Locally Testable Cyclic Codes

Lészlé Babai*

Abstract

Cyclic linear codes of block length n over a finite
field F, are linear subspaces of ¥, that are invariant
under a cyclic shift of their coordinates. A family of
codes is good if all the codes in the family have constant
rate and constant normalized distance (distance divided
by block length). It is a long-standing open problem
whether there exists a good family of cyclic linear codes
(cf. [MS, p.270]).

A code C is r-testable if there erists a randomized
algorithm which, given a word z € Fy, adaptively se-
lects r positions, checks the entries of z in the selected
positions, and makes a decision (accept or reject x)
based on the positions selected and the numbers found,
such that

(i) if x € C then z is surely accepted;

(it) if dist(z,C) > en then z is probably rejected.
(“dist” refers to Hamming distance.)

A family of codes is locally testable if all members
of the family are r-testable for some constant r. This
concept arose from holographic proofs/PCPs. Goldre-
ich and Sudan [GS] asked whether there exist good, lo-
cally testable families of codes.

In this paper we address the intersection of the two
questions stated.

Theorem. There are no good, locally testable fami-
lies of cyclic codes over any (fixed) finite field.
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In fact our result is stronger in that it replaces con-
dition (it) of local testability by the condition

(ii’) if dist(z,C) > en then = has a positive chance of
being rejected.

The proof involves methods from Galois theory, cy-
clotomy, and diophantine approzximation.

1 Introduction

All codes discussed in this paper are linear. We
study rate/distance tradeofls for locally testable cyclic
codes. A family of codes is good if the codes in the
family have constant rate and constant normalized dis-
tance.

An example of a class of locally testable cyclic codes
is the Hadamard codes [BILR]. However, these codes
have logarithmic information rate and are therefore far
from being good.

It is a classical open question whether there exist
good families of cyclic codes (see ([MS, p.270], Research
Problem (9.2)). Extending results by Berman [Ber],
we prove the nonexistence of good families of cyclic
codes for a large class of block lengths, including
block lengths with a large “smooth” divisor (a smooth
number has no large prime divisors) (Theorems 1.9
and 5.1).

Recently Goldreich and Sudan asked whether there
exist good locally testable codes [GS]. Our main result
is that locally testable cyclic codes cannot be good.
In view of the general tradeoffs we establish for cyclic
codes, the critical remaining case is when the block
length has a large prime divisor. In this case we use
diophantine approximation to establish a tradeoff in-
volving the testability parameter. Our results require
only a considerably weaker property than local testabil-
ity: words that are far from the code are only required
to have a positive chance of rejection (the chance may
not be bounded away from zero). We formalize this
concept and state the main results in Subsection 1.2.



1.1 Preliminaries

Throughout this paper we shall use the following no-
tation. Let p be a prime and £ > 1. Let ¢ = pf, the
order of the field F,. A linear code C of length (“block
length”) n over F, is a subspace C' < Fp. The dimen-
sion dim(C) is referred to as the number of information
bits. The ratio rate(C) := dim(C)/n is the rate of C.
We say that a family of codes C; < Fy* has constant
rate if rate(C;) = Q(1), i.e., if dim(C;) = Q(n;). The
weight wt(w) of a “word” w € Fy is the number of
nonzero entries of w. The distance of the code C' is

dist(C) = wenol’lil};é wi(w),
the minimum weight of non-zero codewords. The nor-
malized distance of C is the quotient dist(C)/n.

We say that {C;} is a family of good codes if both
the rates and the normalized distances of the C; are
bounded away from zero (i.e., these quantities are
Q(1)).

A code is cyclic if it is invariant under the cyclic
shift of the coordinates, i.e., (ag,...,an-1) € C &
(an—la ag, - .- aan—2) eC.

Cyclic codes have a voluminous literature; several

of the well-known families of classical codes are cyclic
(BCH codes, Reed-Muller codes).

1.2 Weakly locally testable codes: the main re-
sults

For u,v € IF'(',‘ we use u - v to denote Y, u;v; € F,
(inner product over ;). For C < Fy, the dual subspace
is Ct = {z € F} | (Vw € C)(z - w = 0)}.

Definition 1.1 An r-tester for a linear code on input
z randomly selects r positions i1,...,%4, (1 < i; < n)
and checks the corresponding entries in z. (i; depends
only on the pairs (i, z;,), 1 < k < j—1, and on the
random bits). Then it chooses a Boolean function f :
F;, — {0,1}, at random from a probability distribution
that may depend on the sequence (ix, z;, ), and accepts
zif f(zi, .. 2:.)=1.

(i) An r-tester is complete if it surely accepts each
w € C;

(ii) An r-tester is weakly sound if for all w € Fy, if w
is surely accepted then dist(w, C') < dist(C)/3.

