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Abstract—We prove that, unless P=NP, there is no
polynomial-time algorithm to approximate within some
multiplicative constant the average size of an independent
set in graphs of maximum degree 6. This is a special
case of a more general result for the hard-core model
defined on independent sets weighted by a parameter
λ > 0. In the general setting, we prove that, unless
P=NP, for all Δ ≥ 3, all λ > λc(Δ), there is no FPTAS
which applies to all graphs of maximum degree Δ for
computing the average size of the independent set in the
Gibbs distribution, where λc(Δ) is the critical point for
the uniqueness/non-uniqueness phase transition on the Δ-
regular tree. Moreover, we prove that for λ in a dense
set of this non-uniqueness region the problem is NP-hard
to approximate within some constant factor. Our work
extends to the antiferromagnetic Ising model and gener-
alizes to all 2-spin antiferromagnetic models, establishing
hardness of computing the average magnetization in the
tree non-uniqueness region.

Previously, Schulman, Sinclair and Srivastava (2015)
showed that it is #P-hard to compute the average magne-
tization exactly, but no hardness of approximation results
were known. Hardness results of Sly (2010) and Sly and
Sun (2014) for approximating the partition function do not
imply hardness of computing averages. The new ingredient
in our reduction is an intricate construction of pairs
of rooted trees whose marginal distributions at the root
agree but their derivatives disagree. The main technical
contribution is controlling what marginal distributions and
derivatives are achievable and using Cauchy’s functional
equation to argue existence of the gadgets.

The full version of this paper with detailed proofs to all
lemmas and theorems can be found out at https://arxiv.
org/abs/2004.09238.
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pendent sets, magnetization, Ising model

I. INTRODUCTION

This paper addresses the computational problem of

computing averages of simple functions over combina-

torial structures of a graph. Can we estimate elementary

statistics of combinatorial structures in polynomial-

time? This genre of problems is nicely illustrated for

the example of independent sets.

Given a graph G = (V,E) can we efficiently estimate
the average size of an independent set in G? For graph
G = (V,E), let IG denote the set of independent sets of

G, and let μG denote the uniform distribution over IG.
Denote the average independent set size by M(G) =
Eσ∼μ

[
|σ|

]
.

Schulman et al. [12] (see also [13]) proved that

exactly computing the average independent set size is

#P-hard for bounded-degree graphs. We investigate ap-

proximation algorithms for the problem. For a constant

C > 1 we say there is a C-approximation algorithm for

the average independent set size if the algorithm outputs

an estimate EST for which 1
C × M(G) ≤ EST ≤

C × M(G). An FPTAS is an algorithm which, for

any input G = (V,E) and ε > 0, achieves a (1 + ε)-
approximation factor in time poly(|V |, 1/ε).
Weitz [17] presented an FPTAS for estimating |IG|,

the number of independent sets, in graphs of maximum

degree ≤ 5, and this immediately yields an FPTAS for

the average independent set size in graphs of maximum

degree ≤ 5, see also [2], [9], [10] for new algorithmic

approaches. We prove that this result is optimal. In fact,

we prove that approximating the average independent

set size in graphs of maximum degree 6 is hard within

a constant factor.

Theorem 1. There is a constant C > 1 such that, for
all integers Δ ≥ 6, for graphs G of maximum degree Δ
there is no polynomial-time C-approximation algorithm
for computing the average independent-set size of G,
unless P=NP.

This theorem is a special case of a more general result

for the hard-core model, which is a statistical physics

model of particular combinatorial interest. The hard-

core model is defined on independent sets weighted

by a parameter λ > 0, known as the fugacity. An

independent set σ ∈ IG has weight w(σ) = λ|σ|. For a
graph G and fugacity λ > 0, the Gibbs distribution is

defined as μG;λ(σ) = w(σ)/ZG;λ where the partition

function ZG;λ =
∑

τ∈IG
w(τ).

The earlier case of unweighted independent sets cor-

responds to the hard-core model with λ = 1. Hence
we use the same notation M(G) = Eσ∼μ

[
|σ|

]
to

denote the average independent set size in the Gibbs

distribution.



On the Δ-regular tree, the hard-core model under-

goes a phase transition at the critical point λc(Δ) =
(Δ−1)Δ−1

(Δ−2)Δ . When λ ≤ λc(Δ) there is a unique infinite-
volume Gibbs measure on the Δ-regular tree (roughly,

this corresponds to the decay of the “influence” of the

leaves on the root), whereas when λ > λc(Δ) there is
non-uniqueness, i.e., there are multiple infinite-volume

Gibbs measures.
There is an interesting computational phase transition

for graphs of maximum degree Δ that occurs at this

same tree threshold. For all constant Δ, all λ < λc(Δ),
all graphs of maximum degreeΔ, there is an FPTAS for
the partition function [17]. On the other side, for allΔ ≥
3, all λ > λc(Δ), there is no FPRAS for approximating

the partition function on graphs of maximum degree Δ,

unless NP=RP [15], [16], [5]. However, hardness of

computing partition functions does not imply hardness

of computing averages in the Gibbs distribution; see

the case of the antiferromagnetic Ising model with no

external field discussed in Section I-A.
We prove that computing the average independent set

size also undergoes a computational phase transition at

the tree critical point λc(Δ). As before, Weitz’s algorith-

mic result [17] yields, for all constantΔ, all λ < λc(Δ),
all graphs G of maximum degree Δ, an FPTAS for the

average independent set size M(G) (more generally, an
approximate sampling algorithm implies an algorithm

for approximating averages). We prove that this result

is optimal: when λ > λc(Δ) there is no FPTAS for the

average independent set size.

Theorem 2. Let Δ ≥ 3 be an integer and λ > λc(Δ).
Then, for graphs G of maximum degree Δ, there is no
FPTAS for computing the average independent-set size
in the hard-core distribution μG;λ, unless P=NP.

In fact, our inapproximability result for general λ >
λc(Δ) is stronger, it actually precludes approximation

algorithms with factors of 1 ± δ
logn , where n is the

number of the vertices of the input graph and δ is

an appropriate constant, see Theorem 7 below for the

precise statement. For a dense set of λ, we actually

obtain constant-factor inapproximability (analogously to

Theorem 1).

