratio R of the majority partition function ZM

H (βH) to the
disordered partition function ZD

H(βH).

Lemma 2 There exist constants c, c′ > 0 such that for any R ∈ [e−c
√
m, ec

√
m] and any constant

δ ∈ (0, 1), we can efficiently find βH > 0 in poly(m) time such that |βH −Bo/m| ≤ c′m−3/2 and

(1− δ)R ≤ ZM
H (βH)

ZD
H(βH)

≤ R.

The proof of these two lemmas is provided in the full version [3].

2.2.2. IDENTITY TESTING REDUCTION

Visible Model Construction. Let (G, βG) be the instance of the ferromagnetic Potts model with
no external field (i.e., h = 0) for which we are trying to approximate the partition function ZG,βG ;
we shall assume G = (VG, EG) is an N -vertex graph and that every edge has interaction strength
0 < βG = Θ(1). Let H = (VH , EH) be a complete graph on m = N10 vertices. The graph
F = (VF , EF ) is the result of connecting the vertices of H and G with a complete bipartite graph
Km,N with edgesEm,N ; that is, VF = VG∪VH andEF = EH∪EG∪Em,N . We consider the Potts
model on the graph F with edge interactions βF : EF → R such that βF (e) = βH when e ∈ EH ;
βF (e) = βG when e ∈ EG; and βF (e) = β when e ∈ Em,N , where βH , β > 0 will be chosen later.

We use n := N + m for the number of vertices of F , and, with a slight abuse of notation, we
use F for the Potts model (F, βF ) which will play the role of the visible model in our reduction; µF
denotes the corresponding Gibbs distribution.

We study first the properties of “typical” configurations on G conditional on a configuration σ
on the complete graph H . Let ΩF , ΩH and ΩG be the set of Potts configuration on the graph F , H
and G respectively; note that ΩF = ΩH × ΩG. For σ ∈ ΩH , define

ZσF (βH) :=
∑

η∈ΩF :η(VH)=σ

wηF (βH)

where wηF (βH) = exp
(∑

{u,v}∈EF
βF ({u, v})1(η(u) = η(v))

)
; that is, ZσF (βH) is the total con-

tribution to the partition ZF (βH) of F of the configurations that agree with σ on H .
If we fix a configuration σ onH and look at the configuration onG (under the Gibbs distribution

on F conditional on σ) then σ will act as an external field on the vertices ofG. We show that if σ is in

9
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the majority phase (i.e., in the setM ), then the configuration onG will be monochromatic with high
probability as these configurations will maximize the number of monochromatic edges between G
andH . In contrast, when σ is in the disordered phase (i.e., inD), then every configuration onGwill
have (roughly) the same number of monochromatic edges between G and H; hence, the partition
function ZσF (βH) in this case will be proportional to ZG,βG .

To formalize this, we split the partition function of F into three parts depending on the signature
on the complete graph H . Let ZM

F (βH) =
∑

σ∈M ZσF (βH), ZD
F (βH) =

∑
σ∈D Z

σ
F (βH) and

ZS
F (βH) =

∑
σ∈S Z

σ
F (βH). Then, ZF (βH) = ZM

F (βH) + ZD
F (βH) + ZS

F (βH).
The following lemma details the above description of the properties of configurations on the

original instance G conditional on the configuration on the complete graph H .

Lemma 3 For any constants δ ∈ (0, 1) and c > 0, and any βH such that |βH−Bo/m| ≤ cm−3/2,
there exists constants c1, c2 > 0 such that for any β ∈ [c1N/m, c2/Nm

3/4]:

1. When the configuration on H is in the majority phase, the configuration on G is likely to be
monochromatic; more precisely,

e−δ · ZM
H · exp (α̂βNm+ βG|EG|) ≤ ZM

F (βH) ≤ eδ · ZM
H · exp (α̂βNm+ βG|EG|) . (1)

2. When the configuration on H is in the disordered phase, the configuration on G will have
very limited influence from the configuration on H; more precisely,

e−δ · ZD
H · ZG · exp (βNm/q) ≤ ZD

F (βH) ≤ eδ · ZD
H · ZG · exp (βNm/q) . (2)

3. The remaining configurations on H have a small contribution to the partition function of the
model F ; more precisely, ZS

F (βH) ≤ ZF (βH) exp (−Ω(
√
m)) .

The proof of this lemma, which uses Lemma 1, can be found in the full version [3].