A linear code C is weakly r-testable if C' has a complete
and weakly sound r-tester.

Remark 1.2 As Ben Sasson et. al [BeGS] point out,
in the case of linear codes we may assume that the
test functions f are linear, i.e., f(z) =1 (z € F}) iff
z-a = 0 for a given vector a = a(f) € F;. We shall
not use this observation.

Definition 1.3 A family of codes is weakly locally
testable if for some constant r, all codes in the fam-
ily are weakly r-testable.

Remark 1.4 This is clearly a weaker condition than
local testability: we don’t require that words distant
from C to be rejected with constant probability, only
with positive probability.

Goldreich and Sudan ask whether there exist good,
locally testable codes [GS]. We give a partial answer
to this question; our result may support the view that
some of the complications [GS] go through (repeated
concatenation steps, PCPs) to build their (nearly lin-
ear) locally testable codes may be inevitable.

Theorem 1.5 Let F, be a finite field. There are no
good, weakly locally testable cyclic codes over Iy .

This result will be an immediate consequence of the
following tradeoff. Recall that for a good code, both
dim(C) and dist(C) must be Q(n).

Theorem 1.6 Let q be a prime power. There is a con-
stant ¢ = ¢(q) such that for any weakly r-testable cyclic
code C over F, either

¢ dlm(C) S Cn/(lognloglogn)f(:j?, or
e dist(C) < en/(lognloglogn)t/2.

Under a widely accepted number theoretic hypothesis
(about “Wieferich primes”) we obtain a better tradeoff
for binary codes.

Conjecture 1.7 For all primes p,
2771 £ 1  (mod p?).
This conjecture has been verified for all primes < 10'2.

Theorem 1.8 Let C be a weakly r-testable binary
cyclic code. If Conjecture 1.7 holds then either

e dim(C) < cn/(logn)™T; or
e dist(C) < en/logn,

where ¢ is an absolute constant.



1.3 Cyclic codes

Cyclic codes were first defined by Prange [Pr] in
1957. Since then many families of cyclic codes have
been found and bounds on the rate and distance of
cyclic codes were proved. In particular several of
the well-known classical codes are cyclic (BCH codes,
Reed-Muller codes). The monograph [MS] is a good
source on cyclic codes; the question of existence of good
families of cyclic codes was also formalized there (page
270). The problem is still open; very little seems to
have happened in this area since an important 1967
paper by S.D.Berman [Ber]. Berman deals with the
semisimple case (when p and n are relatively prime)
and assumes that all primes dividing n are bounded.
We extend Berman’s result in several directions: we
drop the semisimplicity assumption; permit the primes
to grow slowly while obtaining explicit tradeoffs; and
allow n to have a large non-smooth divisor m (up to
m < n'/27¢). However, in spite of these extensions,
the basic ingredients from cyclotomy in our proof are
not significantly different from Berman’s.

The following is our main tradeoff for cyclic codes
(without testability assumption).

Theorem 1.9 Let ¢ = p? be a prime power. Let n =
P ... py*m where p; < B. Let C be a cyclic code of
length n over Fy. Then

dlSt(C) dlm(C) < f- n1+1.1/]n In nm2p32/lnB.

Note that p; = p is permitted in this result.
For bounded primes, our proof yields the following
result.

Theorem 1.10 Let py,...,pr be fized primes (not
necessarily different from p). For every p, 0 < p <
1 there exist ¢, such that if C is a cyclic code of
length n = Hle pi® with dim(C) > pn over F, then
dist(C) < ¢,

Berman’s result is identical with this, with the slight
difference that he requires the extra condition p; # p.
We prove Theorems 1.9 and 1.10 in Section 5.

Another by-product of our proof is the following ex-

plicit tradeoff related to the powers of p dividing n.

Theorem 1.11 Let g = p* be a prime power. Let n =
p*m. Let C be a cyclic code of length n over Fy. Then

dim(C) - dist(C) < pmn.

We give the one-paragraph proof in Section 3. The
following corollary to this result (with a rather more
complicated proof) appeared in 1991 in Castagnioli et
al. [CaMSS].

Corollary 1.12 (Theorem 3 of [CaMSS]) Let
{C:} be a family of codes over F, (g = p*). Let C;
have block length n; = p*. If the s; are unbounded
then the family {C;} is not good.

Proof: By Theorem 1.11, dim(C;) - dist(C;) <
pmin; = n?/p%~1 # Q(n?) as would be the case for a
good family. O

Remark 1.13 In view of these results, the search for
good cyclic codes should focus on prime block length.
Mersenne primes n would seem like prime candidates
over F, because for them, ™ —1 has the largest number
of factors.