Theorem 3. Let Δ ≥ 3 be an integer. Then, for every
real λ > λc(Δ) and ε > 0, there is an algebraic number
λ̂ with |λ̂ − λ| ≤ ε and a constant C = C(λ̂,Δ) > 1
such that, for graphs G of maximum degree Δ, there is
no poly-time C-approximation algorithm for computing
the average independent-set size of G in the hard-core
distribution μG;̂λ, unless P=NP.

A. Results for the antiferromagnetic Ising model
Our results extend to the antiferromagnetic Ising

model. Let G = (V,E) be a graph. For β, λ > 0, let

μG;β,λ denote the Ising distribution on G with edge

activity β and external field λ, i.e., for σ : V → {0, 1}
we have

μG;β,λ(σ) =
λ|σ|βm(σ)

ZG;β,λ
,

where m(σ) denotes the number of monochromatic

edges in G under σ, i.e., edges whose endpoints have

the same spin. The model is called antiferromagnetic if

β ∈ (0, 1) and ferromagnetic, otherwise. We define the

average magnetization of G to be the average number

of vertices with spin 1, i.e.,

Mβ,λ(G) =
1

ZG;β,λ

∑
σ:V→{0,1}

|σ|λ|σ|βm(σ)

= Eσ∼μ

[
|σ|

]
,

where for a configuration σ : V → {0, 1}, we use |σ| to
denote

∑
v∈V (G) σ(v), i.e., the total number of vertices

with spin 1.
In the ferromagnetic case, there is an FPRAS for

approximating the magnetization for all β > 1 and

λ > 0, due to the algorithm of Jerrum and Sinclair

[6]. For Δ ≥ 3, let βc(Δ) = Δ−2
Δ . It is known that the

antiferromagnetic Ising model with edge activity β and

external field λ has non-uniqueness on the infinite Δ-

regular tree iff β ∈ (0, βc) and λ ∈ (1/λIsing
c , λIsing

c )
for some explicit λIsing

c = λIsing(β,Δ) > 1. For all

constant Δ, in the tree uniqueness region there is an

FPTAS for the partition function for graphs of maxi-

mum degree Δ [14], [7], and, once again, this implies

an FPTAS for the magnetization. In the tree non-

uniqueness region, for all Δ ≥ 3, unless NP=RP there

is no FPRAS for the partition function for graphs of

maximum degree Δ [16]. We prove that approximating

the magnetization is also intractable in the tree non-

uniqueness region, apart from the case λ = 1 (where the
magnetization can be computed trivially for all graphs

G since it equals 1
2 |V (G)|).

Theorem 4. Let Δ ≥ 3 be an integer, β ∈ (0, βc(Δ))
and λ ∈ ( 1

λc
, λc) with λ �= 1, where λc = λIsing

c (Δ, β).
Then, for graphs G of maximum degree Δ, there is no
FPTAS for computing the average magnetization in the
Ising distribution μG;β,λ, unless P=NP.

As in Theorem 2, the inapproximability factor in

Theorem 4 is in fact stronger, see Theorem 7 below for

the precise statement. For a dense set of λ, we again

obtain constant-factor inapproximability.

Theorem 5. Let Δ ≥ 3 be an integer, rational β ∈
(0, βc(Δ)) and λc = λIsing

c (Δ, β). Then, for every λ ∈
( 1
λc
, λc) and ε > 0, there is an algebraic number λ̂

with |λ̂ − λ| ≤ ε and a constant C = C(β, λ̂,Δ) > 1
such that, for graphs G of maximum degree Δ, there is



no poly-time C-approximation algorithm for computing
the average magnetization Mβ,λ̂(G), unless P=NP.

B. Results for general antiferromagnetic 2-spin systems

While the hard-core model and the Ising model are

the most canonical 2-spin models, the results of the

previous two sections will be obtained as special cases

of the following results for general antiferromagnetic

2-spin systems. This more general perspective will also

allow us to give a unified proof of Theorems 2, 3, 4, 5.

Let G = (V,E) be a graph. For β, γ, λ > 0, let
μG;β,γ,λ denote the Gibbs distribution on G with edge

activities β, γ and external field λ, i.e., for σ : V →
{0, 1} we have

μG;β,λ(σ) =
λ|σ|βm0(σ)γm1(σ)

ZG;β,γ,λ
,

where m0(σ),m1(σ) denotes the number of edges in G
whose endpoints are assigned under σ the pair of spins

(0, 0) and (1, 1), respectively.
The parameter pair (β, γ) is called antiferromagnetic

if βγ ∈ [0, 1) and at least one of β, γ is non-zero,

and it is called ferromagnetic, otherwise. Note that the

hard-core model is the case β = 1, γ = 0 (under the

convention that 00 ≡ 1) whereas the antiferromagnetic
Ising model is the case 0 < β = γ < 1.
We next define the range of parameters (β, γ, λ)

where our inapproximability results for the magnetiza-

tion apply; these are precisely the parameters where the

spin system exhibits non-uniqueness on the infinite Δ-

regular tree, apart from the case of the antiferromagnetic

Ising model with λ = 1, where as noted in Section I-A
the magnetization can be computed trivially for all

graphs G.

Definition 6. Let Δ ≥ 3 be an integer. We let UΔ be
the set of (β, γ, λ) such that (β, γ) is antiferromagnetic,
and the (unique) fixpoint x∗ > 0 of the function f(x) =
1
λ

(
βx+1
x+γ

)Δ−1
satisfies |f ′(x∗)| > 1.

We let U∗
Δ = UΔ\

⋃
β∈(0,1){(β, β, 1)} be the set of

parameters in UΔ other than those where computing the
magnetization is trivial.

We note that Li, Lu, Yin [7] define a notion of

“up-to-Δ” uniqueness which requires (β, γ, λ) to be in

uniqueness for every d ≤ Δ; they obtain an FPTAS for

the partition function in that region. The complement of

their region corresponds to non-uniqueness in the sense

of Definition 6 for some d ≤ Δ. Our inapproximability

results extend to this bigger region by applying our

theorems for smaller values of Δ.

Our first inapproximability result for general anti-

ferromagnetic 2-spin models, which is a generaliza-

tion/strengthening of Theorems 2 and 4, is the follow-

ing. The proof is given in Section 5.5 of the full version.

