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Abstract
Spectral independence is a recently-developed framework for obtaining sharp bounds on the conver-
gence time of the classical Glauber dynamics. This new framework has yielded optimal O(n log n)
sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called
uniqueness regime, including, for example, the problems of sampling independent sets, matchings,
and Ising-model configurations.

Our main contribution is to relax the bounded-degree assumption that has so far been important
in establishing and applying spectral independence. Previous methods for avoiding degree bounds
rely on using Lp-norms to analyse contraction on graphs with bounded connective constant (Sinclair,
Srivastava, Yin; FOCS’13). The non-linearity of Lp-norms is an obstacle to applying these results to
bound spectral independence. Our solution is to capture the Lp-analysis recursively by amortising
over the subtrees of the recurrence used to analyse contraction. Our method generalises previous
analyses that applied only to bounded-degree graphs.

As a main application of our techniques, we consider the random graph G(n, d/n), where
the previously known algorithms run in time nO(log d) or applied only to large d. We refine these
algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics
that apply to all constant d, throughout the uniqueness regime.

1 Introduction

Spectral independence method was introduced by Anari, Liu, and Oveis Gharan [2] as a
framework to obtain polynomial bounds on the mixing time of Glauber dynamics. Originally
based on a series of works on high-dimensional expansion [17, 9, 21, 18, 1], it has since then
been developed further using entropy decay by Chen, Liu, and Vigoda [8] who obtained
optimal O(n log n) mixing results on graphs of bounded maximum degree ∆ whenever the
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framework applies. This paper focuses on relaxing the bounded-degree assumption of [8], in
sparse graphs where the maximum degree is not the right parameter to capture the density
of the graph.

As a running example we will use the problem of sampling (weighted) independent sets,
also known as the sampling problem from the hard-core model. For a graph G = (V, E), the
hard-core model with parameter λ > 0 specifies a distribution µG,λ on the set of independent
sets of G, where for an independent set I it holds that µG,λ(I) = λ|I|/ZG,λ where ZG,λ is the
partition function of the model (the normalising factor that makes the probabilities add up
to 1). For bounded-degree graphs of maximum degree d + 1 (where d ≥ 2 is an integer), it is
known that the problems of sampling and approximately counting from this model undergo a
computational transition at λc(d) = dd

(d−1)d+1 , the so-called uniqueness threshold [29, 27, 12]:
they are poly-time solvable when λ < λc(d), and computationally intractable for λ > λc(d).
Despite this clear complexity picture, prior to the introduction of spectral independence, the
algorithms for λ < λc(d) were based on elaborate enumeration techniques whose running
times scale as nO(log d) [29, 19, 22, 23]. The analysis of Glauber dynamics1 using spectral
independence in the regime λ < λc(d) yielded initially nO(1) algorithms for any d [2], and
then O(n log n) for bounded-degree graphs [8] (see also [7]). More recently, Chen, Feng, Yin,
and Zhang [5] obtained O(n2 log n) results for arbitrary graphs G = (V, E) that apply when
λ < λc(∆G − 1), where ∆G is the maximum degree of G (see also [14] for related results
when ∆G grows like log n).

The maximum degree is frequently a bad measure of the density of the graph, especially
for graphs with unbounded-degree. One of the most canonical examples is the random graph
G(n, d/n) where the maximum degree grows with n but the average degree is d, and therefore
one would hope to be able to sample from µG,λ for λ up to some constant, instead of λ = o(1)
that the previous results yield. In this direction, [26, 24] obtained an nO(log d) algorithm
based on correlation decay that applies to all λ < λc(d) for all graphs with “connective
constant” bounded by d (meaning, roughly, that for all ℓ = Ω(log n) the number of length-ℓ
paths starting from any vertex is bounded by dℓ). The result of [24] applies to G(n, d/n) for
all d > 0. In terms of Glauber dynamics on G(n, d/n), [20] showed an n1+Ω(1/ log log n) lower
bound on the mixing time in the case of the Ising model; this lower bound actually applies
to most well-known models, and in particular rules out O(n log n) mixing time results for
the hard-core model when λ = Ω(1). The mixing-time lower bound on G(n, d/n) has only
been matched by complementary fast mixing results in models with strong monotonicity
properties, see [20] for the ferromagnetic Ising model and [4] for the random-cluster model.
Such monotonicity properties unfortunately do not hold for the hard-core model, and the
best known results [10, 11] for Glauber dynamics on G(n, d/n) give an nC algorithm for
λ < 1/d and sufficiently large d (where C is a constant depending on d).

Our main contribution is to obtain nearly linear-time algorithms on G(n, d/n), for all of
the models considered in [24], i.e., the hard-core model, the monomer-dimer model (weighted
matchings), and the antiferromagnetic Ising model. Key to our results are new spectral
independence bounds for any d > 0 in the regime λ < λc(d) for arbitrary graphs G = (V, E)
in terms of their “d-branching value” (which resembles the connective-constant notion of [24]).
To state our main theorem for the hard-core model on G(n, d/n), we first extend the definition

1 Recall, for a graph G, the Glauber dynamics for the hard-core model iteratively maintains a random
independent set (It)t≥0, where at each step t a vertex v is chosed u.a.r. and, if It ∪ {v} is independent,
it sets It+1 = It ∪ {v} with probability λ

λ+1 , otherwise It+1 = It\{v}. The mixing time is the maximum
number (over the starting I0) of steps t needed to get within total variation distance 1/4 of µG,λ, see
Section 4.1 for the precise definitions.
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of λc(d) to all reals d > 0 by setting λc(d) = dd

(d−1)d+1 for d > 1, and λc(d) = ∞ for d ∈ (0, 1).
We use the term “whp over the choice of G ∼ G(n, d/n)” as a shorthand for “as n grows large,
with probability 1 − o(1) over the choice of G(n, d/n)”. An ε-sample from a distribution µ

supported on a finite set Ω is a random σ ∈ Ω whose distribution ν satisfies ∥ν − µ∥TV ≤ ε,
where ∥ν − σ∥TV = 1

2
∑

σ∈Ω |ν(σ) − µ(σ)|.