1.4 Locally testable codes

A code C is r-testable if there exists a randomized
algorithm which, given a word z € Fy, adaptively se-
lects r positions, checks the entries of z in the selected
positions, and makes a decision (accept or reject z)
based on the numbers found on the positions selected,
such that

(i) if z € C then z is surely accepted;

(ii) if dist(z, C) > en then z is rejected with a constant
probability (“dist” refers to Hamming distance).

A family of codes is locally testable if there exists
a constant r such that all members of the family are
r-testable.

r-testable codes for very small values of r first arose
from the analysis of the codes used as the “exterior
hulls” of holographic proofs. Thus, as [GS] point
out, suitable (nontrivial) modification of [BaFL] yields
codes that are polylog-testable and have quasipolyno-
mial length as a function of the number b of information
bits. The length of the code was reduced to nearly lin-
ear (n = b'*¢) in [BaFLS] while retaining its polylog-
testability. ([BaFLS] has a correctable error; the proof
as stated there yields nearly quadratic length.) The
seminal PCP paper by Arora et al. [ArTLMSS] can be
adapted to yield constant-testable codes of polynomial
length.

The testing length was reduced to 3 bits by Blum,
Luby and Rubinfeld [BILR] at the cost of exponential
length (Hadamard code).



Friedl and Sudan [FS] were the first to formally de-
fine locally testable codes. [FS] also gave a family of
locally testable codes of nearly quadratic length over a
large alphabet.

The code of [FS] is constructed as follows. The mes-
sages are polynomials of degree d in m variables over
the field F,; both m and ¢ bounded by d°®) . A code-
word is the set of restrictions of the message to each
affine line in ", that is, for every affine line in F* we
have a coordinate in the codeword, in which we write
the degree d polynomial which is the restriction of the
message to that line. So this code uses an alphabet of
size ¢**1 (one “letter” for each univariate polynomial
of degree < d over F,).

Starting from the [FS] codes, Goldreich and Sudan
[GS] give two constructions of locally testable binary
codes. In the first construction they first restrict the
[FS] code a random subset of coordinates (which corre-
sponds to taking a random subset of affine lines); then
they concatenate the code with a Reed-Muller-type
code, and finally concatenate it with the Hadamard
code. In this constructions the length is n = #**¢ (any
€ > 0 can be achieved). In the second construction Gol-
dreich and Sudan again restrict the [FS] code a random
subset of coordinates, but now instead of concatenat-
ing the code, they reduce the alphabet size by using
PCP’s. This construction gives a locally testable code
of nearly linear length (n = b'*°(1)). Both construc-
tions are randomized. These constructions were deran-
domized by Ben Sasson et al. [BeSVW].

Goldreich and Sudan [GS] also note, that, while
the codes constituting the outer layer of known holo-
graphic proofs/probabilistically checkable proofs are
not in themselves locally testable, they can be mod-
ified (nontrivially) to yield locally testable codes.

Finally, Goldreich and Sudan raise the problem we
partially address here: do there exist good locally
testable codes?

In a recent paper, BenSasson et al. [BeGS] study
locally testable codes with 2 queries. They show that
any linear locally testable code with 2 queries, over
a finite alphabet, that has a linear distance, contains
at most a constant number of codewords. This result
also holds for nonlinear binary codes. However, if the
alphabet size is larger than 2 then there exist nonlinear
locally testable codes with 2 queries, of nearly linear
length.

Local decodability, a strengthening of the con-
cept of local testability, has been studied in
[GKST],[KaT],[DJKLR],[KdW].  Stronger tradeoffs
than ours are obtained by these authors under this
stronger assumption; as shown in [GS], such strong
tradeoffs do not hold for locally testable codes.

In addition to PCPs, local testability and local
decodability arise in several contexts in computa-
tional complexity and cryptography, including self-
testing/correcting computations, pseudorandom gener-
ators, private information retrieval, fault-tolerant data
storage. For further literature on these connections we
refer to the bibliographies of [KaT, DJKLR].

1.5 Organization of the paper

In Section 2 we give the basic tools for dealing with
cyclic codes. In Section 3 we prove the easy case where
n is divisible by a high power of the characteristic of
the field. This proof gives some intuition for the later
proofs. In Section 4 we give some information about cy-
clotomic polynomials over finite fields that we will use
in Section 5 for proving our main result on cyclic codes
(without local testability assumptions). In Section 6
we show how to improve our tradeoff for binary codes
under a number theoretic conjecture. The main con-
tributions of the paper follow in Sections 7, 8 where we
use the local testability assumption through a diophan-
tine approximation argument to conclude the proof of
our main tradeoff result.

2 Cyclic codes and polynomials

In this section we review the polynomial ring ma-
chinery used to handle cyclic codes. For more details
we refer to [MS].