Theorem 7. Let Δ ≥ 3 be an integer and (β, γ, λ) ∈
U∗
Δ. Then, for graphs G ∈ GΔ, there is no FPTAS

for computing the average magnetization in the Gibbs
distribution μG;β,γ,λ, unless P=NP. In fact, there is
a constant κ = κ(Δ, β, γ, λ) > 0 such that there
is no poly-time

(
1 + κ

logn

)
-approximation algorithm

for computing the average magnetization Mβ,γ,λ(G),
where n = |V (G)|.
We remark that a “no-FPTAS” result can be strength-

ened to an inapproximability factor of
(
1± 1

nε

)
for any

constant ε > 0 via standard powering techniques; the

tighter hardness factor of
(
1 ± κ

logn

)
in Theorem 7

requires a substantially more delicate argument.

Theorem 8. Let Δ ≥ 3 be an integer and (β, γ, λ) ∈
UΔ with β, γ rational numbers. Then, for every ε >
0, there is an algebraic number λ̂ with |λ̂ − λ| ≤ ε
and a constant C = C(β, γ, λ̂,Δ) > 1 such that, for
graphs G of maximum degree Δ, there is no poly-time
C-approximation algorithm for computing the average
magnetization Mβ,γ,λ̂(G), unless P=NP.

II. PROOF OUTLINE

In this section, we give some of the key elements of

the techniques needed to prove our inapproximability

results and conclude with the proof of Theorem 1. We

start by describing “field gadgets” and state the main

lemmas that we will use in our reduction.

A. Gadgets with approximately equal effective fields
and different averages

For a graph G and σ : V → {0, 1}, we say that a

vertex v ∈ V is occupied if σ(v) = 1, and unoccupied

otherwise.1 For a subset S ⊆ V , we use σS to denote

the configuration on S which is restriction of σ on S.

Definition 9. A field gadget is a rooted tree T whose
root ρ has degree one. For antiferromagnetic (β, γ) and
λ > 0, let μ = μT ;β,γ,λ.

1) The effective field of the gadget, denoted by
RT (λ), is 1/λ times the ratio of the weight of
configurations where the root is occupied to the
weight of configurations where the root is unoc-
cupied, i.e., RT (λ) =

1
λ

μ(σρ=1)
μ(σρ=0) . (The division by

λ is to avoid double-counting the contribution of
the root later on.)

2) The magnetization gap of the gadget, denoted by
MT ;β,γ,λ, is the expected number of occupied
vertices conditioned on the root being occupied
minus the expected number of occupied vertices

1This terminology is standard for the hard-core model, but it will
be convenient to use it for general 2-spin systems.



conditioned on the root being unoccupied (the
root is included in the count), i.e.,

MT ;β,γ,λ = Eσ∼μ[ |σ| | σ(ρ) = 1]−
Eσ∼μ[ |σ| | σ(ρ) = 0].

In the special case that λ = 1−β
1−γ with β �= γ, a field

gadget consists of a rooted graph obtained from a rooted
tree where some of the leaves have been replaced by a
distinct triangle (by identifying the leaf with a vertex of
the triangle).

Note that, in the case that λ = 1−β
1−γ , the effective

field of any tree gadget can be shown to be equal to

1 and the magnetization gap to 0, so that is why we

need to consider the “mildly non-tree” construction in

Definition 9.

It will be useful to illustrate Definition 9 with a few

examples.

Example 10. For example the rooted tree with one edge
has effective field R = 1+γλ

β+λ . The degenerate example
where the root has degree zero has effective field R = 1.

The following more interesting example in the case

of independent sets will be used to prove Theorem 1;

it gives a pair of field gadgets with the same effective

field but different magnetization gaps.

Example 11. Consider the independent set model (with
λ = 1). Consider the trees T1, T2 with roots ρ1, ρ2
below.

ρ1
ρ2

Then RT1 = RT2 since RT1 = 2
3 and RT2 = 24

36 , but
MT1

�= MT2
since MT1

= 3
2 − 2

3 = 5
6 and MT2

=
35
12 − 13

6 = 3
4 . These values can be either verified by

enumeration and linearity of expectation, or else using
the recursions of the upcoming Lemma 17.

We will be interested in finding pairs of field gadgets

analogous to Example 11. Our interest in such pairs of

field gadgets is justified by the following theorem.

Theorem 12. Let Δ ≥ 3 be an integer and (β, γ, λ) ∈
U∗
Δ. Suppose that there exists a pair of field gadgets

T1, T2 with maximum degree Δ such that RT1
= RT2

but MT1 �= MT2 .
Then, there is constant c = c(Δ, β, γ, λ) > 1 such

that, for graphs G of maximum degree Δ, there is no
poly-time c-approximation algorithm for computing the
average magnetization Mβ,γ,λ(G), unless P=NP.

When can we find pairs of trees as in Example 11

with the same effective fields but different magnetiza-

tion gaps? Even in the case of the hard-core model,

a pair of trees either have the same effective field for

only finitely many values of λ or else have the same

magnetization gap for all λ. Thus we cannot hope for a
universal pair of gadgets. Actually, the set of λ where

the effective fields can be equal, over all pairs of trees,

must be algebraic, hence measure zero.

Our main theorem for the construction of field gad-

gets is the following. The theorem roughly asserts that

we can construct field gadgets with arbitrarily close

effective fields but substantially different magnetization

gaps. For a rational r = p/q with integers p, q satisfying
gcd(p, q) = 1, we let bits(r) denote the total number

of bits needed to represent p, q.

Theorem 13. Let (β, γ, λ) be antiferromagnetic with
(β, γ, λ) �= (β, β, 1). There exist R̂, M̂ ,Ξ > 0 and an
algorithm which on input a rational r ∈ (0, 1/2) outputs
in time poly(bits(r)) a pair of field gadgets T1, T2, each
of maximum degree 3 and size O(| log r|), such that

|RT1
− R̂|, |RT2

− R̂| ≤ r, but |MT1
−MT2

| > M̂.

Also, the magnetization gaps MT1
,MT2

are bounded in
absolute value by the constant Ξ.

The proof of Theorem 13 is given in Section III. In

fact, we can bootstrap Theorem 13 to obtain pairs of

trees with the same effective fields but different magne-

tization gaps for a dense set of (algebraic numbers) λ,
and this gives a constant factor inapproximability result

for the magnetization by applying Theorem 12.

Theorem 14. Let (β, γ) be antiferromagnetic. There
exists a set S of algebraic numbers λ, dense in the
interval (0,∞), such that for each λ ∈ S the following
holds. There is a pair of field gadgets T1, T2, each of
maximum degree 3, such that RT1

= RT2
but M1 �= M2.

In the following, we sketch the proof of Theorem 12

and in Section III we will give a detailed outline of the

proof of Theorems 13 and 14.