▶ Theorem 1. Let d, λ > 0 be such that λ < λc(d). For any arbitrarily small constant θ > 0,
there is an algorithm such that, whp over the choice of G ∼ G(n, d/n), when the algorithm is
given as input the graph G and an arbitrary rational ε > 0, it outputs an ε-sample from µG,λ

in time n1+θ log 1
ε .

The reader might wonder why is there no constant in front of the running time (in
Theorems 1, 2, and 3) or why is there no requirement that n is sufficiently large? The
assumption that n is sufficiently large is taken care of in the whp condition: there is
a function fd,λ,θ : Z → R such that limn→∞ fd,λ,θ(n) = 0 and the “whp” means with
probability ≥ 1 − fd,λ,θ(n) (the function fd,λ,θ will have value ≥ 1 for small n, making the
conclusion trivial for such n). Moreover, the family of O(n1+θ) algorithms from Theorem 1
can be turned into an n1+o(1) algorithm as follows. The function fd,λ,θ is computable (and
efficiently invertible), see Remark 35 in the full version for a discussion. Let n0 = 1 and
nk > nk−1 be such that fd,λ,1/k(n) ≤ 1/k for all n ≥ nk. We are going to run the algorithm
of Theorem 1 with θ = 1/k for n ∈ {nk−1, . . . , nk − 1}. Note that the “combined” algorithm
succeeds with probability 1 − o(1) and runs in time n1+o(1).

We further remark here that the algorithm of Theorem 1 (as well as Theorems 2 and 3
below) can also recognise in time n1+o(1) whether the graph G ∼ G(n, d/n) is a “good” graph,
i.e., we can formulate graph properties that guarantee the success of the algorithm, are
satisfied whp, and are also efficiently verifiable, see Section C.4 in the full version for details.

The key to obtaining Theorem 1 is to bound the spectral independence of G(n, d/n).
The main strategy that has been applied so far to bound spectral independence is to adapt
suitably correlation decay arguments and, therefore, it is tempting to use the correlation
decay analysis of [24]. This poses new challenges in our setting since [24] uses an Lp-norm
analysis of correlation decay on trees, and the non-linearity of Lp-norms is an obstacle to
converting their analysis into spectral independence bounds (in contrast, for bounded-degree
graphs, the L∞-norm is used which can be converted to spectral independence bounds using
a purely analytic approach, see [7]). Our solution to work around that is to “linearise”
the Lp-analysis by taking into account the structural properties of subtrees. This allows
us to amortise over the tree-recurrence using appropriate combinatorial information (the
d-branching values) and to bound subsequently spectral independence; details are given in
Section 3, see Lemmas 10 and 12 (and equation (2) that is at the heart of the argument).
Once the spectral independence bound is in place, further care is needed to obtain the
fast nearly linear running time, paying special attention to the distribution of high-degree
vertices inside G(n, d/n) and to blend this with the entropy-decay tools developed in [8], see
Section 4.2 for this part of the argument.

In addition to our result for the hard-core model, we also obtain similar results for the
Ising and the matchings models. The configurations of the Ising model on a graph G = (V, E)
are assignments σ ∈ {0, 1}V which assign the spins 0 and 1 to the vertices of G. The Ising
model with parameter β > 0 corresponds to a distribution µG,β on {0, 1}V , where for an
assignment σ ∈ {0, 1}V , it holds that µG,β(σ) = βm(σ)/ZG,β where m(σ) is the number of
edges whose endpoints have the same spin assignment under σ, and ZG,β is the partition
function of the model. The model is antiferromagnetic when β ∈ (0, 1), and ferromagnetic
otherwise. For d ≥ 1, let βc(d) = d−1

d+1 ; for d ∈ (0, 1), let βc(d) = 0. It is known that on
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bounded-degree graphs of maximum degree d + 1 the sampling/counting problem for the
antiferromagnetic Ising model undergoes a phase transition at β = βc(d), analogous to that
for the hard-core model [25, 19, 28, 13].

▶ Theorem 2. Let d, β > 0 be such that β ∈ (βc(d), 1). For any constant θ > 0, there is an
algorithm such that, whp over the choice of G ∼ G(n, d/n), when the algorithm is given as
input the graph G and an arbitrary rational ε > 0, it outputs an ε-sample from µG,β in time
n1+θ log 1

ε .

For a graph G = (V, E), the matchings model with parameter γ > 0, also known as the
monomer-dimer model, corresponds to a distribution µG,γ on the set of matchings of G, where
for a matching M , it holds that µG,γ(M) = γ|M |/ZG,γ where ZG,γ is the partition function.
For general graphs G = (V, E) and γ = O(1), [15, 16] gave an O(n2m log n) algorithm (where
n = |V |, m = |E|), which was improved for bounded-degree graphs to O(n log n) in [8] using
spectral independence. For G(n, d/n), [24] gave an O(nlog d) deterministic algorithm using
correlation decay, and [14] showed that Glauber dynamics mixes in n2+o(1) steps in the case
that γ = 1.

▶ Theorem 3. Let d, γ > 0. For any constant θ > 0, there is an algorithm such that, whp
over the choice of G ∼ G(n, d/n), when the algorithm is given as input the graph G and an
arbitrary rational ε > 0 outputs an ε-sample from µG,γ in time n1+θ log 1

ε .

In the next section, we give the main ingredients of our algorithm for the hard-core model
and we give the proof of Theorem 1. The proofs of Theorems 2 and 3 build on similar ideas,
though there are some modifications needed to obtain the required spectral independence
bounds. We give their proofs in Section B.3 of the full version.

Before proceeding let us finally mention that, to go beyond the 2-spin models studied
here, the main obstacle is to establish the spectral independence bounds for graphs with
potentially unbounded degrees. As it is pointed out in [24, Section 7], their correlation-decay
analysis in terms of the connective constant using Lp-norms does not extend to other models
in a straightforward manner, and hence it is natural to expect that the same is true for
spectral independence as well.