Let ¢ = p® be a prime power. Let R = F,[z]/(z™ —
1). It is known that R is a principal ideal domain.
With the vector @ = (ag,...,an-1) € I, we assoctate
the polynomials f,(z) = Y. no a;z* € R and fi(z) =
Sy ezl € R.

Let C' < Fy be acyclic code. Let Ic = {fa :a€C}
and Jo = {f¥ : a € C*}. Then I¢ and Jc areideals in
R. As R is a principal ideal domain we have that Io =
(g) where g|z™ — 1; we call g the generator polynomial
of C. Soa € C <& g|fa. Let h = (2™ —1)/g; then
Jo=(h)andae C & z"~1|(h- f,). We call h the
parity check polynomial for C.

Clearly, dim(C) = deg(h). So C has constant rate
if and only if deg(h) = Q(n).

For f € F,[z] let wt(f) be the number of nonzero
terms in f. The standard representative of f € F,[z]
in Fy[z]/(z™ — 1) is f mod (z" — 1).

We shall use the following properties of the weight
function.

Observation 2.1 For any f,g € F,[z],
o f(x)? = f(z);



o wit(f?) = wit(f);

o wi(fg) < wt(f)wt(g);

o wt(f mod (z" — 1)) < wt(f).

The distance of C can be expressed as follows:
dist(C) = min{wt(f) : fZ0, hf =0 (mod z"-1)} =

min{wt(gf) : f Z0 (mod =" —1), deg(f) < deg(h)}.

The testing weight of C is the smallest r such that there
exist polynomials hi,...,hs such that wt(h;) < r and
hi,...,hg generate the same ideal as h in R. We use
test(h) to denote test(C').

3 High powers of p

In this section we prove Theorem 1.11, the tradeoff
for the case when n is divisible by a high power of p.
No local testability assumption will be made in this
section. The idea is to use the factorization of h, the
parity check polynomial of C, to construct a codeword
of small weight. The fact that n = mp® makes this
analysis very easy. A similar argument will appear in
later sections, but with more complications.

Proof of Theorem 1.11: Let h € F,[z] be the parity
check polynomial of C. Recall that h|z" — 1=
(z™ - 1)7".

Let k be the smallest integer such that A | (z™ — 1)*.
Note that dim(C) = deg(h) < mk. Let fi € F,[z]
be a factor of z™ — 1 such that f¥ divides h. Let
j = |log, k|. Note that

f= o1 (z™ — 1)P=D" ) (x

m _ 1 p
fl”j f )
is a codeword as f - h|(z" — 1). Moreover, we can
write f(z) = fi(z?"), for some polynomial f, € F,[z],
so dist(C) < wi(f) = wi(fy) < n/pi = pim <
p*Tlm/k = pn/k. Combining our two inequalities we
obtain dim(C)dist(C) < mk - pn/k = pmn. O

In order to prove a more general result we need to
consider the factorization of ™ — 1 to cyclotomic poly-
nomials, and their irreducible factors.

4 Cyclotomic polynomials

In this section collect basic facts about cyclotomic
polynomials over finite fields. We refer to [LN] for
proofs and further information. We continue to work
over the field F,, ¢ = p*.

Let &, be the n-th cyclotomic polynomial over the
rationals. ®,, is a polynomial with integer coefficients;
let ®, be the same polynomial mod p. Then &, is
the n-th cyclotomic polynomial over F,. These poly-
nomials can be calculated inductively from the identity
2" —1=[];|, ®a. The degree of &, is ¢(n). For ptn,
the roots of ®,, are the n-th roots of unity in the al-
gebraic closure of Fy. For n = m - p*, where p { m,

By = (@) P71,

Lemma 4.1 ([LN, p. 82, Ez.2.57(c)]) Let mi,my be
integers such that every prime dividing m, divides m..
Then

Pinymy (T) = By (2™).

For n coprime to a let ord,(a) denote the order of a
in ZX, the multiplicative group of the ring Z/nZ (the
integers modulo n). Note that for ¢ = p® we have

ord,(g) = ordn(p)/ged(ordn(p), £) = lem(orda(p),€)/¢
(lem(a, b) is the least common multiple of a and b).

Lemma 4.2 (/LN, p. 65]) For n coprime to q, all the
irreducible factors of ®, over F; have degree ord,(q).

Let v be a prime. Let ¢, , be the smallest exponent
such that p*~! # 1 (mod v*»»*1). Note that 1 < ¢, , <
v/log,v. We will use ¢,,, to determine the order of p
modulo v* for large values of k.

Lemma 4.3 Let p,v be different primes. For k > t,p

ord,« (p) = vF "t rord, (p).