B. The reduction: using field gadgets to obtain inap-
proximability

Fix Δ ≥ 3 and β, γ, λ ∈ UΔ. Our results will

be based on showing that approximating MAX-CUT

on 3-regular graphs H reduces to approximating the

magnetization will be via a reduction from MAX-CUT.

The reduction uses two types of gadgets.

The first type of gadget is a bipartite graph G which

is an almost Δ-regular graph with n vertices on each

side and � “ports” on each side of degree Δ− 1, which
will be used to connect distinct copies of gadgets. These

gadgets were used in previous inapproximability results

for the partition function and analysing them was one

of the key difficulties in those results. The main idea



in these results is to replace each vertex of H by a

distinct copy of G and make appropriate connections

between ports to encode the edges of H; then due to the

antiferromagnetic interaction the resulting graph settles

in configurations which correspond to Max-Cut config-

urations of H (the Max-Cut assignment can roughly

be read off by looking at the “phases” of the gadgets

G, i.e., which side has the most occupied vertices, see

Section II-C for details).

However, for our inapproximability results we would

need to analyze the magnetization of such gadgets by

taking into account the effect of conditioning the spins

of the ports; this task seems even more challenging than

in the previous settings since it seems to require very

refined estimates.

The field gadgets, which is the second type of gad-

gets, give a new reduction technique to bypass the need

to perform this delicate, and likely difficult, task. In

particular, by using a pair of field gadgets with the

same effective fields and different magnetization gaps

we will be able to observe the value of MAX-CUT(H)
by taking the difference of the magnetizations when we

append our field gadgets appropriately; crucially, the

fact that the effective fields are the same implies that

the underlying distribution does not change but that the

difference of the magnetization gap of the two gadgets

manifests itself in the magnetization.

C. The bipartite “phase-gadget” of Sly and Sun

Fix an integerΔ ≥ 3. Let G	
n be the set of (2n)-vertex

bipartite graphs whose two sides are labelled with +,-
and are obtained from a Δ-regular (2n)-vertex bipartite
graph by deleting a matching of size �. For a graph

G ∈ G	
n, we denote its bipartition by (U+, U-) where

U+, U- are vertex sets with |U+| = |U-| = n, and we

denote byW +,W - the sets of vertices with degreeΔ−1
on each side of the bipartition, i.e., the vertices incident

to the edges of the matching, so that |W +| = |W -| = �.
We will refer to set W = W+∪W− as the ports of G.
For σ : U+∪U- → {0, 1}, we define the phase Y(σ)

of the configuration σ as the side which has the most

occupied vertices under σ, i.e.,

Y(σ) =

{
+ if |σU+ | ≥ |σU- |,
- otherwise.

Sly and Sun [15] (see also [4]) establish that, when-

ever β, γ, λ ∈ UΔ, for arbitrary ε > 0 and integer

� ≥ 1, there exist n and G ∈ G	
n such that, in the

Gibbs distribution of the gadget graph G, each phase

appears with probability close to 1/2±ε, and that the

spins of the ports of G, conditional on the phase, are

roughly independent, with occupation probabilities that

are asymmetric between the two sides.

The detailed properties of the gadget can be found

in Lemma 33 of Section 5.1 of the full version, though

the exact details will not be important at this stage.

D. The reduction

Let H be a 3-regular instance of the MAX-CUT

problem. Let k be an arbitrary positive integer, and let

n and G ∈ G3k
n be a bipartite gadget satisfying the

properties of the previous subsection (cf. Lemma 33

of the full version). Let also T be a field gadget with

effective field R and magnetization gap M .

Let Ĥk
G be the graph with m disconnected compo-

nents obtained by replacing each vertex of H with a

distinct copy of G; for v ∈ V (H) we denote by Gv the

copy of G in ĤG corresponding to the vertex v, and
by U±

v ,W
±
v the vertex sets and ports of Gv in each side

of the bipartition. Finally, we let Uv = U+
v ∪ U-

v and

Wv = W +
v ∪W -

v .

Let Hk
G,T be the graph obtained from Ĥk

G as follows.

For each edge e = (u, v) ∈ E(H), pick k distinct ports

from W ±
u ,W

±
v and connect them using a path with three

edges, for a total of 2k edge-disjoint paths between the

gadgets Gu and Gv: k paths between +/+ sides and k
paths between -/- sides. Then, for each path P append

two distinct copies of the field gadget T by identifying

the roots of the copies of T , say ρ1, ρ2, with the internal
vertices of P , say t1, t2.
For a configuration σ : V (Hk

G,T ) → {0, 1}, we let

Ŷ(σ) : V (H) → {+,-} be the phases over the gadgets

Gv with v ∈ V (H), i.e., Ŷ(σ) =
{
Y(σUv

)
}
v∈V (H)

. We

define Ŷ(·) similarly for configurations on Ĥk
G, H

k
G.

For a phase assignment Y : V (H) → {+,-}, we let

CutH(Y ) = {(u, v) ∈ E(H) | Yu �= Yv} be the set of

edges that are cut inH by viewing the phase assignment

Y as a bipartition of V (H) in the natural way. For μ =
μHk

G,T ;β,γ,λ, let

AVG-CUTμ(H) := ∑
Y :V (H)→{+,-}

μ
(
Ŷ(σ) = Y

)
|CutH(Y )|

be the size of the average cut in H when phase

assignments are weighted by μ.
The following lemma associates the magnetization

on the graph Hk
G,T with the quantity AVG-CUTμ(H)

and, in turn, with MAX-CUT(H). The main idea is

that the paths of length 3 between the ports cause

antiferromagnetic interaction and the spin system on

Hk
G,T prefers phase configurations Y that have large

|CutH(Y )| value. By choosing k large enough we can

further ensure that AVG-CUTμ(H) arbitrarily close to

MAX-CUT(H).

Lemma 15. Let Δ ≥ 3 and (β, γ, λ) ∈ UΔ. There
are rational functions A(R), B(R), C(R) defined for



all R ≥ 0, satisfying

(i) A(0) = 1, (ii) A(R) > 1 for R > 0, and

(iii) B(R)− C(R) = (logA(R))′ for R > 0
(1)

so that the following holds for any field gadget T with
effective field R > 0 and magnetization gap M . Let
A,B,C be the values of the functions at λR and define
A′ := Eτ∼μT ;β,γ,λ

[ |τ | | τ(ρ) = 0], where ρ is the root
of T .