2 Proof outline for Theorem 1

Our algorithm for sampling from the hard-core model on a graph G = (V, E) is an adaptation
of Glauber dynamics on an appropriate set of “small-degree” vertices U , the details of the
algorithm are given in Figure 1. Henceforth, analogously to the Ising model, it will be
convenient to view the hard-core model as a 2-spin model supported on Ω ⊆ {0, 1}V , where
Ω corresponds to the set of independent sets of G (for an independent set I, we obtain
σ ∈ {0, 1}V by setting σv = 1 iff v ∈ I).

Note that for general graphs G, implementing Steps 2 and Steps 3 of the algorithm might
be difficult. The following lemma exploits the sparse structure of G(n, d/n) and in particular
the fact that high-degree vertices are sparsely scattered. We will use this in the proof of our
main theorems to show that the algorithm Sample(G, T ) can be implemented very efficiently
for appropriate D, paying only O(log n) per loop operation in Step 2 and only O(n log n) in
Step 3. The tree-excess of a graph G = (V, E) is defined as |E| − |V | + 1.

▶ Lemma 4. Let d > 0 be an arbitrary real. There exist constants D, ℓ > 0 such that the
following holds whp over the choice of G = (V, E) ∼ G(n, d/n). Each of the connected
components of G[V \U ], where U is the set of vertices of degree ≤ D, has size O(log n) and
tree-excess at most ℓ.
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Algorithm Sample(G, T ).

Parameters: D > 0 (threshold for small/high degree vertices).
Input: Graph G = (V, E), integer T ≥ 1 (number of iterations).

1. Initialisation: Let U be the set of all vertices with degree ≤ D.
Let X0 be the empty independent set on U .

2. Main loop: For t = 1, . . . , T ,
Pick a vertex u uniformly at random from U .
For every vertex v ∈ U\{u}, set Xt(v) = Xt−1(v).
Sample the spin Xt(u) according to µG,λ

(
σu | σU\{u} = Xt(U\{u})

)
, i.e., update

u according to the hard-core distribution on the whole graph G, conditioned on
the spins of U\{u}.

3. Finalisation: Sample σ ∼ µG,λ

(
·

∣∣ σU = XT

)
, i.e., extend XT to the whole vertex

set of G by sampling from µG,λ conditioned on the configuration on U .

Figure 1 The Sample(G, T ) subroutine for sampling from the hard-core distribution µG,λ. We
use the analogue of this algorithm for the Ising model with parameter β (replacing µG,λ by µG,β).
For the monomer-dimer model, the only difference is that the algorithm needs to update (single)
edges in F , where F is the set of vertices whose both endpoints lie in U (i.e., degree ≤ D).

Lemma 4 follows using relatively standard techniques from random graphs and is proved
in Section C of the full version. Later, we will establish a more refined version of this property
that will allow us to bound the mixing time of the single-site dynamics that we consider (the
main loop of Sample(G, T )).

The key ingredient needed to prove our main result is to show that the main loop of our
sampling algorithm returns a good sample on the induced hard-core distribution on the set
U . More precisely, for a graph G = (V, E) and U ⊆ V , we let µG,λ,U (·) denote the induced
distribution on the spins of U , i.e., the marginal distribution µG,λ(σU = ·).

▶ Lemma 5. Let d, λ > 0 be constants such that λ < λc(d). For any arbitrarily small constant
θ > 0, there is D > 0 such that the following holds whp over the choice of G ∼ G(n, d/n).

Let U be the set of vertices in G of degree ≤ D. Then, for any ε > 0, for T =
⌈n1+θ/2 log 1

ε ⌉, the main loop of Sample(G, T ) returns a sample XT from a distribution
which is ε-close to µG,λ,U .

We will prove Lemma 5 in Section 4.2. With these two lemmas we are ready to prove
Theorem 1.

Proof of Theorem 1. We give first the details for the more interesting case d ≥ 1. Consider
arbitrarily small θ > 0 and D, ℓ as in Lemmas 4 and 5, so that whp G satisfies the properties
therein. Let ε > 0 be the desired accuracy for sampling from µG,λ; it is sufficient to consider
ε < 1/e. Let U be the set of vertices with degree ≤ D, and set T = ⌈n1+θ/2 log 1

ε ⌉.
By Lemma 5, whp over the choice of G, the main loop of Sample(G, T ) returns a

configuration XT : U → {0, 1} that is ε-close to µG,λ,U . Note that each iteration of the main
loop of Sample(G, T ) can be implemented in O(log n) time since G[V \U ] has components
of size O(log n) and tree excess at most ℓ. In particular, any vertex u ∈ U can be adjacent
to at most D of these components, and therefore the component of u in G[(V \U) ∪ {u}] has
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size O(log n) and tree excess at most k = D ⌈ℓ⌉ = O(1). We can therefore sample the spin of
u under µG,λ conditioned on the spins of U\{u} in time O(4k log n) = O(log n).2 Therefore,
the main loop of Sample(G, T ) runs in time O(T log n). Analogously, the finalisation step of
Sample(G, T ), i.e., extending the configuration XT on U to a configuration σ on the whole
vertex set V , can be implemented in time O(n log n) by iterating over the vertices in V \U

and using the fact that the components of G[V \U ] have excess at most ℓ. Therefore, the
overall running time of the algorithm is bounded by O(T log n) + O(n log n), which is less
than ⌈n1+θ log 1

ε ⌉ for all sufficiently large n. It remains to note that, since XT is ε-close to
the marginal distribution of µG,λ on U , and the finalisation step is done perfectly conditioned
on the configuration on U , the final configuration σ is ε-close to the distribution µG,λ.

For d < 1, whp G consists of tree-like components of size O(log n), and therefore we can
obtain a perfect sample from µG,λ in time O(n log n) by going through the vertices one by
one and, for each vertex, taking O(log n) time to compute its marginal, conditioned on the
spins already sampled. ◀

3 Spectral independence via branching values

We first introduce the notions of spectral independence and pairwise vertex influences, which
we will later use to bound the mixing time of the main loop of Sample(G, T ), i.e., to prove
Lemma 5. We will define the terminology in a general way that will be useful both for our
analysis of the hard-core model, and for our later analysis of other models.