For k <t,
ord,x (p) = ord,(p)-

Proof: Let ¢t = t,, and let ¢ = ordy(p). We
have p = 1 + ap’ (mod v**!) where a is not di-
visible by v. By induction on s we obtain that
P9 =1+ apt® (mod v**+5+1) for every s > 0. Hence
the order of p in Z,,,,, divides gv®*!, is divisible by
the gv® and is not gv®. Hence the order of p in Z:,+,
is gv®. |

Let my = p{*...p}*. The following lemma shows
that the irreducible factors of ®,,, over the field F,
are exactly the irreducible factors of ®,,, evaluated at
z™/™2 for m, = pfl e pi’“ , where §; is determined by
g, i and p1, ..., Pi-

Lemma 4.4 Letp,pi,...,p: be different primes where
q = pb. Letc; be the largest integer such that p* divides
£. Let ¢} be the largest integer t such that there is j # i
for which p! divides ord,,(p). Let b; = max(c;,c}).



Let my = p*...pJ*. Let my = pit ... p3 where
8; = min{;, tp, p+bi}. Let f1,..., fa be the irreducible
factors of ®,,, over F,. Then the irreducible factors of
®,,, over Fy are fi(g™/m™2) L fa(z™ /™).

Proof: The idea of the proof is simple. First we use
Lemma 4.1 to obtain

P, (:L‘) =®m, (mml/mQ)'

This implies that f;(z™/™2) is a factor of @, (z).

Now we show that deg(fi(z™/™2)) = ordm,(q) and

using Lemma, 4.2 we get that it is an irreducible factor.
Note that p?i divides ord,, i, »+5: (p) and p?*! does

k3

not divide ord, s (p) for any j # ¢ and any B. Moreover
7

pg""'l does not divide £. Using Lemma 4.3 we obtain
that

ordm, (%) = lem(¢, ordp, (p), - - -, ordp, (p))/€

ordy, s (p), ..., pp* " **ord,, 5 (p)) /¢

=pl' % L pP % lem(4, ord,, 5 (D), . . 0rd, s (D)) /€

-5
= lem(¢,p* ™"

= (m1/mz)ordm, (p°).

As for every i we have ordpn,, (pt) = deg(f;(z™1/™2))
we obtain that for every i, fi(x™/™2) is a factor
of minimal degree of ®,,, (z) (by Lemma 4.2) and
hence it is irreducible. This completes the proof of
Lemma 4.4. O

5 Small primes

In this section we settle the case when a large part
of n factors into powers of very small primes. No local
testability assumption will be made in this section.

Theorem 5.1 Let ¢ = p° be a prime power. Let n =
p°p ...pp* where p,p1,...,pr are different primes.
Let C be a cyclic code of length n over F,. Then

k
dim(C)dist(C) < 2ent 11/ I p

i=1
where 8; = 1 + min{t,, p, a;}.

The quantity t, , is defined before Lemma 4.3 where
it is noted that t,, < v/log,v. Therefore pPP< py -
min{p{*, p*}.

Using the fact that the sum of primes less than « is
O(x?/Inx) we obtain:

Corollary 5.2 Let q be a fized prime power. Let p(n)
be the largest prime dividing n. For any e > 0 there ez-
ists ¢ = c(e,q) > 0 such that if p(n) < c(Inn Inlnn)/?
then for cyclic codes over F, of length n

dist(C) dim(C) < n'*e,

In Section 6 we improve Theorem 5.1 for binary
codes under a plausible number theoretic conjecture.

Before proving Theorem 5.1 we sketch the idea of the
proof. Let h be the parity check polynomial for C. We
shall show that h shares a factor g,, with a cyclotomic
polynomial ®,,, where n; has a large smooth divisor.
It follows by Lemma 4.4 that g,, can be written as a
polynomial of a large power of z. This in turn implies,
as in the proof of Theorem 1.11, that the polynomial
(z™ — 1)/ gn, represents a codeword of small weight.
Proof of Theorem 5.1: Let h be the parity check
polynomial of the code C. Recall that Az — 1 =
14 ®a- Let p = deg(h)/n be the rate of the code.
For d not divisible by p let gq = ged(h, ®4). Ford = ple
(1 < j < s8), where e is not divisible by p, we define g4
recursively on j:

ji—1

ga = ged(h/ H Ipier Pa)

=0
Observation 5.3 (o) []4),94 = h-

(b) If ft l q)epj and f | Gepit+1 then ft Igep-‘i .

From the fact [];,, 92 = h we infer 2| ndeg(ga) =
pn. From the fact deg(gq) < ¢(d) < d and the next

claim it follows that there is ny > pn!~1:1/Inlnn gych
that ny |n and deg(gn,) > 0.
Claim 5.4 For any n > 3 and any A,

1.1/1In}
Zd[n,dﬁAd<An /nnn.