Let ε ∈ (0, 1/10), k ≥ 10/ logA be an integer, and n
and G ∈ G3k

n satisfy Lemma 33 (of the full version) with
� = 3k and the given ε. Then, for every 3-regular graph
H with sufficiently large |V (H)|, for μ = μHk

G,T ;β,γ,λ,
we have that the average magnetization of the graph
Hk

G,T satisfies

Mβ,γ,λ(H
k
G,T ) = 4kA′|E(H)|+Eσ∼μ

[
|σV ( ̂Hk

G)|
]

+ (1± 8ε)kMQ

with Q := (B − C)AVG-CUTμ(H) + C|E(H)|, while
AVG-CUTμ(H) satisfies

1/K ≤ AVG-CUTμ(H)

MAX-CUT(H)
≤ 1 for K := 1 +

6

k logA
.

We give the proof of Lemma 15 in Section 5.3 of the

full version.

Note that the expression for the magnetization of

Hk
G,T accounts for the contributions of the phase gad-

gets G only implicitly. This is by design; when we

append our pair of field gadgets T1, T2 which have the

same effective fields, vertices in V (Ĥk
G) will have the

same marginal distribution in both μHk
G,T1

and μHk
G,T2

;

on the other hand the magnetization gaps of T1, T2 are

different. Therefore, when we take the difference of the

magnetizations in Hk
G,T1

and Hk
G,T2

, the contributions

of the phase gadgets G cancel and, in the left-over

quantity, the major contribution comes from the value

of AVG-CUTμ(H).
We are almost ready to prove Theorem 12. Recall,

the assumption therein is that we have a pair of field

gadgets with the same effective fields and different

magnetization gaps. We will need to bootstrap this

slightly to obtain additional pairs of field gadgets, as

stated in the following lemma.

Lemma 16. Let Δ ≥ 3 be an integer and (β, γ, λ)
be antiferromagnetic with (β, γ, λ) �= (β, β, 1). Sup-
pose that there exists a pair of field gadgets T1, T2
with maximum degree Δ such that RT1 = RT2 but
MT1

�= MT2
. Then, we can construct for j = 0, 1, 2, . . .

an infinite sequence of pairs of field gadgets T1,j , T2,j of
maximum degree Δ with effective fields R1,j , R2,j and
magnetization gaps M1,j ,M2,j such that R1,j = R2,j

but M1,j �= M2,j; moreover the values of R1,j , and
hence of R2,j as well, are pairwise distinct.

The proof of Lemma 16 is given in Section 4.5 of

the full version. With Lemmas 15 and 16 at hand, we

can now give the proof of Theorem 12.
Proof of Theorem 12: For i ∈ {1, 2}, let Ri :=

RTi
be the effective field of Ti, Mi := MTi

be the

magnetization gap of Ti and A′
i := Eτ∼μTi;β,γ,λ

[ |τ | |
τ(ρi) = 0]. Note that R1 = R2 but M1 �= M2, and

A′
1,A′

2 are absolute constants.
Let A(R), B(R), C(R) be the functions in Lemma 15

and set D(R) = B(R)−C(R). Let A,B,C,D denote

the common values of A(Ri), B(Ri), C(Ri), D(Ri),
respectively, for i ∈ {1, 2}. We will need to ensure

in our argument that D �= 0. The first observation is

that (1) implies that for all but finitely many values of

R we have that D(R) �= 0.2 The second observation

is that, from Lemma 16, using T1, T2 we can construct

for j = 0, 1, 2, . . . an infinite sequence of pairs of field

gadgets T1,j , T2,j of maximum degree Δ with effective

fields R1,j , R2,j and magnetization gaps M1,j ,M2,j

such that R1,j = R2,j but M1,j �= M2,j ; moreover

the values of R1,j are pairwise distinct. From these two

observations, it follows that we can assume without loss

of generality that D �= 0.
Suppose for the sake of contradiction that, for arbi-

trarily small κ > 0, there is a polynomial-time algorithm
that, on input a graph G of maximum degree Δ,

produces a (1+ κ)-approximation of the magnetization
MG;β,γ,λ. We will show that we can approximate

MAX-CUT on 3-regular graphs within a constant factor

arbitrarily close to 1, contradicting the inapproximabil-

ity result of [1].
For i ∈ {1, 2}, consider the graph Hk

G,Ti
for some

large integer k > 1 + 10/ logA and small ε > 0 to

be specified later. Let μi denote the Gibbs distribution

on Hk
G,Ti

with parameters β, γ, λ. By Lemma 15, the

average magnetization of the graph Hk
G,Ti

satisfies

Mβ,γ,λ(H
k
G,Ti

) = 4kA′
i|E(H)|+Eσ∼μi

[
|σV ( ̂Hk

G)|
]

+ (1± 8ε)kMiQi,
(2)

with Qi = D AVG-CUTμi
(H) + C|E(H)|; note that

AVG-CUTμi(H) satisfies

1/K ≤ AVG-CUTμi
(H)

MAX-CUT(H)
≤ 1 for Ki := 1 + 6

k logA .

(3)

Note that since R1 = R2 we have that

Eσ∼μ1

[∣∣σV ( ̂Hk
G)

∣∣] = Eσ∼μ2

[∣∣σV ( ̂Hk
G)

∣∣],
AVG-CUTμ1

(H) = AVG-CUTμ2
(H).

(4)

2If B(R) and C(R) agree on infinitely many values of R, then
since both of them are rational functions of R, it must be the case
that B(R) = C(R) for all R ≥ 0. Since for all R ≥ 0, we have
that (logA(R))′ = B(R)−C(R), this would give that A(R) is the
constant function; contradiction, since (1) asserts that A(0) = 1 and
A(R) > 1 for all R > 0.



We will denote by AVG-CUTμ(H) the common value of
AVG-CUTμ1

(H),AVG-CUTμ2
(H) and by Q the com-

mon value of Q1, Q2.

Let D := Mβ,γ,λ(H
k
G,T1

) − Mβ,γ,λ(H
k
G,T2

). From
(2) and (4), we have that

D = 4k(A′
1 −A′

2)|E(H)|+ (1± 8ε)k(M1 −M2)Q.