Hidden Model Construction. We now construct our hidden model and show that we can efficiently
generate samples from its Gibbs distribution. Let F ∗ be the graph obtained by our construction
above where we replace the graph G by a complete graph on N vertices. More precisely, let K =
KN be a complete graph on N vertices and let F ∗ be the graph that results from connecting the
vertices of K and H with a complete bipartite graph KN,m.

The edges ofK have parameter βK = βG+4 log q, whereas the remaining edges have the same
interaction strength as in F ; that is, edges between K and H will have parameter β and those in
H parameter βH . This Potts model on F ∗, which again with a slight abuse of notation we denote
by F ∗, will act as the hidden model. We choose βK = βG + 4 log q, so that K is more likely to
be monochromatic than G. Let µF ∗ the corresponding Gibbs distribution on F ∗. We establish next
that we can efficiently generate samples from µF ∗ ; see [3] for the proof.

Lemma 4 There is an exact sampling algorithm for the distribution µF ∗ with running time poly(n).

Proof Overview. We provide the high-level idea of the reduction next. Recall that our goal is
to provide a polynomial-time algorithm for the decision version of the r-approximate counting
problem for the ferromagnetic Potts model (G, βG). That is, for a real number Ẑ we want to check
whether ZG ≤ 1

r Ẑ or ZG ≥ rẐ, where ZG := ZG,βG is the partition function of (G, βG).

10
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For any “reasonable” Ẑ ∈ R (i.e., Ẑ not too small or too large, in which case the approximate
counting problem is trivial), we can find a value of the parameter βH for our construction such that

ZD
F (βH)

ZM
F (βH)

≈ 1√
εL

ZG

Ẑ
,

where L = L(n) and ε = ε(n) are the sample complexity and accuracy parameter of the testing
algorithm, respectively. This is possible because of the first-order phase transition of the ferromag-
netic mean-field q-state Potts model for q ≥ 3, and the associated phase coexistence and metasta-
bility phenomena discusses earlier; see Section 2.2.1. (Specifically, by Lemma 2 we can find βH so
that ZM

H (βH)/ZD
H(βH) ≈ R for any target R, and then we can use Lemma 3 to translate this value

to a value for ZG · ZM
F (βH)/ZD

F (βH).)
Now, for this choice of βH and setting r ≈

√
L/ε, note that if ZG ≤ 1

r Ẑ, then the ratio
ZD
F (βH)/ZM

F (βH) is small (. 1/L). Conversely, when ZG ≥ rẐ, the ratio is large (& 1/ε).
Therefore, to distinguish whether ZG ≤ 1

r Ẑ or ZG ≥ rẐ it is sufficient to determine whether the
ratio ZD

F (βH)/ZM
F (βH) is small or large. For this we can use the identity testing algorithm. In

particular, when the ratio is small (. 1/L), the majority phase of H is dominant in F , and G will
likely be monochromatic. Since this is also the case in F ∗ (i.e., K is monochromatic with high
probability), then the models F and F ∗ will be close in total variation distance (. 1/L), and the
testing algorithm using only L samples would output YES. Otherwise, when ZD

F (βH)/ZM
F (βH) is

large (& 1/ε), the disorder phase is dominant, so F and F ∗ are likely to disagree on the spins of
G and K; this implies that their total variation distance is large (& 1 − ε), and so the tester would
output NO.

We start with a useful technical lemma which is proved in [3] using Lemmas 2 and 3.

Lemma 5 Let ε ∈ (0, 1) be a constant, L = L(n) = poly(n) and r = 96ε−1
√
εL+ 1. Suppose

Ẑ ∈ R is such that rq exp(βG|EG|) ≤ Ẑ ≤ 1
r q
N exp(βG|EG|). Then, there exists constants

c, c1, c2 > 0 such that the following holds. For any β ∈
[
c1N
m , c2

Nm3/4

]
, we can find βH > 0 in the

range |βH −Bo/m| ≤ cm−3/2 in poly(n) time such that all of the following holds:

(i) 1
4
√
εL+1

ZG

Ẑ
≤ ZD

F (βH)

ZM
F (βH)

≤ 1√
εL+1

ZG

Ẑ
, and ZS

F (βH)

ZF (βH) ≤ e
−c3
√
m;

(ii) ZD
F∗ (βH)

ZM
F∗ (βH)

≤ 2
r
√
εL+1

, and ZS
F∗ (βH)

ZF∗ (βH) ≤ e
−c3
√
m;

(iii) If ZG ≤ 1
r Ẑ, then ‖µF − µF ∗‖TV ≤

1
16L ;

(iv) If ZG ≥ rẐ, then ‖µF − µF ∗‖TV ≥ 1− ε.