Proof: It is known that the number of divisors of a
number n > 3 is less than n!'l/?I"" (see e.g. [BaS,
p.234]), so the Claim follows. O

This completes the first step of the proof as outlined.
Let m; be the part of n; not divisible by p, i.e., nq =
p*'m;. Let g be an irreducible factor of g,,.

Claim 5.5 ¢ | gn,.

Proof: As gn, |®n, = (®m,)?" @1 and g is an ir-
reducible factor of g,,, we get that g is an irreducible
factor of ®,,,. Therefore, for every 1 < j we have



that g?’ P=1|®,, ;. As g|gm,pn we get by Obser-
vation 5.3 that for every 1 < j < sy, g7’ (1) | 9mipi -

1

Since [[5Lo gm,ps | b we get that

-1

Pt O

where the 2 in the exponent comes from the contribu-
tions of gm, and gn,. Thus, for Z = p**~! we have
that g7 | h. O

Note that f = (z" — 1)/g% is a codeword. We will
show that f has a small weight. Since Z is a power of
p we have that f = ((z™/% —1)/g)%. From Observa-
tion 2.1 it follows that wt(f) = wt((z™Z — 1)/g). As
my |n and p f m; we can write m; = [[;_, pJ*. Let
bi,...,bg,01,... ,05,my be defined as in Lemma 4.4.
We obtain that the irreducible factors of &, are
fi(@™/™m2), ..., fa(z™/™2) where f1,..., f4 are the ir-
reducible factors of ®,,,. Hence g has all exponents
divisible by m;/m,. Since % | 2 we can view both
"% —1 and g as polynomials in /™2 and conclude
that

n/Z  pnmg
ml/mz ny

wt(f) = wt((e™? —1)/g) <

We now estimate mq. From the definition of the b; it
follows that each p* divides £(p; — 1) ... (px — 1). We
also have that t,, < p;/log,p;. As the p; are distinct,
we obtain that

k
ma < €-py -+~ pi | [ min{pP, pf*}.

i=1

Hence

k
wi(f) < o eont 3 [T mingp? pi:

i=1

This completes the proof of the Theorem. O

Theorem 1.9 now follows as an easy corollary. Next
we discuss the case where the prime divisors of n are
bounded, the case considered by Berman [Ber]. To
replicate Berman’s result (see Theorem 1.10) with an
explicit estimate (Theorem 5.9), we need to replace
Claim 5.4 by the following lemma.

Lemma 5.6 Let n = p{' ---pp* (p; prime). Then for
anyd,0<d <1,

k k
Z d<<1+log%) -(m?xpi)-H p_i1~5n.
i=1

dn , d<én =1 Pi

Proof: Let
N(n,0)={d : d|n and én <d < dén-maxp; }.

Clearly if d | n and d < dn then there exist din N(n,é)
such that d | d. We thus obtain that

> oas ¥ S

dn , d<én deN(n,é) d|d

Consider some d € N(n,én). Denote d= j pﬁ"
We get that

Sa-T[ (S0 ) <[22 —d -2
dld i=1 \j=0 ' il bl
k
Sén-m?xpi-I—Ipipil.

i=1

Therefore

k
Pi
Z d< |N(n,5)|-6n-Hpi_1 $MaxX p.
d|n , d<dn =1

Claim 5.7 |N(n,8)| < (1+ [log }])*.

Proof: Let d € N(n,6). Then d | n and & < %.

n

Denote Z = pf P pf”. Clearly

u 1
Z,Bi < |log EJ
i=1

Therefore the number of such (8, ..., 8x) is at most
k+ |log %] 1\*
< - .
( A < {1+ |log JJ
O

This completes the proof of Lemma 5.6. a

We rearrange the parameters of Lemma 5.6 as fol-
lows.

Corollary 5.8 Let n = p'---pp* (p; prime). Let
0<p<l,

Di

k
c= (m?XPi) : H

3
i=1 Di 1

and § = min(27%%, (2)?). Then

Z d < pn.

din , d<én



Now the explicit estimate for Berman’s result (The-
orem 1.10) follows.

Theorem 5.9 Let ¢ = p° be a prime power. Let
Pi,--.,Pk be a fized set of primes different from p. Let
0 < p <1 be a constant. Let & be as in Corollary 5.8.
Let C be a cyclic code of length n = p*p* ...py* and
dimension pn. Then

k
dist(C) < % - ¢- [] pi - min{p?,pi*}.

i=1

Proof: Repeat the proof of Theorem 5.1. Then, in-
stead of using Claim 5.4, use Lemma 5.6. We ob-
tain that there exists n; > dn such that n; | » and
deg(gn,) > 0. The rest of the proof remains the same.
In the end we obtain

pnma

k
wi(f) < B < ot [ mingp?pi7). O

™ =1
6 Wieferich primes

In this section we improve our tradeoff under a
widely accepted number theoretic hypothesis.