Let q ≥ 2 be an integer indicating the number of spins and let V be a set of size
n. We will consider distributions µ supported on a set Ω ⊆ [q]V .3 For S ⊆ V , let
ΩS = {τ ∈ [q]S | µ(σS = τ) > 0} be the set of all partial configurations on [q]S that
have non-zero marginal under µ. For τ ∈ ΩS , let µτ be the conditional distribution on Ω
induced by τ , i.e., µτ (·) = µ(· | σS = τ). Let µmin = minσ∈Ω µ(σ).

For S ⊆ V and τ ∈ ΩS , the influence matrix conditioned on τ is the matrix Ψτ whose
rows and columns are indexed by Ṽτ = {(v, i) | v ∈ V \S, µτ (σv = i) > 0}, where the entry
indexed by (v, i), (w, k) equals µτ (σw = k | σv = i) − µτ (σw = k) if v ̸= w, and 0 otherwise.
It is a standard fact that the eigenvalues of the matrix Ψ are all real ([2]), and we denote by
λ1(Ψ) its largest eigenvalue.

▶ Definition 6. Let q ≥ 2 be an integer and V be a set of size n ≥ 2. Let µ be a distribution
supported over Ω ⊆ [q]V . Let η, b > 0. We say that µ is η-spectrally independent if for all
S ⊂ V and τ ∈ ΩS, it holds that λ1(Ψτ ) ≤ η. We say that µ is b-marginally bounded if
for all S ⊂ V , v ∈ V \S, τ ∈ ΩS, and i ∈ [q], it either holds that µτ (σv = i) = 0 or else
µτ (σv = i) ≥ b.

Following [2, 7], for distributions µ induced by 2-spin systems, we work with the following
notion of pairwise vertex-influence, which can be used to bound the spectral independence.
For a graph G = (V, E) and τ ∈ {0, 1}S for some S ⊂ V , for vertices u, v with u ∈ V \S and
0 < µτ (σu = 1) < 1, we define the influence of u on v (under µτ ) as

Iτ
G(u → v) = µτ (σv = 1 | σu = 1) − µτ (σv = 1 | σu = 0).

2 One “naive” way to do this is by considering a spanning tree and then brute-forcing over all ≤ 4k

possibilities for the endpoints of the excess edges (the spins on each edge can be set in at most 4
ways). For each of these, the marginal probability at u and the corresponding partition function can be
computed using dynamic programming on the left-over tree.

3 For an integer k ≥ 1, we denote by [k] the set {0, 1, . . . , k − 1}.
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For matchings, we will work with an analogous notion from the perspective of edges (see
Section B.2 of the full version). For all these models, spectral independence will be bounded
by summing the absolute value of the influences of an arbitrary vertex u to the rest of the
graph.

In turn, it has been shown in [7] that summing the influences of a vertex u in a graph
G reduces to summing the sum of influences on the self-avoiding walk tree emanating from
u, see Lemma 22 in the full version. Therefore, we only need to focus on trees arising as
self-avoiding walk trees.

3.1 The branching value
We will need the following notion to capture the growth of the self-avoiding walk tree from a
vertex.

▶ Definition 7. Let d > 0 be a real number and G = (V, E) be a graph. For a vertex v in G,
the d-branching value Sv equals

∑
ℓ≥0 Nv,ℓ/dℓ, where Nv,ℓ is the number of (simple) paths

with a total of ℓ + 1 vertices starting from v (for convenience, we set Nv,0 = 1).

We will show the following lemma in Section C.1 which bounds the d′-branching value of
G(n, d/n) for any d′ > d.

▶ Lemma 8. Let d ≥ 1. Then, for every d′ > d and ε > 0, whp over the choice of
G ∼ G(n, d/n), the d′-branching value of every vertex in G is at most ε log n.

3.2 Spectral independence for the hard-core model
In this section, we bound the spectral independence of G(n, d/n) in the hard-core model
when λ < λc(d). We will need the following technical lemma that can be derived from [24].
The derivation details are similar to an analogous lemma for matchings (cf. Lemma 26 in
the full version), which can be found in [3, Lemma 15].

▶ Lemma 9 ([24]). Let d > 1 and λ > 0 be constants such that λ < λc(d). Let χ ∈ (1, 2)
be given from 1

χ = 1 − d−1
2 log

(
1 + 1

d−1

)
and set a = χ

χ−1 . Consider also the function
Φ(y) = 1√

y(1+y)
for y > 0. Then, there is a constant 0 < κ < 1/d such that the following

holds for any integer k ≥ 1.
Let x1, . . . , xk be reals and x = λ

∏k
i=1

1
1+xi

. Then (Φ(x))a
∑k

i=1

(
x

(1+xi)Φ(xi)

)a

≤ κa/χ.

We will show the following.

▶ Lemma 10. Let d > 1 and λ > 0 be constants such that λ < λc(d). Then, there is a
constant χ > 1 such that the following holds.

Let T = (V, E) be a tree rooted at ρ, whose d-branching value is ≤ α and whose root has
k children. Then, for the hard-core distribution on T with parameter λ, any S ⊆ V \{ρ} and
τ ∈ ΩS with 0 < µτ (σρ = 1) < 1, it holds that∑

v∈V

∣∣Iτ
T (ρ → v)

∣∣ ≤ Wkα1/χ,

where Wk > 0 is a real depending only on the degree k of the root (and the constants d, λ).

Proof. Let κ ∈ (0, 1/d) and χ ∈ (1, 2) be the constants from Lemma 9, and Φ(x) = 1√
x(1+x)

be also as in Lemma 9.
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We may assume without loss of generality that S is empty (and τ is trivial) by truncating
the tree T using the following procedure: just remove vertices u ∈ S with τu = 0, and for
u ∈ S with τu = 1 remove u and all of its neighbours. Note that for all the removed vertices
v it holds that Iτ

T (ρ → v) = 0, so the removal procedure does not decrease the sum of the
absolute influences, while at the same time decreasing the d-branching value of the tree T .
Henceforth, we will drop τ and S from notation.