Let L := |V (T1)| + |V (T2)|. Since Hk
G,Ti

has at

most |V (H)| |V (G)|+ 4k|E(H)| |V (Ti)| ≤ X vertices

where X := k(|V (G)| + 4L)|E(H)|, using the pur-

ported algorithm for the magnetization on Hk
G,Ti

we can

compute an estimate of Mβ,γ,λ(H
k
G,Ti

) that is off by at
most (an additive) κX for an arbitrarily small constant

κ > 0 (that we will choose later). By subtracting these

estimates for i ∈ {1, 2}, we obtain an estimate D̂ of D
satisfying

|D̂ − D| ≤ 2k(|V (G)|+ 4L)|E(H)|κ.

Then, we have that M̂C =
̂D−4k(A′1−A′2)|E(H)|

k(M1−M2)D
−

C
D |E(H)| satisfies

|M̂C−AVG-CUTμ(H)| ≤(
2(|V (G)|+4L)

|M1−M2| κ+ 8
(
1 + |C|

|D|
)
ε
)
|E(H)|,

(5)

where AVG-CUTμ(H) denotes the common value of

AVG-CUTμ1
(H),AVG-CUTμ2

(H) (see (4)). By choos-

ing the integer k sufficiently large, we have from (3)

that AVG-CUTμ(H) is within a factor arbitrarily close

to 1 from MAX-CUT(H). We will also choose ε > 0
to be arbitrarily close to 0. This has the potential

effect of increasing the size of G, but by choosing

κ > 0 to be sufficiently small we can nevertheless

ensure from (5) that our approximation M̂C is within

a factor arbitrarily close to 1 from AVG-CUTμ(H),
and hence from MAX-CUT(H) as well. This finishes

the contradiction argument and completes the proof of

Theorem 12.

With Theorem 12, we can easily conclude the inap-

proximability result for the average-size of an indepen-

dent set. Theorems 3, 5, 8 will follow analogously, once

we give the field gadget constructions of Section II-A.

The proofs of these Theorems are given in Section 5.4

of the full version.

Proof of Theorem 1: By Example 11, we have

two trees T1 and T2 with the same effective fields

and different magnetization gaps. Also, independent sets

correspond to β = 1, γ = 0, λ = 1 and it is well-

known (see, e.g., [15]) that (β, γ, λ) ∈ U∗
Δ iff Δ ≥ 6.

Therefore, the desired inapproximability result follows

by applying Theorem 12.

The proof of Theorems 2, 4, and 7 build on similar re-

duction ideas, but the details are slightly more technical

because of the different type of gadgets that we use (cf.

Theorem 13). The details can be found in Section 5.5

of the full version.

III. FIELD GADGET CONSTRUCTION

In this section, we give the proof of Theorem 13

by first outlining the key ideas of our field-gadget

constructions. We start with the following lemma which

describes the effective field and magnetization gap of

field gadgets built out of smaller field gadgets.

Lemma 17. Suppose we have trees T1, . . . , Tk with
roots ρ1, . . . , ρk, effective fields R1, . . . , Rk and mag-
netization gaps M1, . . . ,Mk, respectively. Let T be the
tree with root ρ, edge {ρ, u} and the roots of T1, . . . , Tk
identified with u. Let R and M be the effective field and
magnetization gap for T . Then

R =
1 + γλ

∏k
i=1 Ri

β + λ
∏k

i=1 Ri

, M = 1− ω(R)

(
1 +

k∑
i=1

(Mi − 1)

)
,

where

ω(R) :=
1 + βγ − βR− γ/R

1− βγ
.

For antiferromagnetic (β, γ) and any λ > 0, it holds
that R ∈ (γ, 1/β) and 0 < ω(R) < 1.

The first step in the construction is to create a family

of field gadgets with sufficiently dense effective fields

in an interval and magnetization gaps that are in a small

interval. To define the interval, consider x∗ and ω∗

defined as follows

x∗ =
1 + γλ(x∗)2

β + λ(x∗)2
, ω∗ =

1 + βγ − βx∗ − γ/x∗

1− βγ
,

(6)

and note that ω∗ ∈ (0, 1) from Lemma 17.

Lemma 18. Fix λ > 0. For any δ > 0 and any
sufficiently small τ1 > 0 we can find τ ∈ (0, τ1) and
construct a family of field gadgets L = {T1, . . . , Tk}
whose effective fields are in the interval [x∗−τ, x∗+τ ]
and for any x ∈ [x∗−τ, x∗+τ ] there exist a field gadget
in the family whose effective field is in the interval
[x− τδ, x+ τδ].

The proof of Lemma 18 builds on techniques from [3]

and is given in Section 4.2 of the full version.

The second step of the construction is to use the field

gadgets in L constructed in Lemma 18 in an iterative

way as follows. At time t = 0, we will start with some
field gadget T0. Suppose that at some stage we have

constructed a rooted field gadget T with effective field

R and magnetization gap M . To construct a new rooted

field gadget, we merge T with one field gadget from L
using the operation from Lemma 17. We are going to

analyze what pairs (effective field, magnetization gap)

we can achieve with this procedure. Let Ri and Mi be



the effective field and magnetization gap for the field

gadget Ti in our collection. By Lemma 17, merging the
field gadget T with Ti yields a rooted field gadget with
effective field φi(R) and magnetization gap ψi(R,M)
where the pair of maps (φi, ψi) are given by

φi(R) =
1 + γλRRi

β + λRRi
and

ψi(R,M) = 1− ω(φi(R))(M +Mi − 1).

(7)

For a small constant τ > 0 to be specified later, let

I ′ =
[
x∗ − 2τ

|ω∗|
1− |ω∗| , x

∗ + 2τ
|ω∗|

1− |ω∗|
]

(8)

The choice of the interval I ′ is such that the maps φi are

uniformly contracting and map the interval I ′ to itself.

Namely, we show the following in Section 4.3 of the

full version.

Lemma 19. There exists 0 < Cmin < Cmax < 1 and
τ0 > 0 such that for all τ ∈ (0, τ0) for all R ∈ I ′ and
all Ri ∈ [x∗ − τ, x∗ + τ ] it holds that

Cmin ≤ |φ′
i(R)| ≤ Cmax, ω(R) ≤ Cmax, φi(R) ∈ I ′

The second step of our construction will actually take

place in the following smaller sub-interval of I ′:

I = [x∗ − |ω|τ/2, x∗ + |ω|τ/2] ⊆ I ′, (9)

The choice of I is to ensure the following “well-

covered” property for the maps φi on I which is

obtained using the density of the effective fields from

Lemma 18, the proof is given in Section 4.3 of the full

version.