Primes such that f,, > 1, i.e. primes p satisfy-
ing 277! = 1 (mod p?), are called Wieferich primes
and have played an important role in certain cases
of Fermat’s Last Theorem [Wi]. There are only two
Wieferich primes known (1093 and 3511). There are no
other Wieferich primes less than 4 - 10'2 [CrDP]. It is
not known whether there are infinitely many Wieferich
primes. For p = 1093 and 3511 we have t,2 = 2 and
for all other primes p < 4 - 10'? we have t,2 = 1.

Conjecture 6.1 For every prime p, tp2 < 2.

(This is a restatement of Conjecture 1.7.)

Using the fact that the product of primes less than
z is exp(z + o(1)) we obtain the following conditional
consequence of Theorem 5.1.

Corollary 6.2 Let p(n) be the largest prime dividing
n. If Conjecture 6.1 holds then for any € > 0 there
exists ¢ > 0 such that if p(n) < clnn then for cyclic
codes of length n, dist(C) dim(C) < nl¥e.

7 r-closed codes

So far our proofs worked for all cyclic codes. The
remaining cases will require the assumption of local
testability.

In this section we show how to replace the algorith-
mic concept of r-testability with the algebraic concept
of r-closure on which the proof in the next section will
be based.

Definition 7.1 The r-core of a code C is the subspace
of C spanned by the words of weight < r. The r-closure
of C is the dual of the r-core of the dual. We say that
C is r-closed if C' is its own r-closure.

Observation 7.2 C is r-closed ezactly if C+ is
spanned by its words of weight < r. Moreover, the
r-closure of C is the smallest r-closed subspace con-
taining C.

Let [n] = {1,...,n}. For AC [n] and z € F}, let 74
denote the restriction of z to A (a string of | A| numbers
from F,;). We shall need the following characterization
of the r-closure.

Proposition 7.3 Let € F}. Then z belongs to the
r-closure of C if and only if for all AC [n], if |A| <7
then there exists y € C such that x4 = ya4.

Proof: The “if” part is trivial, so we prove the “only
if” part (which is the part we shall need below). Let D
denote the r-closure of C and let € D. Let A C [n],
|A| < 7. We need to prove that (3y € C)(xa = ya)-
Let C4 = {ya : y € C} (the projection of C' obtained
by restriction to A). We need to prove that z4 € Ca.
This will be accomplished by proving that z4 L Cy.
Let z4 € C;‘{. We need to show that 4 L z4. Let
z = (0,24) € F} be the word with zero entries outside
A and restricting to z4. Now z € C* because for
aly € C, z-y = za4-ya = 0. But wt(z) < r,
s0 z € D+ and therefore z - z = 0. Consequently
Ta-24 =12 =0, as desired. O

Proposition 7.4 Let T be a complete r-tester for C
(surely accepts all words in C) and let D be the r-
closure of C. Then T surely accepts all words in D.

Proof: Let z € D. On input z, let 7 select A C [n],
|A| = r (in some order). Now (Jy € C)(za = ya);
therefore on input y, 7 makes the exact same sequence
of choices. But 7 must accept y; therefore it will
accept x. a

The main result of this section follows. This result
holds not only for cyclic codes but also for codes that
are invariant under a transitive group action.



Definition 7.5 Let G be a group acting on [n] as
permutations. We say that G is transitive if for ev-
ery i,j € [n] there exists g € G such that g(i) = j.
Let C C F* be a code. We say that C is invari-
ant under the group G if for every ¢ € G we have
(al,...,an) eCe (ag(l), ...,ag(n)) eC.

Lemma 7.6 Let C be a weakly r-testable code. As-
sume C 1is tnvariant under a transitive permutation
group action. Then C is r-closed.

Proof: Let D denote the r-closure of C. Assume for
a contradiction that C # D. Let d = dist(C) and let
ube aword in D\ C. As D is accepted by 7 we must
have that dist(u,C) < g. Therefore, there is a nonzero
word w in D such that wt(w) < . Let v € D be a
word of weight < 2d/3; let wt(v) be maximum under

this constraint.

Claim 7.7 wt(v) > d/3.