To prove the lemma, we will work inductively on the depth of the tree. To this end, we
first define for each vertex u in T the following values αu and Ru; the α’s capture a rooted
analogue of the branching value of internal vertices within T , while the R’s the marginals
of the vertices in the corresponding subtrees. More precisely, if v is a leaf, set αv = 1 and
Rv = λ; otherwise set αv = 1 + 1

d

∑k
i=1 αvi

and Rv = λ
∏k

i=1
1

1+Rvi
, where v1, . . . , vk are

the children of v. Note that for the root ρ we have that αρ = Sρ ≤ α, where Sρ is the
d-branching value of ρ in the tree T . Moreover, if we denote by Tv the subtree of T rooted
at v and by u the parent of v in T , then it holds that

Rv = µTv,λ(σv = 1)
µTv,λ(σv = 0) and IT (u → v) = − Rv

Rv + 1 . (1)

The first equality is fairly standard and can be proved using induction on the height of the
tree, while the second one is [7, Lemma 15] (it also follows directly from the definition of
influence and the first equality).

For an integer h ≥ 0, let L(h) be the nodes at distance h from the root ρ. Let Mk =√
1 + (1 + λ)k/λ, where recall that k is the degree of the root ρ. We will show that

∑
v∈L(h)

(αv

αρ

)1/χ
∣∣IT (ρ → v)

∣∣
RvΦ(Rv) ≤ Mk(dκ)h/χ. (2)

Since αv ≥ 1 for v ∈ V , αρ ≤ α and RvΦ(Rv) ≤ 1, (2) yields
∑

v∈L(h)
∣∣IT (ρ → v)

∣∣ ≤
Mkα1/χ(dκ)h/χ for all integer h ≥ 0, and therefore summing over h, we obtain that

∑
v∈V

∣∣IT (ρ → v)
∣∣ ≤ Mkα1/χ

∑
h≥0

(dκ)h/χ ≤ Mkα1/χ

1 − (dκ)1/χ
,

which proves the result with Wk = Mk

1−(dκ)1/χ . So it only remains to prove (2).
We will work inductively. The base case h = 0 is equivalent to Mk ≥ 1/(RρΦ(Rρ)) =√

1 + 1/Rρ, which is true since from the recursion for Rρ we have that Rρ ≥ λ/(1 + λ)k. For
the induction step, consider v ∈ L(h − 1) and suppose it has kv ≥ 0 children, denoted by vi

for i ∈ [kv]. Then, for each i ∈ [kv], since v is on the unique path joining ρ to vi, it holds
that (see [2, Lemma B.2])

IT (ρ → vi) = IT (ρ → v)IT (v → vi),

so we can write

∑
v∈L(h)

(αv

αρ

)1/χ
∣∣IT (ρ → v)

∣∣
RvΦ(Rv) =

∑
v∈L(h−1)

(αv

αρ

)1/χ |IT (ρ → v)|
RvΦ(Rv)

∑
i∈[kv]

(αvi

αv

)1/χ

RvΦ(Rv) |IT (v → vi)|
Rvi

Φ(Rvi
) .

(3)
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Consider an arbitrary v ∈ L(h − 1). Then, since 1
χ + 1

a = 1, by Hölder’s inequality we have
that∑

i∈[kv]

(αvi

αv

)1/χ

RvΦ(Rv) |IT (v → vi)|
Rvi

Φ(Rvi
) ≤

( ∑
i∈[kv]

αvi

αv

)1/χ(
(RvΦ(Rv))a

∑
i∈[kv ]

( |IT (v → vi)|
Rvi

Φ(Rvi
)

)a
)1/a

.

(4)

Note that for x = Rv and xi = Rvi , i ∈ [kv], we have from (1) that |IT (v→vi)|
Rvi

= 1
1+xi

and
x = λ

∏
i∈[kv]

1
1+xi

, so by Lemma 9 we have that(
(RvΦ(Rv))a

∑
i∈[kv ]

( |IT (v → vi)|
RviΦ(Rvi)

)a
)1/a

≤ κ1/χ.

By definition of the d-branching value we also have αv = 1 + 1
d

∑
i∈[kv ] αvi

≥ 1
d

∑
i∈[kv] αvi

,
so plugging these back into (4) yields∑

i∈[kv]

(αvi

αv

)1/χ

RvΦ(Rv) |IT (v → vi)|
Rvi

Φ(Rvi
) ≤ (dκ)1/χ.

In turn, plugging this into (3) and using the induction hypothesis yields (2), finishing the
proof. ◀

▶ Remark 11. For simplicity, and since it is not important for our arguments, the constant
Wk in the proof depends exponentially on the degree k of the root. With a more careful
inductive proof (cf. [7, Proof of Lemma 14]), the dependence on k can be made linear.
In either case, because of the high-degree vertices in G(n, d/n), both bounds do not yield
sufficiently strong bounds on the spectral independence of the whole distribution µG,λ, and
this is one of the reasons that we have to consider the spectral independence on the induced
distribution on low-degree vertices.

Recall that for a graph G = (V, E) and U ⊆ V , we let µG,λ,U (·) denote the marginal
distribution on the spins of U , i.e., the distribution µG,λ(σU = ·).

▶ Lemma 12. Let d ≥ 1 and λ > 0 be constants such that λ < λc(d). Then, for any constants
D, ε > 0, whp over the choice of G ∼ G(n, d/n), the marginal hard-core distribution µG,λ,U ,
where U is the set of vertices in G with degree ≤ D, is (ε log n)-spectrally independent.

Proof. Let D, ε > 0 be arbitrary constants, and let d′ > d be such that λ < λc(d′); such
d′ exists because the function λc(·) is continuous in the interval (1, ∞) and λc(d) → ∞ for
d ↓ 1. Let χ ∈ (1, 2) and W = max{W1, . . . , WD} where χ and the Wk’s are as in Lemma 10
(corresponding to the constants d′, λ). By Lemma 8, whp all of the vertices of the graph
G = (V, E) ∼ G(n, d/n) have d′-branching value less than ε log n. We will show that the
result holds for all such graphs G (for sufficiently large n).