Lemma 20. Suppose δ < |ω|/100. For every two points
x1, x2 ∈ I such that |x1 − x2| ≤ |ω|τδ/2 there exists i
such that x1, x2 ∈ φi(I).

Lemmas 19 and 20 ensure that for any x ∈ I
we can construct a sequence of field gadgets whose

effective field approaches x. Consider the following

process Build-gadget(x, t) where x ∈ I and t ≥ 0
is an integer. If t = 0 we return the degenerate tree. If

t ≥ 1 then we let φi be any map such that x ∈ φi(I).
Let y = φ−1

i (x) and T ′ =Build-gadget(y, t − 1).
Return the tree T obtained by merging T ′ and Ti using
the operation of Lemma 17.

The point behind the process Build-gadget(x, t)
is that it allows us to construct, for arbitrary x ∈ I , a
field gadget whose effective field is arbitrary close to x,
with error that decays exponentially fast with t (using
the contraction properties of the φi’s). This is detailed

in the following lemma.

Lemma 21. There exists C > 0 such that for any x ∈ I
and any t ≥ 0 the effective field R of the field gadget

returned by Build-gadget(x, t) (for any choice of
the φi’s) satisfies |R− x| ≤ CCt

max.

Lemma 21 is proved in Section 4.4 of the full

version. For the field gadgets we construct we will

always maintain the effective field in the interval I ′,
cf. Lemma 19. Now we show that the magnetization

gaps of the field gadgets constructed using our process

also stay restricted to an interval J . Let

T =
2 +max |Mi|
1− Cmax

and let J be the interval [−T, T ].

(10)

Lemma 22. Suppose R ∈ I ′ and M ∈ J then
ψi(R,M) ∈ J .

Proof: We have ψi(R,M) = 1−ω(R)(Mi+M −
1). Hence |ψi(R,M)| ≤ 1+Cmax(T+max |Mi|+1) ≤
T , where the last inequality follows from (10).

For any x ∈ I we are going to construct a sequence of
families of pairs of maps Fx,0,Fx,1, . . . as follows. In
each pair, the first map is from R to R, and the second

map is from R
2 to R (similarly to (7)). Let Fx,0 contain

the pair of maps (x �→ x, (x, y) �→ y). To construct

Fx,t+1 we take every φi such that that x ∈ φi(I) and
every (f, g) ∈ Fφ−1

i (x),t and place into Fx,t+1 the map

(R,M) �→ (φi(f(R)), ψi(f(R), g(R,M))) . (11)

Every (f, g) ∈ Fx,t corresponds to a sequence of φi’s

with length t, which in turn corresponds to a rooted field
gadget built using the procedure described just above (7)

for t steps. The point is that we will view the starting

field gadget T0 as an “input” to the procedure. If the

input has effective field R and magnetization gap M
then the final field gadget will have effective field f(R)
and magnetization gap g(R,M). In particular, with the
right choice of input (i.e., f−1(x)), we will obtain a

field gadget with effective field x. We will usually view

f(R) and g(R,M) as the effective field and the mag-

netization gap induced by the Build-gadget(x, t)
procedure when at the base step we use T0 instead

of the degenerate tree (provided the choice of the φi’s

in Build-gadget matches up with the sequence for

the pair (f, g)). However, we will not be able to use

the exact input needed to obtain the effective field

x but rather some approximation of it, and the pair

(f, g) will allow us to track the influence of the last

t steps when building a rooted field gadget T ′, which
intuitively have larger influence both on the effective

field and magnetization gap of T ′ (since the maps φi are

contracting). In particular, once we have the value of the

magnetization gap and effective field of the “input” field

gadget, by applying (f, g) we know precisely where the

effective field and magnetization gap will end up after

applying the sequence of φi’s corresponding to (f, g).



We are going to distinguish two possible cases for the

families Fx,t. In the first case we will obtain the gadgets

we need immediately using the Build-gadget proce-
dure. In the second case we will construct a continuous

function from the families. Then we will argue that the

function cannot satisfy a functional equation and this

will yield the gadgets we require.

Lemma 23 (Case I). Suppose there exists x ∈ I such
that for some t1, t2 there exist (f1, g1) ∈ Fx,t1 and
(f2, g2) ∈ Fx,t2 such that g1(I

′ × J) and g2(I
′ × J)

are disjoint. Let M̂ be the distance of g1(I ′ × J) and
g2(I

′ × J).
Then, there is an algorithm which, on input rational

r > 0, outputs in time poly(bits(r)) a pair of field
gadgets T1 and T2, each of maximum degree 3 and size
O(| log r|), such that

|RT1 − x|, |RT2 − x| ≤ r, but |MT1 −MT2 | ≥ M̂.

Proof: Note that for a fixed t the union
⋃

x Fx,t

contains finitely many functions (because there are only

finitely many choices for φi in each step of the con-

struction). If t1, t2 and x assumed by the lemma exist

then we can find them by examining finitely many func-

tions. For each (f1, g1) and (f2, g2) we check whether

f1(I)∩f2(I) �= ∅ and g1(I
′×J)∩g2(I ′×J) = ∅; if we

find we such a pair we take x ∈ f1(I)∩f2(I). Note the
running time for this process is a constant depending

on β, γ, λ. (Note that f(I) and g(I ′ × J) is always an
interval that we can find inductively.)

To construct Ti, i ∈ {1, 2} we will use the procedure
Build-gadget following the choices of (fi, gi) in

the first ti steps, cf. the discussion below (11). Using

Lemma 21, we run the procedure for O(| log r|) steps
achieving |Ri − x| ≤ r, i ∈ {1, 2}. We have Mi ∈
gi(I

′ × J), i ∈ {1, 2} and hence |M1 −M2| ≥ M̂ .

Lemma 24 (Case II). Suppose that for every x, ev-
ery t1, t2 and every two functions (f1, g1) ∈ Fx,t1

and (f2, g2) ∈ Fx,t2 we have that f2(I
′ × J) and

g2(I
′ × J) intersect. Then there exists a continuous

function F : I → J such that for every x ∈ I , every
ε > 0 there exists t0 such that for every t ≥ t0 and
every (f, g) ∈ Fx,t and every R ∈ I ′ and every M ∈ J
we have

|g(R,M)− F (x)| ≤ ε. (12)

The proof of Lemma 24 is given in Section 4.4 of

the full version.

Lemma 25. Suppose CASE II happens, that is, the
assumption of Lemma 24 is satisfied; let F be the
continuous function guaranteed by Lemma 24. Suppose
that there exist x1, x2 ∈ I such that the following

equation is violated.