Proof: Assume for a contradiction that wt(v) < d/3.
Let w' be a random translate of w under the given tran-
sitive group action. (So w' € D.) It is easy to prove
(see [BaE]) that the expected weight of v+w' is at least
wt(v) + wt(w) — 2wt{v)wt(w)/n > wt(v) + wt(w)/3 >
wt(v); therefore there exists w' (a translate of w)
such that wt(v + w’') > wt(v). Therefore, by the
maximality of wt{v), we have wt(v + w') > 2d/3. But
wt(v + w') < wt{v) + wt(w') < 2d/3, a contradiction,
proving Claim 7.7. O

Now d/3 < wt{v) < 2d/3, and therefore
dist(v,C) > d/3. This is a contradiction because
v is accepted by T according to Proposition 7.4. This
completes the proof of Lemma 7.6. O

8 Not all primes small

In this section we settle the case when n is divisible
by an unbounded prime (p(n) = w(l), where p(n) is
the largest prime dividing n). This is the only case
where local testability plays a role; by Lemma 7.6 we
shall assume that our codes are r-closed.

Theorem 8.1 Let v # p be a prime such that vin.
For every r-closed cyclic code C' of length n we have
either dim(C) < 4nv~1 /(=1 or dist(C) < n/v.

Our main result, Theorem 1.6, is an immediate con-
sequence of this result and Corollary 5.2. Similarly,
Theorem 1.8 follows by combining Theorem 8.1 with
Corollary 6.2.

Corollary 8.2 Let {C;} be a family of locally testable
cyclic codes. Let C; be of length n;, and let p(n;) be
the largest prime divisor of n;. If supp(n;) = oo then
this family cannot be good.

We need the following classical result on simultane-
ous diophantine approximation.

Theorem 8.3 (Dirichlet) Let «i,...,a, be real
numbers and L > 0 an integer. Then there exist in-
tegers Py, ..., Pp, Q such that |a;Q — F;| < L7 and
0<Q@Q<L.

Let F, denote the algebraic closure of F,;. As before,

we assume that C is a code over F,;, where ¢ = pt.

Lemma 8.4 Let v # p be a prime, h € F,[z] and
beF,, b#0. Assume that wt(h) < r. Then either
2V — b divides h or deg(gcd(h,z? — b)) < dot—1/(r—1),

Proof: Let ¢ be a root of z¥ — b. Let fi(z) = h(zc).
Clearly deg(gcd(h,z? — b)) = deg(ged(f1,z¥ — 1)).
Let ag,...,ar,_1 be the exponents of nonzero terms
in f1, i.e., fi(z) = Z;;é z%. W.l.o.g. we can
assume that ap = O because zero is not a root
of z¥v — 1. Let oy = aijfv,i = 0,...,7 — 1. Let
Py,...,P._1,Q be the best (in max-norm) simultane-
ous diophantine approximation of ai,...,a,_; with
@ <v-—1. Let Py = 0. By Dirichlet’s Theorem 8.3,
Q — Bl < (v — 1)7Y0-D < 2=/ Let
b; = a;QQ — Pyv. Let further t = ma.xf;(} |bi]. We have
t < 2001/ (=1 Let fo(x) be zt f(2?) modulo ¥ — 1.
We have fo(z) = zffi(29) + (z¥ — 1)g(x) for some
g € F,[z]. Note that deg(f2(z)) < 4v'~Y/("=1) because
ot (#9)% = gtthtvPioand 0 < t 4 b; < 4ot/ D),
Let R be the inverse of @ modulo v. f w € F, is a
common root of f; and z¥ — 1 then w® is a root of
fa. If f5 is the zero polynomial then z” — 1 divides
f1. Otherwise f» has at most 4v'~Y/("~1) roots and
hence deg(gcd(h,z? — b)) = deg(ged(fr,2¥ — 1)) <
4,[11—1/(7‘——1). 0

Proof of Theorem 8.1: Let hi,...,h; € F,[z]
be the test polynomials of the code. We have
wt(h;}) <r,i=1,...,t. Let h be the parity check poly-
nomial of C. Let n = p®muv where m is not divisible by
p. We have 2" ~1 = (2™ —1)?" = ([],(z*—b))P" where
the product ranges over all m-th roots of unity b € F,.
If for each b we have deg(ged(h,z¥ — b)) < 4p?—1/(r=1)
then dim(C) = deg(h) = deg(ged(h,z™ — 1)) <
pPm - 4TV = 4y /=), Otherwise
there exists an m-th root of unity b such that
deg(gcd(h, ¥ — b)) > 40!~/ ("= This means that for
every i = 1,...,t, deg(ged(h;, ¥ — b)) > 4pt=1/(r—1),



By Lemma 84, z¥ — b divides each h; and hence
also h. Note that z¥ — b9 divides A for any i > 0
because g; : a — a9 is a Frobenius automorphism and
the coefficients of h are in F; and hence fixed by o;.
Let g € F,[z] be the minimal polynomial of b. Then
g = Hf:—ol (x — b7) where k is the smallest positive
integer such that b?" = b. Hence g(z*) divides h. Note
that g(z?) also divides z" — 1 and f := (2™ — 1)/g(z")
has at most n/v terms because all the exponents are
divisible by v. O
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