Let U be the set of vertices in G with degree ≤ D, and let for convenience µ = µG,λ,U .
Consider arbitrary S ⊂ U and τ ∈ ΩS . It suffices to bound the largest eigenvalue of
the influence matrix Ψτ by ε log n. Analogously to [2, 7], we do this by bounding the
absolute-value row sums of Ψτ . Recall that the rows and columns of Ψτ are indexed by
Ṽτ = {(v, i) | v ∈ U\S, µτ (σv = i) > 0}, where the entry indexed by (v, i), (w, k) equals
µτ (σw = k | σv = i) − µτ (σw = k) if v ̸= w, and 0 otherwise. Consider arbitrary (v, i) ∈ Ṽτ ;
our goal is to show
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∑
(w,k)∈Ṽτ

∣∣µτ (σw = k | σv = i) − µτ (σw = k)
∣∣ ≤ ε log n. (5)

Henceforth, we will also assume that µτ (σv = i) < 1 (in addition to µτ (σv = i) > 0),
otherwise the sum on the l.h.s. is equal to 0. Then, by the law of total probability, for any
(w, k) ∈ Ṽτ we have∣∣µτ (σw = k | σv = i) − µτ (σw = k)

∣∣ ≤
∣∣µτ (σw = k | σv = 1) − µτ (σw = k | σv = 0)

∣∣
=

∣∣Iτ
G(v → w)

∣∣,
where the last equality follows from the fact that µ is the marginal distribution of µG,λ on U .
Therefore, we can bound∑

(w,k)∈Ṽτ

∣∣µτ (σw = k | σv = i) − µτ (σw = k)
∣∣ ≤

∑
w∈U

∣∣Iτ
G(v → w)| ≤

∑
w∈V

∣∣Iτ
G(v → w)

∣∣.
By Lemma 22 in the full version, for the self-avoiding walk tree T = (VT , ET ) from v, there

is a subset Z ⊆ VT \{ρ} and a configuration ϕ ∈ {0, 1}Z such that∑
w∈V

∣∣Iτ
G(v → w)

∣∣ ≤
∑

w∈VT

∣∣Iϕ
T (v → w)

∣∣,
where Iϕ

T (v → ·) denotes the influence of v on the vertices of T (in the hard-core distribution
µT,λ conditioned on ϕ). Since the d′-branching value of v (and any other vertex of G) is
bounded by ε log n and the degree of v is ≤ D, by Lemma 10 applied to T , we have that∑

w∈VT

∣∣Iϕ
T (v → w)

∣∣ ≤ W (ε log n)1/χ.

Since χ > 1, for all sufficiently large n we have that W (ε log n)1/χ ≤ ε log n, which proves (5).
◀

We also record the following corollary of the arguments in Lemma 10.

▶ Corollary 13. Let λ > 0 and D > 0 be real numbers. For a graph G = (V, E), let U be
the set of vertices in G with degree ≤ D and suppose that |U | ≥ 2. Then, the distribution
µ := µG,λ,U is b-marginally bounded for b = λ

λ+(1+λ)D .

Proof. By Lemma 22 in the full version, for any vertex v ∈ U and any boundary condition
τ on (a subset of) U\{v}, there is a corresponding tree T and a boundary condition ϕ on T

such that µτ (σv = ·) = νϕ(σv = ·). Since v has degree ≤ D, from the proof of Lemma 10,
see in particular equation (1), we have that νϕ(σv = ·) ≥ b, where b is as in the lemma
statement. ◀

4 Entropy factorisation for bounded-degree vertices

In this section, we show how to convert the spectral independence results of the previous
section into fast mixing results for Glauber dynamics on the set of small-degree vertices on
G(n, d/n). Our strategy here follows the technique of [8], though to obtain nearly linear
results we have to pay attention to the connected components induced by high-degree vertices
and how these can connect up small-degree vertices.
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4.1 Preliminaries

Entropy factorisation for probability distributions

For a real function f on Ω ⊆ [q]V , we use Eµ(f) for the expectation of f with respect to
µ and, for f : Ω → R≥0, Entµ(f) = Eµ[f log f ] − Eµ(f) log Eµ(f), with the convention
that 0 log 0 = 0. Finally, for S ⊂ V , let EntS

µ(f) = Eτ∼µV \S

[
Entµτ

(f)
]

i.e., EntS
µ(f) is the

expected value of the conditional entropy of f when the assignment outside of S is chosen
according to the marginal distribution µV \S (the induced distribution of µ on V \S). For
convenience, when S = V , we define EntS

µ(f) = Entµ(f). The following inequality of entropy
under tensor product is a special case of Shearer’s inequalities.

▶ Fact 14. Let q, k ≥ 2 be integers and suppose that, for i ∈ [k], µi is a distribution supported
over Ωi ⊆ [q]Vi , where V1, . . . , Vk are pairwise disjoint sets. Let µ = µ1 ⊗ · · · ⊗ µk be the
product distribution on Ω = Ω1 × · · · × Ωk. Then, for any f : Ω → R≥0, it holds that
Entµ(f) ≤

∑k
i=1 EntVi

µ (f).

To bound the mixing time of Markov chains such as the Glauber dynamics, we will be
interested in establishing inequalities for factorisation of entropy, defined as follows.

▶ Definition 15. Let q ≥ 2, r ≥ 1 be integers and V be a set of size n ≥ r + 1. Let
µ be a distribution supported over Ω ⊆ [q]V . We say that µ satisfies the r-uniform-block
factorisation of entropy with multiplier4 Cr if for all f : Ω → R≥0 it holds that r

n Entµ(f) ≤
Cr

1
(n

r)
∑

S∈(V
r ) EntS

µ(f).

The following lemma will be useful to bound the (r-uniform-block) factorisation multiplier
for conditional distributions on sets with small cardinality.