2.2.3. A GENERIC REDUCTION FROM COUNTING TO TESTING

Theorem 8 will follow from Lemmas 4 and 5 using the following general reduction from the decision
version of r-approximate counting to testing, which we prove in the full version [3].

Theorem 9 Let (G, βG, hG) be a Potts model on an N -vertex graph G with partition function
ZG and let Ẑ ∈ R. Let ε ∈ (0, 1) be a constant, n = poly(N) and suppose there exists an ε-
identity testing algorithm for a family of Potts modelsM on n-vertex graphs with sample complexity
L = L(n) = poly(n) and poly(n) running time. Suppose that given (G, βG, hG), Ẑ, ε and L, there
is r = poly(L, ε−1) such that we can construct two models F, F ∗ ∈M in poly(n) time satisfying:

11
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(i) If ZG ≤ 1
r Ẑ, then ‖µF − µF ∗‖TV ≤

1
16L ;

(ii) If ZG ≥ rẐ, then ‖µF − µF ∗‖TV ≥ 1− ε; and

(iii) We can sample from a distribution µALG
F ∗ such that

∥∥µF ∗ − µALG
F ∗

∥∥
TV
≤ δ in time poly(n, δ−1).

Then, there is a poly(N) running time algorithm for the decision version of r-approximate counting
for (G, βG, hG) that succeeds with probability at least 5/8.

2.2.4. PROOF OF THEOREM 8

We can now establish the hardness of testing for the ferromagnetic Potts model on general graphs.

Proof of Theorem 8 Consider the ferromagnetic Potts model on anN -vertex graphG=(VG, EG)
with constant edge weight βG in every edge and no external field. Let Ẑ > 0 be a real number and
let n = N10 + N . Suppose there is an ε-identity testing algorithm forM+

POTTS(n, n, βG, 0) with
sample complexity L = L(n) = poly(n) and running time poly(n). Let r = 96ε−1

√
εL+ 1; our

goal is to determine whether ZG ≤ 1
r Ẑ or ZG ≥ rẐ where ZG := ZG,βG .

We construct the Potts models F and F ∗ as describe in Section 2.2.2 with corresponding Gibbs
distributions µF and µF ∗ using the values of β and βH supplied by Lemma 5; hence the models F
and F ∗ belong toM+

POTTS(n, n, βG, 0), since βG > max{β, βH}.
Lemmas 5 ensures that when rq exp(βG|EG|) ≤ Ẑ ≤ qN

r exp(βG|EG|) conditions (i) and (ii)
in Theorem 9 are satisfied. Moreover, Lemma 4 gives condition (iii). Thus, Theorem 9 implies
that we have an algorithm for the decision version of r-approximate counting for the Potts model
on G when rq exp(βG|EG|) ≤ Ẑ ≤ qN

r exp(βG|EG|). Meanwhile, we can bound ZG crudely by
qeβG|EG| ≤ ZG ≤ qNeβG|EG|. Thus, if Ẑ < rq exp(βG|EG|) ≤ rZG, we can output Ẑ ≤ 1

rZG.
Similarly, when Ẑ > 1

r q
N exp(βG|EG|) ≥ 1

rZG we can output Ẑ ≥ rZG. Therefore, we have
a poly(N) algorithm for the decision version of r-approximate counting for M̂+

POTTS(N,N, βG, 0)
where N = Θ(n1/10), r = poly(N) and βG = Θ(1). The result then follows from Theorem 7 and
the fact that there is no FPRAS for M̂+

POTTS(N,N, βG, 0) unless there is one for #BIS [25, 21].

2.3. Step 3: Degree reduction

The following result is a special case of a more general theorem we prove in the full version [3],
and it provides a reduction from identity testing in the familyMPOTTS(n̂, d, β̂, ĥ) to identity testing
in MPOTTS(n, n, β, h), under some mild assumptions on the model parameters; this allows us to
deduce the hardness of testing on graphs of bounded degree as stated in Theorem 3.

Theorem 10 Let n̂, d ∈ N+ be such that 3 ≤ d ≤ n̂1−ρ for some constant ρ ∈ (0, 1). Suppose
that for some constants β, h ≥ 0 there is no poly(n) running time ε-identity testing algorithm for
MPOTTS(n, n, β, h). Then there exists a constant c ∈ (0, 1) such that, for any constant ε̂ > ε
there is no poly(n̂) running time ε̂-identity testing algorithm forMPOTTS(n̂, d, β̂, ĥ) provided β̂d =
ω(log n̂) and ĥ ≤ hn̂−c.

We conclude with the proof of Theorem 3.

Proof of Theorem 3 Follows from Theorems 8 and 10.
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