F

(
1 + γλx1x2

β + λx1x2

)
=

1− (1− βγ)λx1x2(F (x1) + F (x2)− 1)

(1 + γλx1x2)(β + λx1x2)

(13)

Then, we can find in constant time (where the constant
depends on β, γ, λ, k) rational numbers x1, x2 ∈ I such
that (13) is violated and, moreover, for any integer k ≥
1, rationals R̂1, . . . , R̂k ∈ I such that the following
holds.

There is an algorithm which on input a rational r ∈
(0, 1/2) and any i ∈ [k] outputs in time poly(bits(r))
a pair of field gadgets T1 and T2, each of maximum
degree 3 and size O(| log r|), such that |RT1 − R̂i| ≤ r,
|RT2

− R̂i| ≤ r and |MT1
−MT2

| ≥ M̂ .

Proof of Lemma 25: Let k ≥ 1 be an arbitrary

integer and fix x1, x2 ∈ I that violate (13). Let δ > 0
be the absolute value of the difference between the two

sides. From the continuity of F (cf.equation (53) of

the full version), there exists ε > 0 such that for any

y1, y2 ∈ I with |y1 − x1| ≤ ε and |y2 − x2| ≤ ε we

have that y1, y2 violate (13) with difference at least δ/2
between the two sides.

Let C be a finite set of pairs (y1, y2) which form

an ε
20k -net for I × I; by perturbing slightly the set of

points in C we can obtain an ε
10k -net for I × I , say

C′, such that for any two pairs (y1, y2) and (y′1, y
′
2) it

holds that y1y2 �= y′1y
′
2. Now, to check whether a pair

(y1, y2) in C′ violates (12), we run Build-gadget
for y1, y2 and y3 := 1+γλy1y2

β+λy1y2
with the value of t given

by Lemma 24 to achieve bound δ/100 on the right-

hand side of (12). Then, we will find at least k different

pairs (y1,j , y2,j), j = 1, . . . , k that violate (13). For

j ∈ [k], let R̂j := y3,j =
1+γλy1,jy2,j

β+λy1,jy2,j
and note that by

the construction of C′, the R̂j’s are pairwise distinct.

Now, on input j ∈ [k], we use the Build-gadget
procedure to construct T̂i for yi,j , i ∈ {1, 2, 3} for

t = O(| log r|) steps, using Lemma 21,. The tree T1
is obtained by merging T̂1 and T̂2 and the tree T2 is T̂3.

Now assume that equation (13) is satisfied for all

x1, x2 ∈ I . We are going to derive a contradiction,

thereby showing that (13) must be violated. We will

do this in two steps. First we use a special case

of equation (13) to obtain a functional equation that

constrains the possible solutions of F . Second we show
that none of these solutions satisfies (13).

Suppose x1, x2, x3 ∈ I are such that x1x2 = x3x
∗.

Plugging into (13) we obtain that F has to satisfy the

following equation

F (x1) + F (x2) = F (x3) + F (x∗). (14)



Lemma 26. Suppose F is a continuous function on I .
Suppose that for x1, x2, x3 ∈ I such that x1x2 = x3x

∗

we have (14). Then there exists c such that for all x ∈ I
we have

F (x) = c log(x/x∗) + F (x∗). (15)

Proof: We will use the following parametrization to

turn (14) into Cauchy’s functional equation. Let x1 =
x∗ exp(y1), x2 = 2x∗ exp(y2), and x3 = x∗ exp(y3).
The condition x1x2 = x∗x3 is equivalent to y1 + y2 =
y3. Let

G(y) = F (x∗ exp y)− F (x∗). (16)

Note, we have that G is defined on the interval

[log(IL/x
∗), log(IR/x∗)] that contains 0 (since IL <

x∗ < IR). Equation (14) becomes

G(y1) +G(y2) = G(y1 + y2). (17)

From continuity of F , we also have continuity of

G. Since (17) is Cauchy’s functional equation on an

interval containing zero the only continuous solutions

are G(y) = cy for some constant c. Plugging in (16)

we obtain (15).

Finally we show in the full version that (13) has to

be violated.

Lemma 27. A solution of the form (15) cannot sat-
isfy (13).

We now combine the various pieces from the previous

subsection to prove Theorem 13. In fact, we will prove a

slight strengthening of Theorem 13, given below, which

will be used in our reduction, analogously to Lemma 16.

Theorem 28. Let (β, γ, λ) be antiferromagnetic with
(β, γ, λ) �= (β, β, 1). For every integer k ≥ 1, there
exist constants M̂,Ξ > 0 and k distinct numbers
R̂1, . . . , R̂k > 0 such that the following holds. There
is an algorithm, which, on input i ∈ [k] and a rational
r ∈ (0, 1/2), outputs in time poly(bits(r)) a pair of
field gadgets T1, T2, each of maximum degree 3 and
size O(| log r|), such that

|RT1 − R̂i|, |RT2 − R̂i| ≤ r, but |MT1 −MT2 | ≥ M̂.

Also, the magnetization gaps MT1 ,MT2 are bounded in
absolute value by the constant Ξ.

Proof: There are two cases to consider: either

Lemma 23 or Lemma 24. In the latter case, by Lem-

mas 26 and 27, we obtain that (13) is violated, and

hence Lemma 25 yields the desired algorithm. In the

former case, we are also done, modulo that Lemma 23

only guarantees the existence of a single R̂, namely the
value x. Let t1, t2 be such that (f1, g1) ∈ Fx,t1 and

(f2, g2) ∈ Fx,t2 satisfy g1(I
′ × J) ∩ g2(I

′ × J) = ∅.
The functions in Fx,t are continuous and defined on a

closed interval, so we have that for sufficiently small

ε > 0, for all y such that |y − x| ≤ ε, we can find

(f̃1, g̃1) ∈ Fx,t1 and (f̃2, g̃2) ∈ Fx,t2 which satisfy

g̃1(I
′×J)∩ g̃2(I

′×J) = ∅. We pick k such y’s for the
values of the R̂i’s for i = 1, . . . , k and produce the de-

sired trees by running the Build-gadget procedure

for O(log |r|) steps. Finally note that the magnetizations
all lie in the interval J , see (10) and Lemma 22, which
is bounded by absolute constants, finishing the proof.

Note that Theorem 13 corresponds to the case k = 1
in Theorem 28.
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