▶ Lemma 16 ([8, Lemma 4.2]). Let q ≥ 2 be an integer and V be a set of size n ≥ 2.
Let µ be a distribution supported over Ω ⊆ [q]V which is b-marginally bounded for some
b > 0. Then, for any S ⊆ V and τ ∈ ΩV \S, for f : Ω → R≥0, it holds that Entµτ

(f) ≤
2|S|2 log(1/b)

b2|S|+2

∑
v∈S Entv

µτ
(f).

The r-uniform-block Glauber dynamics and its mixing time

For an integer r = 1, . . . , n, the r-uniform-block Glauber dynamics for µ is a Markov chain
(Xt)t≥0 where X0 ∈ Ω is an arbitrary configuration and, for t ≥ 1, Xt is obtained from Xt−1
by first picking a subset S ∈ V of size r uniformly at random and updating the configuration
on S according to

µ
(
σS = · | σV \S = Xt−1(V \S)

)
.

For ε > 0, the mixing time of the r-uniform-block Glauber dynamics is defined as Tmix(ε) =
maxσ∈Ω min

{
t
∣∣ X0 = σ, ∥νt − µ∥TV ≤ ε

}
, where νt denotes the distribution of Xt. Note,

the case r = 1 corresponds to the single-site dynamics, where at every step the spin of a
single vertex, chosen u.a.r., is updated conditioned on the spins of the remaining vertices.

4 We note that in related works Cr is usually referred to as the “factorisation constant”; we deviate from
this terminology since for us Cr will depend on n (cf. Corollary 19 and Lemma 21), and referring to it
as a constant could cause confusion.
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▶ Lemma 17 (See, e.g., [8, Lemma 2.6 & Fact 3.5(4)] or [6, Lemma 3.2.6 & Fact 3.4.2]). Let
q ≥ 2, r ≥ 1 be integers and V be a set of size n ≥ r + 1. Let µ be a distribution supported
over Ω ⊆ [q]V that satisfies the r-uniform-block factorisation of entropy with multiplier Cr.
Then, for any ε > 0, the mixing time of the r-uniform-block Glauber dynamics on µ satisfies

Tmix(ε) ≤
⌈

Cr
n

r

(
log log 1

µmin
+ log 1

2ε2

)⌉
, where µmin = minσ∈Ω µ(σ).

We remark that to deduce the lemma from [8] or [6], which refer to the so-called “entropy
decay constant κ”, one needs to use the equality Crκ = r/n from [8, Lemma 2.6] or [6,
Lemma 3.2.6].

From spectral independence to r-uniform-block factorisation multipliers

The following theorem is shown in [8]; while the version that we state here cannot be found
verbatim in [8], we explain in the appendix how to combine the results therein to obtain it.

▶ Theorem 18 ([8]). Let q ≥ 2 be an integer and V be a set of size n ≥ 2. Let µ be
a distribution supported over Ω ⊆ [q]V that is η-spectrally independent and b-marginally
bounded for η, b > 0.

Then, for all integers r = 1, . . . , n, the distribution µ satisfies the r-uniform-block

factorisation of entropy with multiplier Cr = r

n

∑n−1
k=0 Γk∑n−1

k=n−r Γk

, where Γk =
∏k−1

j=0 αj for

k ∈ [n]5 and αk = max
{

0, 1 − 4η
b2(n−1−k)

}
for k ∈ [n − 1].

4.2 Entropy factorisation for bounded-degree vertices in the hard-core
model

The first step of the analysis of Glauber dynamics for the hard-core model on the set of
small-degree vertices will be to employ spectral independence results of Section 3.2 to conclude
fast mixing for the r-uniform block Glauber dynamics for r = θ|U | for any arbitrarily small
constant θ. This step will follow by applying the recent technology of entropy factorisation
described above.

The second step is the more challenging for us. Here we need to conclude fast mixing
for r = 1, and in particular prove that C1/Cr = no(1). This is done roughly by studying
the connected components of G that arise when resampling an r-subset of the low-degree
vertices; the factorisation multiplier of these components controls the ratio C1/Cr. While
this resembles the approach of [8], there is a key difference here, in that high-degree vertices
are not resampled. This can not only cause potentially large components, but also imposes
a deterministic lower bound on components sizes (since a component consisting of high-
degree vertices will be deterministically present in the percolated graph consisting of the
r-subset of low-degree vertices and all of the high-degree vertices). This lower bound on the
component sizes is actually more significant than it might initially seem since the relatively
straightforward bound of Ω(log n) would unfortunately give a relatively large factorisation
multiplier of nΩ(1) (through Lemma 16). Instead, we need to show that components have size
o(log n), which in turn requires more delicate estimates for the distribution of high-degree
vertices in connected sets (see Lemma 20 below).

5 We note that for k = 0, the product defining Γk is empty and therefore Γ0 = 1.
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We start with the following corollary of Lemma 12, which converts a spectral independence
bound into a bound on the factorisation multiplier for the r-uniform-block Glauber dynamics
when r scales linearly with small-degree vertices. This is analogous to [8, Lemma 2.4], where
they obtain a 2O(η/b2) bound on Cr when r = Θ(n) via Theorem 18 (where η is the spectral
independence bound and b is the bound on the marginals). By restricting to small-degree
vertices, we obtain that b is a constant, which combined with the bound η = o(log n) from
Lemma 12 gives the bound Cr = no(1), as detailed below. The proof of the corollary is given
for completeness in Section D of the full version.

▶ Corollary 19. Let d ≥ 1 and λ > 0 be constants such that λ < λc(d). Then, for any
constants D, θ > 0, whp over the choice of G ∼ G(n, d/n), the marginal hard-core distribution
µG,λ,U , where U is the set of vertices in G with degree ≤ D, satisfies for any integer
r ∈

[
θ|U |, |U |

]
the r-uniform block factorisation of entropy with multiplier Cr ≤ nθ.

Note that the reason that we are able to use the same θ in the bounds for r and Cr is that
the bound on Cr is loose (we can obtain a sharper result since we have a bound on the
spectral independence of ε log n for any ε > 0).

We will now refine the bound of Corollary 19 down to r = 1 by exploiting the fact that
high-degree vertices are sparsely scattered. In particular, we will need the following lemma
which is a refinement of Lemma 4. For a graph G = (V, E), we say that a set S ⊆ V is
connected if the induced subgraph G[S] is connected.

▶ Lemma 20. Let d > 0 be an arbitrary real. There exists an L > 0 such that for
any δ ∈ (0, 1), the following holds whp over the choice of G = (V, E) ∼ G(n, d/n). For
∆ = 1/(δ log 1

δ ), for all integers k ≥ δ log n and any v ∈ V , there are ≤ (2e)∆Lk connected
sets S ⊆ V containing v with |S| = k. Moreover, every such set contains ≥ k/2 vertices with
degree less than L∆.

The proof of Lemma 20 is given in Section C.3 of the full version. We are now ready to
show the following.

▶ Lemma 21. Let d ≥ 1 and λ > 0 be constants such that λ < λc(d). For any θ > 0,
there is a constant D > 0 such that whp over the choice of G ∼ G(n, d/n), the marginal
hard-core distribution µG,λ,U , where U is the set of vertices in G with degree ≤ D, satisfies
the 1-uniform-block factorisation of entropy with multiplier C1 ≤ nθ.

Proof. Let L > 0 be as in Lemma 20, and consider an arbitrarily small constant θ > 0. Let
δ ∈ (0, 1) be a sufficiently small constant so that for D = L/(δ log 1

δ ) and b = λ
λ+(1+λ)D it

holds that 1
b2δ < eθ/4; such a constant exists since b2δ → 1 as δ ↓ 0. Let ∆ = 1/(δ log 1

δ ) and
ζ > 0 be a small constant so that 2(2e)L∆(2ζ)1/2 ≤ b2/2.

Let U be the vertices in G with degree ≤ D, and let r = ⌊ζ|U |⌋ + 1. Let µ = µG,λ,U . By
Corollary 19, we have that whp over the choice of G, there is Cr ≤ nθ/3 such that for every
f : Ω → R≥0 it holds that

r

|U |
Entµ(f) ≤ Cr

1(|U |
r

) ∑
S∈(U

r)
EntS

µ(f). (6)

For S ⊆ U , let C′(S) denote the collection of the connected components of the graph
G[S ∪ (V \U)], viewed as vertex sets, and let C(S) =

⋃
R∈C′(S){R ∩ U} be the restriction of

these components to the set U . Note that, for S ⊆ U and τ ∈ ΩU\S , µτ factorises over the
components of G[S ∪ (V \U)] and in particular, applying Fact 14, we have that

EntS
µ(f) = Eτ∼µU\S

[
Entµτ

(f)
]

≤ Eτ∼µU\S

[ ∑
R∈C(S)

EntR
µτ

(f)
]
.
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Using the bound in Lemma 16, we further obtain that

EntS
µ(f) ≤ Eτ∼µU\S

[ ∑
R∈C(S)

2|R|2 log(1/b)
b2|R|+2

∑
u∈R

Entu
µτ

(f)
]

=
∑

R∈C(S)

∑
u∈R

2|R|2 log(1/b)
b2|R|+2 Entu

µ(f),

where the last equality follows by linearity of expectation and the fact that
Eτ∼µU\S

[Entu
µτ

(f)] = Entu
µ(f). Plugging this bound into (6), we obtain that

Entµ(f) ≤ 2Cr log(1/b)
b2

(|U |−1
r−1

) ∑
S∈(U

r)

∑
R∈C(S)

∑
u∈U

|R|2

b2|R| Entu
µ(f).

which yields that

Entµ(f) ≤ 2Cr log(1/b)
b2

∑
u∈U

Entu
µ(f)

n∑
k=1

k2

b2k
Pr[Cu(S) = k], (7)

where Pr[Cu(S) = k] denotes the probability that u belongs to a set of size k in the set
C(S), when we pick S uniformly at random from {S ∈

(
U
r

)
| u ∈ S}. Define analogously

Pr[C′
u(S) = k] to be the probability that u belongs to a connected component of size k in

the set C′(S). By Lemma 20, whp over G ∼ G(n, d/n), for all vertices u and any integer
t ≥ δ log n, there are at most (2e)L∆t connected sets of size t containing a given vertex
u, and each of them contains at least t/2 vertices from U . In particular, for any integer
k ≥ δ log n, it holds that Pr[Cu(S) = k] ≤ Pr[k ≤ C′

u(S) ≤ 2k]. For all k ≤ 2|U |, the
probability that a specific subset of k/2 vertices of U is present in G[S ∪ (V \U)] is at most
(|U|−⌈k/2⌉

r−⌈k/2⌉ )
(|U|−1

r−1 ) ≤
(

r
|U |

)k/2 ≤ (2ζ)k/2. Therefore, for all k ≥ δ log n, by a union bound over the
connected sets of size k, we have

Pr[C′
u(S) = k] ≤ (2e)L∆k2k(2ζ)k/2 =

(
2(2e)L∆(2ζ)1/2)k ≤ (b2/2)k,

where in the first inequality the first factor is the number of size-k connected sets T of G

containing u, the second factor is an upper bound on the number of size k/2 subsets W of U

that might be included in T and the final factor is the probability that W is included in S.
The last inequality is by the choice of ζ. It follows that

Pr[Cu(S) = k] ≤ Pr[k ≤ C′
u(S) ≤ 2k] ≤ 2k(b2/2)k.

From this bound and the inequality 1/b2δ < eθ/4 by the choice of δ, we can split and bound
the rightmost sum in (7) by

n∑
k=1

k2

b2k
Pr[Cu(S) = k] ≤ (δ log n)2

b2δ log n
+

∑
k≥δ log n

2k3

2k
≤ nθ/3,

where the last inequality holds for all sufficiently large n. In turn, plugging this into
(7), we obtain that µ satisfies the 1-uniform block factorisation of entropy with multiplier
C1 = 2Cr log(1/b)

b2 nθ/3 ≤ nθ for all sufficiently large n (since b is a constant and Cr ≤ nθ/3),
as needed. ◀

Lemma 5 now follows easily by combining Lemmas 17 and 21. This was the last ingredient
needed in the proof of Theorem 1.
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